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Abstract Let R be a commutative ring and let J(R) denote the Jacobson radical and P(R) the
prime radical of the ring R. Recently the notions of (2; J) and (2;P)-ideals as generalizations
of J-ideals and n-ideals were introduced and studied in commutative rings. Let ρ be a special
radical and R a noncommutative ring. In this paper we introduce the concept of (2; ρ)-ideals as
a generalization of radical-ideals. A proper ideal P is a (2; ρ)-ideal if whenever aRbRc ⊆ P for
a; b; c ∈ R, then ab ∈ P or ac ∈ ρ(R) or bc ∈ ρ(R). We show that (2; J) and (2;P)-ideals are
special cases of (2; ρ)-ideals and that many of the results for (2; J) and (2;P)-ideals are also
satisfied for noncommutative rings in general.

1 Introduction

For some related study see [6] and [10]. In [9] the notion of an n-ideal was introduced. Later,
following this, in [5] the notion of a J -ideal was introduced in [3]. The J -ideal is connected
to the Jacobson radical and the n-radical is connected to the prime radical. Lately in [3] we
extended these notions to noncommutative rings and show that these notions are special cases
of a general type of ideal connected to a special radical. In [8] the notion of a (2, n)-ideal was
introduced for a commutative ring as new generalization of n-ideals and in [9] the notion of a
(2,J )-ideal was introduced for a commutative ring as new generalization of J -ideals. In this
note we extend the notion of (2, n) and (2,J )-ideals to noncommutative rings and we also show
that many of these ideals are special cases of a more general type of ideal connected to a special
radical. For the following definitions of radicals and related results we refer the reader to [13].

A class ρ of rings forms a radical class in the sense of Amitsur-Kurosh if ρ has the following
three properties

(i) The class ρ is closed under homomorphism, that is, if R ∈ ρ, then R/I ∈ ρ for every
I ⊳ R.

(ii) Let R be any ring. If we define ρ(R) =
∑{I ⊳ R : I ∈ ρ}, then ρ(R) ∈ ρ.

(iii) For any ring R the factor ring R/ρ(R) has no nonzero ideal in ρ i.e. ρ(R/ρ(R)) = 0.

A class M of rings is a special class if it is hereditary, consists of prime rings and satisfies
the following condition (∗) if 0 6= I ⊳ R, I ∈ M and R a prime ring, then R ∈ M.

Let M be any special class of rings. The class U(M) = {R : R has no nonzero homomorphic
image in M} of rings forms a radical class of rings and the upper radical class U(M) is called a
special radical class.

Let ρ be a special radical with special class M i.e. ρ = U(M). Now let Sρ = {R : ρ(R) = 0} .
If P denotes the class of prime rings, then for the special radical ρ it follows from [13] that
ρ = U(P ∩ Sρ). For a ring R we have ρ(R) = ∩{I ⊳ R : R/I ∈ P ∩ Sρ} i.e. ρ has the
intersection property relative to the class P ∩ Sρ.
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Let I ⊳ R, then ρ(R/I) = ρ∗(I)/I for some uniquely determined ideal ρ∗(I) of R with
ρ(I) ⊆ I ⊆ ρ∗(I) and ρ∗(I) is called the radical of the ideal I while ρ(I) is the radical of the
ring I.

We also have ρ∗(I) = ρ(R) if and only if I ⊆ ρ(R).
In what follows let ρ be a special radical with special class M. Hence ρ = U(P ∩ Sρ).
The following are some of the well known special radicals which are defined in [13], prime

radical P , Levitski radical L, Kőthe’s nil radical N , Jacobson radical J and the Brown McCoy
radical G.

2 Definitions and general results

Throughout this paper, all rings are associative, noncommutative, and without identity unless
stated otherwise; by ideal, we mean two-sided ideal.

Definition 2.1. Let ρ be a special radical. A proper ideal I of the ring R is called a ρ-ideal if
whenever a, b ∈ R and aRb ⊆ I and a /∈ ρ(R), then b ∈ I.

In [9] and [5] the notions of n-ideals and J-ideals were introduced for commutative rings.

Definition 2.2. [9, Definition 2.1] and [5, Definition 2.1] If ρ is the prime radical or the Jacobson
radical of a commutative ring, then a proper ideal I of R is a ρ-ideal if whenever a, b ∈ R with
ab ∈ I and a /∈ ρ(R), then b ∈ I.

Definition 2.3. Let ρ be a special radical. A proper ideal I of the ring R is called a (2, ρ)-ideal if
whenever a, b, c ∈ R and aRbRc ⊆ I , then ab ∈ I or ac ∈ ρ(R) or bc ∈ ρ(R).

If ρ is equal to the prime radical P or the Jacobson radical J in the above definition, then we
have the notions of (2,P) and (2,J )-ideals.

Remark 2.4. Let R be a commutative ring with identity and I a proper ideal of R. I is a (2, ρ)-
ideal if and only if a, b, c ∈ R with abc ∈ I then ab ∈ I or ac ∈ ρ(R) or bc ∈ ρ(R). Let I be a
(2, ρ)-ideal and a, b, c ∈ R with abc ∈ I . Now aRbRc ⊆ I and hence ab ∈ I or ac ∈ ρ(R) or
bc ∈ ρ(R). Now, suppose that if a, b, c ∈ R with abc ∈ I then ab ∈ I or ac ∈ ρ(R) or bc ∈ ρ(R).
Let aRbRc ⊆ I . Since R is a ring with identity, abc ∈ aRbRb ⊆ I. Hence ab ∈ I or ac ∈ ρ(R)
or bc ∈ ρ(R) and we are done.

Proposition 2.5. Let ρ be a special radical and let R be a ring with identity and I a proper ideal

of R. We have the following:

(i) Every ρ-ideal of R is a (2, ρ)-ideal.

(ii) If I is a (2, ρ)-ideal of R then I ⊆ ρ(R).

(iii) If ρ1 is a special radical such that ρ1 6 ρ, then every (2, ρ1)-ideal is a (2, ρ)-ideal of R.

Proof. (i) Let I be a ρ-ideal of R and a, b, c ∈ R such that aRbRc ⊆ I. If ac ∈ ρ(R), then we
done. So suppose ac /∈ ρ(R). Hence we have a /∈ ρ(R). Since aRbc ⊆ I and I a ρ-ideal
of R, we have bc ∈ I. Now from [3, Proposition 1.5] we have I ⊆ ρ(R) and therefore
bc ∈ ρ(R) and hence I is a (2, ρ)-ideal.

(ii) Suppose I is a (2, ρ)-ideal of R and I * ρ(R). Hence there exists a ∈ I − ρ(R). Now
1R1Ra ⊆ I and 1a /∈ ρ(R) and therefore 1 ∈ I since I is a (2, ρ)-ideal of R. This is not
possible since I is a proper ideal of R. Hence I ⊆ ρ(R).

(iii) Let I be a (2, ρ1)-ideal of R and a, b, c ∈ R such that aRbRc ⊆ I and ac /∈ ρ(R) and
bc /∈ ρ(R). Since ρ1(R) ⊆ ρ(R), we have ac /∈ ρ1(R) and bc /∈ ρ1(R). Since I is a (2, ρ1)-
ideal of R, we have ab ∈ I and we are done.

Example 2.6. A (2, ρ)-ideal of R need not be a ρ-ideal. Let R = M2 (Z15) and ρ = J the Jacob-

son radical I = M2(
〈

0
〉

) is a (2,J )-ideal but not a J -ideal since

[

3 0

0 0

]

M2 (Z15)

[

5 0

0 0

]

⊆ I

but

[

3 0

0 0

]

/∈ J (R) and

[

5 0

0 0

]

/∈ I.
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Example 2.7. Consider R = M2 (Z120) and I = M2

(〈

60
〉)

. For the Jacobson radical J we have

J (R) = M2

(〈

30
〉)

. Clearly I ⊆ ρ(R). I is not a (2,J )-ideal of R since

[

3 0

0 0

]

R

[

4 0

0 0

]

R

[

5 0

0 0

]

⊆

I but

[

3 0

0 0

][

4 0

0 0

]

/∈ I and

[

3 0

0 0

][

5 0

0 0

]

/∈ J (R) and

[

4 0

0 0

][

5 0

0 0

]

/∈ J (R).

Example 2.8. The converse of Proposition 2.5 3 is not true in general as can be seen from the
following example. Let R be a commutative local domain which is not a field. From [7, (3)
page 56] J (R) 6= 0 and N (R) = 0. From Theorem 5.9 J (R) is a (2,J )-ideal. Let 0 6= a ∈
J (R) −N (R). Now 1R1Ra ⊆ J (R) where 1 /∈ J (R) and a /∈ N (R). Therefore J (R) is not
an (2,N )-ideal of R.

Proposition 2.9. Let ρ be a special radical and R a ring with I ⊆ K be proper ideals. If K is a

ρ-ideal of R, then I is a (2, ρ)-ideal.

Proof. Assume that aRbRc ⊆ I for some a, b, c ∈ R and ab /∈ I . If a ∈ ρ(R), we are done.
Suppose that a /∈ ρ(R). Since K is a ρ-ideal and aRbc ⊆ K , we have bc ∈ K , Since K is
a ρ-ideal of R, it follows from [3, Proposition 1.5] that K ⊆ ρ(R) and hence bc ∈ ρ(R) as
desired.

Corollary 2.10. Let ρ be a special radical and R a ring with I1, I2 two proper ideals of R. If I1

or I2 is a ρ-ideal of R, then I1I2 and I1 ∩ I2 are (2, ρ)-ideals.

Proposition 2.11. Let ρ be a special radical and R a ring with proper ideal I. If I is such that

R/I ∈ Sρ ∩ P , then the following are equivalent:

(i) I is a (2, ρ)-ideal of R.

(ii) I = ρ(R).

(iii) I is a ρ-ideal of R.

Proof. 1 ⇔ 2 Let I be a (2, ρ)-ideal of R. Since ρ is a special radical, we have
ρ(R) = ∩{A ⊳ R : R/A ∈ Sρ ∩ P} . Now, since R/I ∈ Sρ ∩ P , we have ρ(R) ⊆ I. From
Proposition 2.5 we have I ⊆ ρ(R). Hence I = ρ(R). For the converse, let I = ρ(R) with
R/I ∈ Sρ ∩ P . Let a, b, c ∈ R such that aRbRc ⊆ I. If bc ∈ ρ(R), then we done. Suppose
bc /∈ ρ(R) = I. Since I is a prime ideal and aRbc ⊆ I, we have a ∈ I and therefore ab ∈ I.
Hence I is a (2, ρ)-ideal of R.

2 ⇔ 3 This follows from [3, Proposition1.13].

Recall from [4, Definition 2.1] A proper ideal I of R is called a principally right 2-absorbing
primary ideal of R if whenever a, b, c ∈ R and aRbRc ⊆ I , then ab ∈ I or ac ∈

√
I or bc ∈

√
I

where
√
I = {V ⊳ R|V n ⊆ I for some positive integer n}. Recall also that

√
I = P∗(I) =

ρ∗(I) for some special radical ρ and where P∗(I) is equal to the intersection of all the prime
ideals of the ring R containing the ideal I.

Proposition 2.12. Let ρ be a special radical and R a ring with a proper ideal I. Suppose I is a

principally right 2-absorbing primary ideal of R. I is a (2, ρ)-ideal of R if and only if I ⊆ ρ(R).

Proof. ⇒This follows from Proposition 2.5.
⇐Let I be a principally right 2-absorbing primary ideal of R with I ⊆ ρ(R). Let a, b, c ∈ R

such that aRbRc ⊆ I. Since I ⊆ ρ(R) and since ρ is a special radical, we have
√
I ⊆ P∗(I) =

ρ∗(I) = ρ(R). Suppose ac /∈ ρ(R) and bc /∈ ρ(R) hence we have ac /∈
√
I and bc /∈

√
I. Now,

since I is a principally right 2-absorbing primary ideal of R, we have ab ∈ I and we are done.

Example 2.13. If ρ is equal to the prime radical, then a (2, ρ)-ideal is a principally right 2-
absorbing primary ideal. However, these are different concepts. For instance, consider the ideal
I = 〈12〉 of Z. The ideal M2(I) of the matrix ring M2(Z) is not a (2, ρ)- ideal, since
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[

2 0

0 0

]

M2(Z)

[

2 0

0 0

]

M2(Z)

[

3 0

0 0

]

⊆ M2(I), but

[

2 0

0 0

][

2 0

0 0

]

/∈ M2(I) and

[

2 0

0 0

] [

3 0

0 0

]

/∈
√

M2(Z). However, M2(I) is a 2-absorbing principally right primary

ideal of M2(Z) since

[

2 0

0 0

] [

3 0

0 0

]

∈
√

M2(I). It is also clear that M2(I) *
√

M2(Z).

Theorem 2.14. Let ρ be a special radical and R a ring with a proper ideal P. The following

statements are equivalent:

(i) P is a (2, ρ)-ideal of R.

(ii) (P : xRyR) ⊆ (ρ(R) : xR) ∪ (ρ(R) : yR) for all x, y ∈ R with xy /∈ P.

(iii) (P : xRyR) ⊆ (ρ(R) : xR) or (P : xRyR) ⊆ (ρ(R) : yR) for all x, y ∈ R with xy /∈ P.

(iv) For all x, y ∈ R and each ideal J of R, xRyJ ⊆ P implies either xy ∈ P or xJ ⊆ ρ(R) or

yJ ⊆ ρ(R).

(v) For all x ∈ R and ideals J and K of R, xJK ⊆ P implies either xJ ⊆ P or xK ⊆ ρ(R)
or JK ⊆ ρ(R).

(vi) For all ideals I, J,K of R such that IJK ⊆ P either IJ ⊆ P or IK ⊆ ρ(R) or JK ⊆ ρ(R).

Proof. 1 ⇒ 2 Suppose P is a (2, ρ)-ideal of R and choose x, y ∈ R with xy /∈ P. Take z ∈
(P : xRyR). Hence xRyRz ⊆ P. Since P is a (2, ρ)-ideal of R, we have xz ∈ ρ(R) or
yz ∈ ρ(R). Hence Rxz ⊆ ρ(R) or Ryz ⊆ ρ(R) and therefore (P : xRyR) ⊆ (ρ(R) : xR)∪
(ρ(R) : yR) .

2 ⇒ 3 Follows from the fact that an ideal that is contained in the union of two ideals must be
contained in one of them.

3 ⇒ 4 Let xRyJ ⊆ P for some x, y ∈ R and an ideal J of R. Hence xRyRJ ⊆ xRyJ ⊆ P .
Suppose xy /∈ P. From 3 we have J ⊆ (P : xRyR) ⊆ (ρ(R) : xR) or J ⊆ (P : xRyR) ⊆
(ρ(R) : yR) . Hence xRJ ⊆ ρ(R) or yRJ ⊆ ρ(R). Hence xJ ⊆ ρ(R) or yJ ⊆ ρ(R).

4 ⇒ 5 Suppose xJK ⊆ P for some x ∈ R and ideals J and K of R. Suppose xJ * P or
xK * ρ(R). Choose j0 ∈ J and k0 ∈ K such that xj0 /∈ P and xk0 /∈ ρ(R). Since
xRj0K ⊆ P, it follows from 4 that j0K ⊆ ρ(R). Now we will show that JK ⊆ ρ(R).
Take any j ∈ J. If jK ⊆ ρ(R), then we done. So suppose jK * ρ(R). Since xRjK ⊆ P,
from 4 we have xj ∈ P. This implies x(j + j0) /∈ P. As xR(j + j0)K ⊆ P, by 4 we have
(j + j0)K ⊆ ρ(R). Since j0K ⊆ ρ(R), we conclude that jK ⊆ ρ(R) and so JK ⊆ ρ(R).

5 ⇒ 6 Suppose IJK ⊆ P for some ideals I, J,K of R. Assume IJ * P and JK * ρ(R). Then
there exists x ∈ I such that xJ * P. Since xJK ⊆ P, by 5 we have xK ⊆ ρ(R). Let a ∈ I ,
then since aJK ⊆ P, by 5 we have aJ ⊆ P or aK ⊆ ρ(R).

Case 1: Let aJ ⊆ P. Then since (x + a)JK ⊆ P, by 5 we have (x + a)K ⊆ ρ(R). As
xK ⊆ ρ(R), we have aK ⊆ ρ(R).

Case 2: Let aJ * P. Since aJK ⊆ P, by 5 we get aK ⊆ ρ(R). Thus we have IK ⊆ ρ(R)
which completes the proof.

6 ⇒ 1 Suppose aRbRc ⊆ P for a, b, c ∈ R with ac /∈ ρ(R) and bc /∈ ρ(R). Put I = RaR,
J = RbR and K = RcR. Now IJK = RaRRbRRcR ⊆ RaRbRcR = RPR ⊆ P. Since
IK * ρ(R) and JK * ρ(R), it follows from 6 that ab ∈ IJ ⊆ P. Therefore P is a
(2, ρ)-ideal of R.

Proposition 2.15. Let ρ be a special radical.

(i) The intersection of any set of (2, ρ)-ideals of the ring R is a (2, ρ)-ideal.

(ii) Let R be a ring. ρ(R) is a (2, ρ)-ideal of R if and only if it is a 2-absorbing ideal of R.
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Proof. (i) Let {Pi : i ∈ ∆} be a set of (2, ρ)-ideals. Let aRbRc ⊆ ∩{Pi : i ∈ ∆} and suppose
ac /∈ ρ(R) and bc /∈ ρ(R). Since aRbRc ⊆ Pi for every i ∈ ∆, we have ab ∈ Pi for every
i ∈ ∆. Hence ab ∈ ∩{Pi : i ∈ ∆} and therefore ∩{Pi : i ∈ ∆} is a (2, ρ)-ideal.

(ii) This follows from the definition of a (2, ρ)-ideal and a 2-absorbing ideal.

Definition 2.16. A proper ideal P of a ring R is said to be a (2, ρ)-primary ideal if aRbRc ⊆ P
for a, b, c ∈ R, then ab ∈ P or ac ∈ ρ∗(P ) or bc ∈ ρ∗(P ).

Proposition 2.17. Let ρ be a special radical and P a proper ideal of the ring R. The following

statements are equivalent:

(i) P is a (2, ρ)-primary ideal of the ring R and ρ∗(P ) = ρ(R).

(ii) P is a (2, ρ)-ideal of R.

Proof. 1 ⇒ 2 Suppose P is a (2, ρ)-primary ideal of the ring R and ρ∗(P ) = ρ(R).Let aRbRc ⊆
P for a, b, c ∈ R and suppose ac /∈ ρ(R) = ρ∗(P ) and bc /∈ ρ(R) = ρ∗(P ). Since P is a
(2, ρ)-primary ideal, we have ab ∈ P and we are done.

2 ⇒ 1 Suppose P is a (2, ρ)-ideal of R. From Proposition 2.5 we have P ⊆ ρ(R). Now, since ρ
is a special radical and P ⊆ ρ(R), we have ρ(R) = ρ∗(P ). Let aRbRc ⊆ P for a, b, c ∈ R.
Since P is a (2, ρ)-ideal of R, we have ab ∈ P or ac ∈ ρ(R) = ρ∗(P ) or bc ∈ ρ(R) =
ρ∗(P ). Hence P is a (2, ρ)-primary ideal.

Theorem 2.18. Let R and S be rings and f : R → S be a surjective ring-homomorphism. If ρ is

a special radical, then the following statements hold:

(i) If I is a (2, ρ)-ideal of R and ker(f) ⊆ I , then f(I) is a (2, ρ)-ideal of S.

(ii) If J is a (2, ρ)-ideal of S and ker(f) ⊆ ρ(R), then f−1(J) is a (2, ρ)-ideal of R.

Proof. (i) Let d, e, h ∈ S such that dSeSh ⊆ f(I) and dh /∈ ρ(S) and eh /∈ ρ(S). Since f
is surjective, we can choose a, b, c ∈ R such that f(a) = d and f(b) = e and f(c) = h.
Now, dSeSh = f(a)f(R)f(b)f(R)f(c) = f(aRbRc) ⊆ f(I) and since ker(f) ⊆ I, we
have aRbRc ⊆ I. Then ab ∈ I or ac ∈ ρ(R) or bc ∈ ρ(R) since I is a (2, ρ)-ideal of R.
If ac ∈ ρ(R) then f(ac) = f(a)f(c) = dh ∈ f(ρ(R)) ⊆ ρ(S) since ρ is a special radical
which is a contradiction. Similarly, if bc ∈ ρ(R), then eh ∈ ρ(S). Hence ab ∈ I. This gives
f(ab) = f(a)f(b) = de ∈ f(I), as needed

(ii) Let a, b,∈ R such that aRbRc ⊆ f−1(J) and ac /∈ ρ(R) and bc /∈ ρ(R). Now, f(a)Sf(b)Sf(c) =
f(aRbRc) ⊆ J with f(ac) /∈ f(ρ(R)) and f(bc) /∈ f(ρ(R)). From [3, Theorem 1.10 (2)]
we have f(a)f(c) /∈ ρ(S) and f(b)f(c) /∈ ρ(S). Since J is a (2, ρ)-ideal of S, we have
f(a)f(b) ∈ J. Hence ab ∈ f−1(J). It follows that f−1(J) is a (2, ρ)-ideal of R.

Corollary 2.19. Let ρ be a special radical. Let R be a ring and let I,K be two ideals of R with

K ⊆ I . Then the following hold.

(i) If I is a (2, ρ)-ideal of R, then I/K is a (2, ρ)-ideal of R/K .

(ii) If I/K is a (2, ρ)-ideal of R/K and K ⊆ ρ(R), then I is a (2, ρ)-ideal of R.

(iii) If I/K is a (2, ρ)-ideal of R/K and K is a (2, ρ)-ideal of R, then I is a (2, ρ)-ideal of R.

Proof. (i) Assume that I is a (2, ρ)-ideal of R with K ⊆ I . Let π : R → R/K be the natural
epimorphism defined by π(R) = r + K . Note that ker(π) = K ⊆ I . Thus, by Theorem
2.18 1., it follows that π(I) = I/K is a (2, ρ)-ideal of R/K .

(ii) Again, consider the natural epimorphism π : R → R/K . Since K ⊆ ρ(R), by Theorem
2.18 2., I = π−1(I/K) is a (2, ρ)-ideal of R.
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(iii) This is clear by 2. and Theorem 2.18.

Proposition 2.20. Let R be a ring, I and J be two (2, ρ)-ideals of R. Then I+J is a (2, ρ)-ideal

of R.

Proof. Since I ⊆ ρ(R) and J is a proper ideal, we then have I + J is proper ideal of R. On
the other hand, I ∩ J and I/I ∩ J are (2, ρ)-ideals of R and R/I ∩ J , respectively. From the
isomorphism (I + J)/J ≃ I/I ∩ J and Corollary 2.19, we conclude that I + J is a (2, ρ)-ideal,
as needed.

Lemma 2.21. Let ρ be a special radical and let R be a ring and I an ideal of R. If ρ(R) is a

prime ideal of R and I ⊆ ρ(R) then I is a (2, ρ)-ideal.

Proof. Let aRbRc ⊆ I for a, b, c ∈ R. If bc ∈ ρ(R), then we done so suppose bc /∈ ρ(R). Now
aRbc ⊆ ρ(R) and since ρ(R) is a prime ideal, we get a ∈ ρ(R). Hence ac ∈ ρ(R) and therefore
I is a (2, ρ)-ideal.

3 Idealization

We now show how to construct ρ-ideals using the Method of Idealization. In what follows, R is
a ring (associative, not necessarily commutative and not necessarily with identity) and M is an
R−R-bimodule. The idealization of M is the ring R⊞M with (R⊞M,+) = (R,+)⊕ (M,+)
and the multiplication is given by (r,m)(s, n) = (rs, rn +ms). R⊞M itself is, in a canonical
way, an R−R-bimodule and M ≃ 0⊞M is a nilpotent ideal of R⊞M of index 2. We also have
R ≃ R⊞ 0 and the latter is a subring of R⊞M . Note also that R⊞M is a subring of the Morita

ring

[

R M

0 R

]

via the mapping (r,m) 7→
[

r m

0 r

]

. We will require some knowledge about

the ideal structure of R⊞M . If I is an ideal of R and N is an R −R-bi-submodule of M , then
I ⊞N is an ideal of R⊞M if and only if IM +MI ⊆ N .

If ρ is a special radical, it follows from [11] that if R is any ring, then ρ(R⊞M) = ρ(R)⊞M
for all R−R-bimodules M.

Proposition 3.1. Let ρ is a special radical. Let I be a proper ideal of R. Let M be a R − R-bi-

module. Now I is a (2, ρ)-ideal of R if and only if I ⊞M is a (2, ρ)-ideal of R⊞M.

Proof. ⇒Let xi = (ri,mi) ∈ R ⊞M for 1 6 i 6 3. Suppose x1R⊞Mx2R ⊞Mx3 ⊆ I ⊞M
with x1x3 /∈ ρ(R ⊞ M) = ρ(R) ⊞ M and x2x3 /∈ ρ(R ⊞ M) = ρ(R) ⊞ M . Now we have
r1Rr2Rr3 ⊆ I and r2r3 /∈ ρ(R) and r1r3 /∈ ρ(R). Since I is a (2, ρ)-ideal of R, we have
r1r2 ∈ I. Hence x1x2 = (r1r2, r1m2 +m1r2) ∈ I ⊞M and I ⊞M is a (2, ρ)-ideal.

⇐Let aRbRc ⊆ I for a, b, c ∈ R and suppose ac /∈ ρ(R) and bc /∈ ρ(R). Now (a, 0)R ⊞

M(b, 0)R ⊞ M(c, 0) ⊆ I ⊞ M with (a, 0)(c, 0) = (ac, 0) /∈ ρ(R) ⊞ M = ρ(R ⊞ M) and
(b, 0)(c, 0) = (bc, 0) /∈ ρ(R)⊞M = ρ(R⊞M). Since I ⊞M is a (2, ρ)-ideal of R⊞M, we get
(a, 0)(b, 0) = (ab, 0) ∈ I ⊞M. Hence ab ∈ I and therefore I is a (2, ρ)-ideal of R.

Definition 3.2. [3, Definition 2.4] Let ρ be a special radical and let M be an R − R-bi module.
The proper R−R bi-submodule N of M is a ρ−submodule if for a ∈ R and m ∈ M , whenever
mRa ⊆ N and a /∈ (ρ(R)M : M), then m ∈ N.

Theorem 3.3. Let ρ is a special radical. Let I be a (2, ρ)-ideal of R and N an R − R-bi-

submodule of the R − R-bi-module M. Then if (ρ(R)M : M) = ρ(R) and N is a ρ-submodule

of M with IM +MI ⊆ N, then I ⊞N is a (2, ρ)-ideal of R⊞M.

Proof. Let xi = (ri,mi) ∈ R ⊞M for 1 6 i 6 3. such that x1R ⊞ Mx2R ⊞ Mx3 ⊆ I ⊞ N.
Suppose x2x3 /∈ ρ(R) ⊞ M = ρ(R ⊞ M) and x1x3 /∈ ρ(R ⊞ M) = ρ(R) ⊞ M. We have
r1Rr2Rr3 ⊆ I and r1r3 /∈ ρ(R) and r2r3 /∈ ρ(R). Since I is a (2, ρ)-ideal of R and r1r3 /∈
ρ(R) and r2r3 /∈ ρ(R), we have r1r2 ∈ I. Now, (r1,m1) (1, 0) (r2,m2) (1, 0) (r3,m3) ∈ x1R⊞

Mx2R ⊞ Mx3 ⊆ I ⊞ N. Hence (r1r1r3, r1r2m3 + (r1m2 + m1r2)r3) ∈ I ⊞ N and we have
r1r2m3 + (r1m2 + m1r2)r3 ∈ N. Since r1r2m3 ∈ N, we have (r1m2 + m1r2)r3 ∈ N. Since
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r2r3 /∈ ρ(R), we have r3 /∈ ρ(R). Now since (r1m2 +m1r2)r3 ∈ N and r3 /∈ ρ(R) and N is a ρ-
submodule of M, we have (r1m2+m1r2) ∈ N. Hence (r1,m1) (r2,m2) = (r1r2, r1m2+m1r2) ∈
I ⊞N and I ⊞N is a (2, ρ)-ideal of R⊞M.

Proposition 3.4. Let ρ is a special radical. Let I be an ideal of R and N a proper R − R-bi-

submodule of the R − R-bi-module M. Suppose ρ(R) is a prime ideal. If I ⊆ ρ(R) then I ⊞N
is a (2, ρ)-ideal of R⊞M.

Proof. Since ρ(R) is a prime ideal, it follows from [11, Proposition 8] that ρ(R)⊞M is a prime
ideal of R⊞M. Also I ⊞N ⊆ ρ(R)⊞N ⊆ ρ(R)⊞M = ρ(R⊞M). Hence from Lemma 2.21
I ⊞N is a (2, ρ)-ideal.

4 Product of rings

Next, we characterize (2, ρ)-ideals of a Cartesian product of two rings.

Lemma 4.1. [1, Lemma] Suppose that R is a Amitsur-Kurosh radical class of rings. If R1, R2, · · · , Rn

are rings, then R(R1 ×R2 × · · · ×Rn) = R(R1)×R(R2)× · · · ×R(Rn). Hence, R is always

closed under finite products.

Let in what follows R1 and R2 be rings, not necessarily commutative and let ρ be a special
radical.

Remark 4.2. Let R1 and R2 be noncommutative rings and let I be a (2, ρ)-ideal of R1. Then we
do not necessarily have that I×R2 is a (2, ρ)-ideal of R = R1×R2. For example if ρ is the prime
radical M2(4Z8) ⊆ M2(Z8) is a (2, ρ)-ideal, but I = M2(4Z8)×M2(Z8) ⊆ M2(Z8)×M2(Z8) =
R is not (2, ρ)-ideal. Indeed,
([

2 0

0 0

]

,

[

1 0

0 0

])

R

([

1 0

0 0

]

,

[

1 0

0 0

])

R

([

2 0

0 0

]

,

[

1 0

0 0

])

⊆ I ,

([

2 0

0 0

]

,

[

1 0

0 0

])([

2 0

0 0

]

,

[

1 0

0 0

])

/∈ ρ(R) = M2(
〈

2
〉

)×M2(
〈

2
〉

)

and

([

1 0

0 0

]

,

[

1 0

0 0

])([

2 0

0 0

]

,

[

1 0

0 0

])

/∈ ρ(R)

and

([

2 0

0 0

]

,

[

1 0

0 0

])([

1 0

0 0

]

,

[

1 0

0 0

])

/∈ I.

Theorem 4.3. Let ρ be a special radical and R1 and R2 be noncommutative rings with identities.

Consider the ideal I ⊂ R. The following statements are equivalent.

(i) I ×R2 is a (2,ρ)-ideal of R = R1 ×R2.

(ii) I is a prime ideal of R1.

(iii) I ×R2 is a prime-ideal of R1 ×R2.

Proof. (1) ⇒ (2) Let a, b ∈ R1 such that aR1b ⊆ I. Now (a, 1)R(1, 1)R(b, 1) ⊆ I × R2.
Since (a, 1)(b, 1) /∈ ρ(R1) × ρ(R2) = ρ(R) and (1, 1)(b, 1) /∈ ρ(R1) × ρ(R2) = ρ(R), we have
(a, 1)(1, 1) = (a, 1) ∈ I ×R2. Hence a ∈ I and therefore I is a prime ideal.

(2) ⇒ (3) ⇒ (1) is clear.

Theorem 4.4. Let ρ be a special radical and R1 and R2 be noncommutative rings with identities.

Consider ideals I1 ⊂ R1 and I2 ⊂ R2. The following statements are equivalent.

(i) I = I1 × I2 is a (2,ρ)-ideal of R = R1 ×R2.

(ii) I1 = ρ(R1) ⊂ R1 and I2 = ρ(R2) ⊂ R2 are prime ideals.

(iii) I = I1 × I2 is a 2-absorbing ideal of R and I ⊆ ρ(R).
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Proof. (1) ⇒ (2) Assume that I1 6= ρ(R1), and take a ∈ I1\ρ(R1). Then (a, 1)R1×R2(1, 1)R1×
R2(1, 0) ⊆ I . Now (a, 1)(1, 0) /∈ ρ(R) = ρ(R1) × ρ(R2). Since I is a (2, ρ)-ideal of R, we
conclude that (a, 1)(1, 1) ∈ I1 × I2 or
(1, 1)(1, 0) ∈ ρ(R) = ρ(R1) × ρ(R2), a contradiction. Thus I1 = ρ(R1) . If I1 = ρ(R1) is not
prime, then there are elements a, b /∈ I1 = ρ(R1) such that aR1b ⊆ I1. Then (a, 1)R(1, 0)R(b, 1) ⊆
I , (a, 1)(1, 0) /∈ I1 × I2,
(a, 1)(b, 1) /∈ ρ(R) = ρ(R1)× ρ(R2) and (1, 0)(b, 1) /∈ ρ(R1)× ρ(R2), a contradiction. Thus I1

is prime in R1. The same arguments show that I2 = ρ(R2) is a prime ideal of R2.
(2) ⇒ (3) Suppose that I1 = ρ(R1) ⊆ R1 and I2 = ρ(R2) ⊆ R2 are prime ideals. Hence,

(I1 × R2) and (R1 × I2) are prime ideals of R = R1 × R2. Since the intersection of two prime
ideals is always 2-absorbing by [2, Proposition 1.9], we conclude that I = (I1 ×R2)∩ (R1 × I2)
is a 2-absorbing ideal of R.

(3) ⇒ (1) Let (xi, yi) ∈ R for 1 6 i 6 3 such that (x1, y1)R(x2, y2)R(x3, y3) ⊆ I. Since
I is 2-absorbing and I ⊆ ρ(R), we have (x1, y1)(x2, y2) ∈ I or (x1, y1)(x3, y3) ∈ I ⊆ ρ(R) or
(x2, y2)(x3, y3) ∈ I ⊆ ρ(R). Hence I is a (2, ρ)-ideal of R.

Corollary 4.5. Let ρ be a special radical and R1 and R2 be noncommutative rings with identities.

Consider ideals I1 ⊂ R1 and I2 ⊂ R2. If I = I1 × I2 is a (2, ρ)-ideal of R = R1 ×R2, then I1 is

a ρ-ideal of R1 and I2 is a ρ-ideal of R2

Proof. Suppose I = I1 × I2 is a (2, ρ)-ideal of R = R1 × R2. From 4.4 it follows that I1 =
ρ(R1) ⊂ R1 and I2 = ρ(R2) ⊂ R2 are prime ideals. It now follows from [3, Proposition
Proposition 1.13] that I1 is a ρ-ideal of R1 and I2 is a ρ-ideal of R2.

5 (2,J )-ideals

In this section the special radical will be the Jacobson radical. In [5] Khashan et al. introduced
the notion of J−ideals for commutative rings with identity element. In [12] Yildiz et al. in-
troduced the concept of (2, J)-ideal as a generalization of a J-ideal. They investigate many
properties of (2, J)-ideals. We show that for the Jacobson radical many of the results proved by
Yildiz et al. are also true for noncommutative rings.

In what follows for the noncommutative ring R, J (R) will denote the Jacobson radical of
the ring R.

Definition 5.1. A proper ideal I of a ring R is a J -ideal if whenever a, b ∈ R such that aRb ⊆ I
and a /∈ J (R), then b ∈ I.

If R is a commutative ring, then the notion of a J -ideal coincides with a J-ideal as been
defined by Khashan et al. in [5].

Definition 5.2. A proper ideal I of a ring R is a (2,J )-ideal if whenever a, b, c ∈ R such that
aRbRc ⊆ I then ab ∈ I or ac ∈ J (R), or bc ∈ J (R). If R is a commutative ring, then the notion
of a (2,J )-ideal coincides with a (2, J)-ideal as been defined by Yildiz et al. in [12].

Proposition 5.3. (See [12, Proposition 1])Let J be the Jacobson radical and I a proper ideal of

the ring R. We have the following:

(i) Every J -ideal of R is a (2,J )-ideal.

(ii) If I is a (2,J )-ideal of R then I ⊆ J (R).

(iii) If ρ1 is a special radical such that ρ1 6 J , then every (2, ρ1)-ideal is a (2,J )-ideal of R.

Proof. This follows from Proposition 2.5 by taking ρ equal to J .

Proposition 5.4. (See [12, Proposition 2])Let J be the Jacobson radical and I a proper ideal I
the ring R. Suppose I is a principally right 2-absorbing primary ideal of R. I is a (2,J )-ideal

of R if and only if I ⊆ J (R).

Proof. This follows from Proposition 2.12 by taking ρ equal to J .
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Proposition 5.5. Let J be the Jacobson radical and R a ring with I ⊆ K proper ideals. If K is

a J -ideal of R, then I is a (2,J )-ideal.

Proof. This follows from Proposition 2.9 by taking ρ equal to J .

Corollary 5.6. Let J be the Jacobson radical and R a ring with I1, I2 two proper ideals of R. If

I1 or I2 is a J -ideal of R, then I1I2 and I1 ∩ I2 are (2,J )-ideals.

Theorem 5.7. (See [12, Theorem 1]) Let J be the Jacobson radical and P a proper ideal of the

ring R.The following are equivalent:

(i) P is a (2,J )-ideal of R.

(ii) (P : xRyR) ⊆ (J (R) : xR) ∪ (J (R) : yR) for all x, y ∈ R with xy /∈ P.

(iii) (P : xRyR) ⊆ (J (R) : xR) or (P : xRyR) ⊆ (J (R) : yR) for all x, y ∈ R with xy /∈ P.

(iv) For all x, y ∈ R and each ideal J of R, xRyJ ⊆ P implies either xy ∈ P or xJ ⊆ J (R)
or yJ ⊆ J (R).

(v) For all x ∈ R and ideals J and K of R, xJK ⊆ P implies either xJ ⊆ P or xK ⊆ J (R)
or JK ⊆ J (R).

(vi) For all ideals I, J,K of R such that IJK ⊆ P either IJ ⊆ P or IK ⊆ J (R) or JK ⊆
J (R).

Proof. This follows from Theorem 2.14 by taking ρ equal to J .

Proposition 5.8. (See [12, Proposition 3])Let J be the Jacobson radical.

(i) The intersection of any set of (2,J )-ideals of the ring R is a (2,J )-ideal.

(ii) Let R be a ring. J (R) is a (2,J )-ideal of R if and only if it is a 2-absorbing ideal of R.

Proof. This follows from Proposition2.15 by taking ρ equal to J .

Theorem 5.9. (See [12, Theorem 2])Let R be a ring and ρ be the Jacobson radical J .The fol-

lowing statements are equivalent:

(i) R is a local ring.

(ii) Every proper ideal of R is a (2,J )-ideal.

(iii) Every proper principal ideal of R is a (2,J )-ideal.

Proof. 1 ⇒ 2 Let R be a local ring and let P be a proper ideal of R such that xRyRz ⊆ P for
x, y, z ∈ R. Suppose xz /∈ J (R) and yz /∈ J (R). Since R is a local ring, xz and yz are
unit elements. If xz is a unit, then xy = x1y(xz)−1xz ∈ xRyRz ⊆ P. If yz is a unit then
xy = x1y(yz)−1yz ∈ xRyRz ⊆ P. Hence P is a (2,J )-ideal.

2 ⇒ 3 This is clear,

3 ⇒ 1 Suppose every proper principal ideal of R is a (2,J )-ideal and take a maximal left ideal
M of R. Now J (R) ⊆ M. We show M ⊆ J (R). Let a ∈ M and suppose a /∈ J (R).
Now 1R1Ra ⊆ 〈a〉 . Since 〈a〉 is a (2,J )-ideal, we have 1 ∈ 〈a〉 ⊆ M. A contradiction and
hence J (R) = M is the unique maximal left ideal of R. Therefore R is a local ring from
[7, Theorem 19.1].

Proposition 5.10. (See [12, Proposition 4]) Let J be the Jacobson radical and P a proper ideal

of the ring R. The following statements are equivalent:

(i) P is a (2,J )-primary ideal of the ring R and J (P ) = J (R).

(ii) P is a (2,J )-ideal of R.

Proof. This follows from Proposition2.17 by taking ρ equal to J .
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Theorem 5.11. (See [12, Proposition 5]) Let R and S be rings and f : R → S be a surjective

ring-homomorphism. For the Jacobson radical radical J , the following statements hold:

(i) If I is a (2,J )-ideal of R and ker(f) ⊆ I , then f(I) is a (2,J )-ideal of S.

(ii) If J is a (2,J )-ideal of S and ker(f) ⊆ J (R), then f−1(J) is a (2,J )-ideal of R.

Proof. This follows from Theorem 2.18 by taking ρ equal to J .

Proposition 5.12. (See [12, Proposition 6])Let J be the Jacobson radical and let R be a ring

and let I,K be two ideals of R with K ⊆ I . Then the following hold:

(i) If I is a (2,J )-ideal of R, then I/K is a (2,J )-ideal of R/K .

(ii) If I/K is a (2,J )-ideal of R/K and K ⊆ J (R), then I is a (2,J )-ideal of R.

(iii) If I/K is a (2,J )-ideal of R/K and K is a (2,J )-ideal of R, then I is a (2,J )-ideal of R.

Proof. This follows from Corollary2.19 by taking ρ equal to J .

Proposition 5.13. Let R be a ring, I and J be two (2,J )-ideals of R. Then I+J is a (2,J )-ideal

of R.

Proof. This follows from Proposition 2.20 by taking ρ equal to J .

Proposition 5.14. Let J be the Jacobson radical and let R be a noncommutative ring with

identity. Let I be a proper ideal of R. Let M be a R − R-bi-module. Now I is a (2,J )-ideal of

R if and only if I ⊞M is a (2,J )-ideal of R⊞M.

Proof. This follows from Proposition 3.1 by taking ρ equal to J .

Theorem 5.15. Let the J be the Jacobson radical radical and R a noncommutative ring with

identity. Let I be a (2,J )-ideal of R and N an R − R-bi-submodule of the R − R-bi-module

M. Then, if (J (R)M : M) = J (R) and N is a J -submodule of M with IM +MI ⊆ N, then

I ⊞N is a (2,J )-ideal of R⊞M.

Proof. This follows from Theorem 3.3 by taking ρ equal to J .

Proposition 5.16. Let the J be the Jacobson radical and R a noncommutative ring with identity.

Let I be an ideal of R and N a proper R−R-bi-submodule of the R−R-bi-module M. Suppose

J (R) is a prime ideal. If I ⊆ J (R) then I ⊞M is a (2, J)-ideal of R⊞M.

Proof. This follows from Proposition 3.4 by taking ρ equal to J .

6 (2.P)-ideals

In this section the special radical will be the prime radical. In [9] Tekir et al. introduced the no-
tion of n-ideals for commutative rings with identity element. In [8] Tamekkante et al. introduced
the concept of (2, n)-ideals as a generalization of an n-ideal. They investigate many properties
of (2, n)-ideals. We show that for the prime radical many of the results proved by Tamekkante
et al. are also true for noncommutative rings.

In what follows for the noncommutative ring R, P(R) will denote the prime radical of the
ring R.

Definition 6.1. A proper ideal I of a ring R is a P-ideal if whenever a, b ∈ R such that aRb ⊆ I
and a /∈ P(R), then b ∈ I.

If R is a commutative ring, then the notion of a P-ideal coincides with a n-ideal as been
defined by Tekir et al. in [9].

Definition 6.2. A proper ideal I of a ring R is a (2,P)-ideal if whenever a, b, c ∈ R such that
aRbRc ⊆ I then ab ∈ I or ac ∈ P(R), or bc ∈ P(R). If R is a commutative ring, then the notion
of a (2,P)-ideal coincides with a (2, n)-ideal as been defined by Tamekkante et al. in [8].
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Proposition 6.3. (See [8, Theorem 2.4])Let P be the prime radical and P a proper ideal of the

ring R.The following statements are equivalent:

(i) P is a (2,P)-primary ideal of the ring R and P(P ) = P(R).

(ii) P is a (2,P)-ideal of R.

Proof. This follows from Proposition2.17 by taking ρ equal to P .

Proposition 6.4. (See [8, Corollary 2.5]) Let P be the prime radical and I a proper of the ring

R. If I is a prime ideal, then the following are equivalent:

(i) I is a (2,P)-ideal of R.

(ii) I = P(R).

(iii) I is a P-ideal of R.

Proof. This follows from Proposition 2.11 by taking ρ equal to P .

Theorem 6.5. (See [8, Proposition 2.7]) Let P be the prime radical and P a proper ideal of the

ring R.The following are equivalent:

(i) P is a (2,P)-ideal of R.

(ii) (P : xRyR) ⊆ (P(R) : xR) ∪ (P(R) : yR) for all x, y ∈ R with xy /∈ P.

(iii) (P : xRyR) ⊆ (P(R) : xR) or (P : xRyR) ⊆ (P(R) : yR) for all x, y ∈ R with xy /∈ P.

(iv) For all x, y ∈ R and each ideal J of R, xRyJ ⊆ P implies either xy ∈ P or xJ ⊆ P(R)
or yJ ⊆ P(R).

(v) For all x ∈ R and ideals J and K of R, xJK ⊆ P implies either xJ ⊆ P or xK ⊆ P(R)
or JK ⊆ P(R).

(vi) For all ideals I, J,K of R such that IJK ⊆ P either IJ ⊆ P or IK ⊆ P(R) or JK ⊆
P(R).

Proof. This follows from Theorem 2.14 by taking ρ equal to P .

Proposition 6.6. (See [8, Proposition 2.8]Let P be the prime radical.

(i) The intersection of any set of (2,P)-ideals of the ring R is a (2,P)-ideal.

(ii) Let R be a ring. P(R) is a (2,P)-ideal of R if and only if it is a 2-absorbing ideal of R.

Proof. This follows from Proposition2.15 by taking ρ equal to P .

Theorem 6.7. (See [8, Proposition 3.1]) Let R and S be rings and f : R → S be a surjective

ring-homomorphism. For the prime radical P , the following statements hold:

(i) If I is a (2,P)-ideal of R and ker(f) ⊆ I , then f(I) is a(2,P)-ideal of S.

(ii) If J is a (2,P)-ideal of S and ker(f) ⊆ P(R), then f−1(J) is a(2,P)-ideal of R.

Proof. This follows from Theorem 2.18 by taking ρ equal to P .

Proposition 6.8. (See [8, Corollary 3.3])Let P be the prime radical and let R be a ring and let

I,K be two ideals of R with K ⊆ I . Then the following hold.

(i) If I is a (2,P)-ideal of R, then I/K is a (2,P)-ideal of R/K .

(ii) If I/K is a (2,P)-ideal of R/K and K ⊆ P(R), then I is a (2,P)-ideal of R.

(iii) If I/K is a (2,P)-ideal of R/K and K is a (2,P)-ideal of R, then I is a (2,P)-ideal of R.

Proof. This follows from Corollary2.19 by taking ρ equal to P .
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Proposition 6.9. Let P be the prime radical and let R be a noncommutative ring with identity.

Let I be a proper ideal of R. Let M be a R − R-bi-module. Now I is a (2,P)-ideal of R if and

only if I ⊞M is a (2,P)-ideal of R⊞M.

Proof. This follows from Proposition 3.1 by taking ρ equal to P .

Theorem 6.10. Let the P be the prime radical and R a noncommutative ring with identity. Let I
be a (2,P)-ideal of R and N an R− R-bi-submodule of the R −R-bi-module M. If (P(R)M :
M) = P(R) and N is a P-submodule of M with IM +MI ⊆ N, then I ⊞N is a (2,P)-ideal

of R⊞M.

Proof. This follows from Theorem 3.3 by taking ρ equal to P .

Proposition 6.11. Let the P be the prime radical radical and R a noncommutative ring with

identity. Let I be an ideal of R and N a proper R−R-bi-submodule of the R−R-bi-module M.
Suppose P(R) is a prime ideal. If I ⊆ P(R) then I ⊞M is a (2, J)-ideal of R⊞M.

Proof. This follows from Proposition 3.4 by taking ρ equal to P .
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