On (2, radical)-ideals of noncommutative rings

N. Groenewald

Communicated by Ayman Badawi

MSC 2010 Classifications: 16N20, 16N40, 16N80, 16L30.

Keywords and phrases: Special radical ρ , ρ -ideal, $(2, \rho)$ -ideal, $(2, \mathcal{P})$ -ideal, (2, J)-ideal.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Abstract Let R be a commutative ring and let J(R) denote the Jacobson radical and $\mathcal{P}(R)$ the prime radical of the ring R. Recently the notions of (2; J) and $(2; \mathcal{P})$ -ideals as generalizations of J-ideals and n-ideals were introduced and studied in commutative rings. Let ρ be a special radical and R a noncommutative ring. In this paper we introduce the concept of $(2; \rho)$ -ideals as a generalization of radical-ideals. A proper ideal P is a $(2; \rho)$ -ideal if whenever $aRbRc \subseteq P$ for $a; b; c \in R$, then $ab \in P$ or $ac \in \rho(R)$ or $bc \in \rho(R)$. We show that (2; J) and $(2; \mathcal{P})$ -ideals are special cases of $(2; \rho)$ -ideals and that many of the results for (2; J) and $(2; \mathcal{P})$ -ideals are also satisfied for noncommutative rings in general.

1 Introduction

For some related study see [6] and [10]. In [9] the notion of an n-ideal was introduced. Later, following this, in [5] the notion of a \mathcal{J} -ideal was introduced in [3]. The \mathcal{J} -ideal is connected to the Jacobson radical and the n-radical is connected to the prime radical. Lately in [3] we extended these notions to noncommutative rings and show that these notions are special cases of a general type of ideal connected to a special radical. In [8] the notion of a (2, n)-ideal was introduced for a commutative ring as new generalization of *n*-ideals and in [9] the notion of a $(2, \mathcal{J})$ -ideal was introduced for a commutative ring as new generalization of \mathcal{J} -ideals. In this note we extend the notion of (2, n) and $(2, \mathcal{J})$ -ideals to noncommutative rings and we also show that many of these ideals are special cases of a more general type of ideal connected to a special radical. For the following definitions of radicals and related results we refer the reader to [13].

A class ρ of rings forms a radical class in the sense of Amitsur-Kurosh if ρ has the following three properties

- (i) The class ρ is closed under homomorphism, that is, if $R \in \rho$, then $R/I \in \rho$ for every $I \triangleleft R$.
- (ii) Let R be any ring. If we define $\rho(R) = \sum \{I \triangleleft R : I \in \rho\}$, then $\rho(R) \in \rho$.
- (iii) For any ring R the factor ring $R/\rho(R)$ has no nonzero ideal in ρ i.e. $\rho(R/\rho(R)) = 0$.

A class \mathcal{M} of rings is a **special class** if it is hereditary, consists of prime rings and satisfies the following condition (*) if $0 \neq I \triangleleft R$, $I \in \mathcal{M}$ and R a prime ring, then $R \in \mathcal{M}$.

Let \mathcal{M} be any special class of rings. The class $\mathcal{U}(\mathcal{M}) = \{R : R \text{ has no nonzero homomorphic} image in <math>\mathcal{M}\}$ of rings forms a radical class of rings and the upper radical class $\mathcal{U}(\mathcal{M})$ is called a special radical class.

Let ρ be a special radical with special class \mathcal{M} i.e. $\rho = \mathcal{U}(\mathcal{M})$. Now let $S_{\rho} = \{R : \rho(R) = 0\}$. If \mathcal{P} denotes the class of prime rings, then for the special radical ρ it follows from [13] that $\rho = \mathcal{U}(\mathcal{P} \cap S_{\rho})$. For a ring R we have $\rho(R) = \cap\{I \lhd R : R/I \in \mathcal{P} \cap S_{\rho}\}$ i.e. ρ has the intersection property relative to the class $\mathcal{P} \cap S_{\rho}$. Let $I \triangleleft R$, then $\rho(R/I) = \rho^*(I)/I$ for some uniquely determined ideal $\rho^*(I)$ of R with $\rho(I) \subseteq I \subseteq \rho^*(I)$ and $\rho^*(I)$ is called the radical of the ideal I while $\rho(I)$ is the radical of the ring I.

We also have $\rho^*(I) = \rho(R)$ if and only if $I \subseteq \rho(R)$.

In what follows let ρ be a special radical with special class \mathcal{M} . Hence $\rho = \mathcal{U}(\mathcal{P} \cap \mathcal{S}_{\rho})$.

The following are some of the well known special radicals which are defined in [13], prime radical \mathcal{P} , Levitski radical \mathcal{L} , Kőthe's nil radical \mathcal{N} , Jacobson radical \mathcal{J} and the Brown McCoy radical \mathcal{G} .

2 Definitions and general results

Throughout this paper, all rings are associative, noncommutative, and without identity unless stated otherwise; by ideal, we mean two-sided ideal.

Definition 2.1. Let ρ be a special radical. A proper ideal I of the ring R is called a ρ -ideal if whenever $a, b \in R$ and $aRb \subseteq I$ and $a \notin \rho(R)$, then $b \in I$.

In [9] and [5] the notions of *n*-ideals and *J*-ideals were introduced for commutative rings.

Definition 2.2. [9, Definition 2.1] and [5, Definition 2.1] If ρ is the prime radical or the Jacobson radical of a commutative ring, then a proper ideal I of R is a ρ -ideal if whenever $a, b \in R$ with $ab \in I$ and $a \notin \rho(R)$, then $b \in I$.

Definition 2.3. Let ρ be a special radical. A proper ideal I of the ring R is called a $(2, \rho)$ -ideal if whenever $a, b, c \in R$ and $aRbRc \subseteq I$, then $ab \in I$ or $ac \in \rho(R)$ or $bc \in \rho(R)$.

If ρ is equal to the prime radical \mathcal{P} or the Jacobson radical \mathcal{J} in the above definition, then we have the notions of $(2, \mathcal{P})$ and $(2, \mathcal{J})$ -ideals.

Remark 2.4. Let *R* be a commutative ring with identity and *I* a proper ideal of *R*. *I* is a $(2, \rho)$ -ideal if and only if $a, b, c \in R$ with $abc \in I$ then $ab \in I$ or $ac \in \rho(R)$ or $bc \in \rho(R)$. Let *I* be a $(2, \rho)$ -ideal and $a, b, c \in R$ with $abc \in I$. Now $aRbRc \subseteq I$ and hence $ab \in I$ or $ac \in \rho(R)$ or $bc \in \rho(R)$. Now, suppose that if $a, b, c \in R$ with $abc \in I$ then $ab \in I$ or $ac \in \rho(R)$ or $bc \in \rho(R)$. Let $aRbRc \subseteq I$. Since *R* is a ring with identity, $abc \in aRbRb \subseteq I$. Hence $ab \in I$ or $ac \in \rho(R)$ or $bc \in \rho(R)$ and we are done.

Proposition 2.5. Let ρ be a special radical and let R be a ring with identity and I a proper ideal of R. We have the following:

- (*i*) Every ρ -ideal of R is a $(2, \rho)$ -ideal.
- (ii) If I is a $(2, \rho)$ -ideal of R then $I \subseteq \rho(R)$.
- (iii) If ρ_1 is a special radical such that $\rho_1 \leq \rho$, then every $(2, \rho_1)$ -ideal is a $(2, \rho)$ -ideal of R.
- *Proof.* (i) Let I be a ρ -ideal of R and $a, b, c \in R$ such that $aRbRc \subseteq I$. If $ac \in \rho(R)$, then we done. So suppose $ac \notin \rho(R)$. Hence we have $a \notin \rho(R)$. Since $aRbc \subseteq I$ and I a ρ -ideal of R, we have $bc \in I$. Now from [3, Proposition 1.5] we have $I \subseteq \rho(R)$ and therefore $bc \in \rho(R)$ and hence I is a $(2, \rho)$ -ideal.
- (ii) Suppose I is a $(2, \rho)$ -ideal of R and $I \nsubseteq \rho(R)$. Hence there exists $a \in I \rho(R)$. Now $1R1Ra \subseteq I$ and $1a \notin \rho(R)$ and therefore $1 \in I$ since I is a $(2, \rho)$ -ideal of R. This is not possible since I is a proper ideal of R. Hence $I \subseteq \rho(R)$.
- (iii) Let I be a $(2, \rho_1)$ -ideal of R and $a, b, c \in R$ such that $aRbRc \subseteq I$ and $ac \notin \rho(R)$ and $bc \notin \rho(R)$. Since $\rho_1(R) \subseteq \rho(R)$, we have $ac \notin \rho_1(R)$ and $bc \notin \rho_1(R)$. Since I is a $(2, \rho_1)$ -ideal of R, we have $ab \in I$ and we are done.

Example 2.6. A $(2, \rho)$ -ideal of R need not be a ρ -ideal. Let $R = M_2(\mathbb{Z}_{15})$ and $\rho = \mathcal{J}$ the Jacobson radical $I = M_2(\langle \overline{0} \rangle)$ is a $(2, \mathcal{J})$ -ideal but not a \mathcal{J} -ideal since $\begin{bmatrix} \overline{3} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} M_2(\mathbb{Z}_{15}) \begin{bmatrix} \overline{5} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \subseteq I$ but $\begin{bmatrix} \overline{3} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \notin \mathcal{J}(R)$ and $\begin{bmatrix} \overline{5} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \notin I$.

Example 2.7. Consider $R = M_2(\mathbb{Z}_{120})$ and $I = M_2(\langle \overline{60} \rangle)$. For the Jacobson radical \mathcal{J} we have $\mathcal{J}(R) = M_2(\langle \overline{30} \rangle)$. Clearly $I \subseteq \rho(R)$. I is not a $(2, \mathcal{J})$ -ideal of R since $\begin{bmatrix} \overline{3} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} R \begin{bmatrix} 4 & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} R \begin{bmatrix} \overline{5} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \subseteq I$ but $\begin{bmatrix} \overline{3} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \begin{bmatrix} 4 & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \notin I$ and $\begin{bmatrix} \overline{3} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \begin{bmatrix} \overline{5} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \notin \mathcal{J}(R)$ and $\begin{bmatrix} 4 & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \begin{bmatrix} \overline{5} & \overline{0} \\ \overline{0} & \overline{0} \end{bmatrix} \notin \mathcal{J}(R)$.

Example 2.8. The converse of Proposition 2.5 3 is not true in general as can be seen from the following example. Let R be a commutative local domain which is not a field. From [7, (3) page 56] $\mathcal{J}(R) \neq 0$ and $\mathcal{N}(R) = 0$. From Theorem 5.9 $\mathcal{J}(R)$ is a $(2, \mathcal{J})$ -ideal. Let $0 \neq a \in \mathcal{J}(R) - \mathcal{N}(R)$. Now $1R1Ra \subseteq \mathcal{J}(R)$ where $1 \notin \mathcal{J}(R)$ and $a \notin \mathcal{N}(R)$. Therefore $\mathcal{J}(R)$ is not an $(2, \mathcal{N})$ -ideal of R.

Proposition 2.9. Let ρ be a special radical and R a ring with $I \subseteq K$ be proper ideals. If K is a ρ -ideal of R, then I is a $(2, \rho)$ -ideal.

Proof. Assume that $aRbRc \subseteq I$ for some $a, b, c \in R$ and $ab \notin I$. If $a \in \rho(R)$, we are done. Suppose that $a \notin \rho(R)$. Since K is a ρ -ideal and $aRbc \subseteq K$, we have $bc \in K$, Since K is a ρ -ideal of R, it follows from [3, Proposition 1.5] that $K \subseteq \rho(R)$ and hence $bc \in \rho(R)$ as desired.

Corollary 2.10. Let ρ be a special radical and R a ring with I_1, I_2 two proper ideals of R. If I_1 or I_2 is a ρ -ideal of R, then I_1I_2 and $I_1 \cap I_2$ are $(2, \rho)$ -ideals.

Proposition 2.11. Let ρ be a special radical and R a ring with proper ideal I. If I is such that $R/I \in S_{\rho} \cap \mathcal{P}$, then the following are equivalent:

- (i) I is a $(2, \rho)$ -ideal of R.
- (*ii*) $I = \rho(R)$.
- (iii) I is a ρ -ideal of R.
- *Proof.* $1 \Leftrightarrow 2$ Let I be a $(2, \rho)$ -ideal of R. Since ρ is a special radical, we have

 $\rho(R) = \cap \{A \triangleleft R : R/A \in S_{\rho} \cap \mathcal{P}\}$. Now, since $R/I \in S_{\rho} \cap \mathcal{P}$, we have $\rho(R) \subseteq I$. From Proposition 2.5 we have $I \subseteq \rho(R)$. Hence $I = \rho(R)$. For the converse, let $I = \rho(R)$ with $R/I \in S_{\rho} \cap \mathcal{P}$. Let $a, b, c \in R$ such that $aRbRc \subseteq I$. If $bc \in \rho(R)$, then we done. Suppose $bc \notin \rho(R) = I$. Since I is a prime ideal and $aRbc \subseteq I$, we have $a \in I$ and therefore $ab \in I$. Hence I is a $(2, \rho)$ -ideal of R.

 $2 \Leftrightarrow 3$ This follows from [3, Proposition1.13].

Recall from [4, Definition 2.1] A proper ideal I of R is called a principally right 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $aRbRc \subseteq I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$ where $\sqrt{I} = \{V \lhd R | V^n \subseteq I \text{ for some positive integer } n\}$. Recall also that $\sqrt{I} = \mathcal{P}^*(I) = \rho^*(I)$ for some special radical ρ and where $\mathcal{P}^*(I)$ is equal to the intersection of all the prime ideals of the ring R containing the ideal I.

Proposition 2.12. Let ρ be a special radical and R a ring with a proper ideal I. Suppose I is a principally right 2-absorbing primary ideal of R. I is a $(2, \rho)$ -ideal of R if and only if $I \subseteq \rho(R)$.

Proof. \Rightarrow This follows from Proposition 2.5.

 \Leftarrow Let *I* be a principally right 2-absorbing primary ideal of *R* with $I \subseteq \rho(R)$. Let $a, b, c \in R$ such that $aRbRc \subseteq I$. Since $I \subseteq \rho(R)$ and since ρ is a special radical, we have $\sqrt{I} \subseteq \mathcal{P}^*(I) = \rho^*(I) = \rho(R)$. Suppose $ac \notin \rho(R)$ and $bc \notin \rho(R)$ hence we have $ac \notin \sqrt{I}$ and $bc \notin \sqrt{I}$. Now, since *I* is a principally right 2-absorbing primary ideal of *R*, we have $ab \in I$ and we are done. \Box

Example 2.13. If ρ is equal to the prime radical, then a $(2, \rho)$ -ideal is a principally right 2absorbing primary ideal. However, these are different concepts. For instance, consider the ideal $I = \langle 12 \rangle$ of \mathbb{Z} . The ideal $M_2(I)$ of the matrix ring $M_2(\mathbb{Z})$ is not a $(2, \rho)$ - ideal, since

$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} M_2(\mathbb{Z}) \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} M_2(\mathbb{Z}) \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \subseteq M_2(I), \text{ but } \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \notin M_2(I) \text{ and}$$
$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \notin \sqrt{M_2(\mathbb{Z})}. \text{ However, } M_2(I) \text{ is a 2-absorbing principally right primary}$$
ideal of $M_2(\mathbb{Z})$ since
$$\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \in \sqrt{M_2(I)}. \text{ It is also clear that } M_2(I) \notin \sqrt{M_2(\mathbb{Z})}.$$

Theorem 2.14. Let ρ be a special radical and R a ring with a proper ideal P. The following statements are equivalent:

- (i) P is a $(2, \rho)$ -ideal of R.
- (ii) $(P: xRyR) \subseteq (\rho(R): xR) \cup (\rho(R): yR)$ for all $x, y \in R$ with $xy \notin P$.
- (iii) $(P: xRyR) \subseteq (\rho(R): xR)$ or $(P: xRyR) \subseteq (\rho(R): yR)$ for all $x, y \in R$ with $xy \notin P$.
- (iv) For all $x, y \in R$ and each ideal J of R, $xRyJ \subseteq P$ implies either $xy \in P$ or $xJ \subseteq \rho(R)$ or $yJ \subseteq \rho(R)$.
- (v) For all $x \in R$ and ideals J and K of R, $xJK \subseteq P$ implies either $xJ \subseteq P$ or $xK \subseteq \rho(R)$ or $JK \subseteq \rho(R)$.
- (vi) For all ideals I, J, K of R such that $IJK \subseteq P$ either $IJ \subseteq P$ or $IK \subseteq \rho(R)$ or $JK \subseteq \rho(R)$.
- *Proof.* $1 \Rightarrow 2$ Suppose P is a $(2, \rho)$ -ideal of R and choose $x, y \in R$ with $xy \notin P$. Take $z \in (P : xRyR)$. Hence $xRyRz \subseteq P$. Since P is a $(2, \rho)$ -ideal of R, we have $xz \in \rho(R)$ or $yz \in \rho(R)$. Hence $Rxz \subseteq \rho(R)$ or $Ryz \subseteq \rho(R)$ and therefore $(P : xRyR) \subseteq (\rho(R) : xR) \cup (\rho(R) : yR)$.
- $2 \Rightarrow 3$ Follows from the fact that an ideal that is contained in the union of two ideals must be contained in one of them.
- $3 \Rightarrow 4$ Let $xRyJ \subseteq P$ for some $x, y \in R$ and an ideal J of R. Hence $xRyRJ \subseteq xRyJ \subseteq P$. Suppose $xy \notin P$. From 3 we have $J \subseteq (P : xRyR) \subseteq (\rho(R) : xR)$ or $J \subseteq (P : xRyR) \subseteq (\rho(R) : yR)$. Hence $xRJ \subseteq \rho(R)$ or $yRJ \subseteq \rho(R)$. Hence $xJ \subseteq \rho(R)$ or $yJ \subseteq \rho(R)$.
- $4 \Rightarrow 5$ Suppose $xJK \subseteq P$ for some $x \in R$ and ideals J and K of R. Suppose $xJ \nsubseteq P$ or $xK \nsubseteq \rho(R)$. Choose $j_0 \in J$ and $k_0 \in K$ such that $xj_0 \notin P$ and $xk_0 \notin \rho(R)$. Since $xRj_0K \subseteq P$, it follows from 4 that $j_0K \subseteq \rho(R)$. Now we will show that $JK \subseteq \rho(R)$. Take any $j \in J$. If $jK \subseteq \rho(R)$, then we done. So suppose $jK \nsubseteq \rho(R)$. Since $xRjK \subseteq P$, from 4 we have $xj \in P$. This implies $x(j + j_0) \notin P$. As $xR(j + j_0)K \subseteq P$, by 4 we have $(j + j_0)K \subseteq \rho(R)$. Since $j_0K \subseteq \rho(R)$, we conclude that $jK \subseteq \rho(R)$ and so $JK \subseteq \rho(R)$.
- $5 \Rightarrow 6$ Suppose $IJK \subseteq P$ for some ideals I, J, K of R. Assume $IJ \nsubseteq P$ and $JK \nsubseteq \rho(R)$. Then there exists $x \in I$ such that $xJ \nsubseteq P$. Since $xJK \subseteq P$, by 5 we have $xK \subseteq \rho(R)$. Let $a \in I$, then since $aJK \subseteq P$, by 5 we have $aJ \subseteq P$ or $aK \subseteq \rho(R)$.
- Case 1: Let $aJ \subseteq P$. Then since $(x + a)JK \subseteq P$, by 5 we have $(x + a)K \subseteq \rho(R)$. As $xK \subseteq \rho(R)$, we have $aK \subseteq \rho(R)$.
- Case 2: Let $aJ \nsubseteq P$. Since $aJK \subseteq P$, by 5 we get $aK \subseteq \rho(R)$. Thus we have $IK \subseteq \rho(R)$ which completes the proof.
- $6 \Rightarrow 1$ Suppose $aRbRc \subseteq P$ for $a, b, c \in R$ with $ac \notin \rho(R)$ and $bc \notin \rho(R)$. Put I = RaR, J = RbR and K = RcR. Now $IJK = RaRbRRcR \subseteq RaRbRcR = RPR \subseteq P$. Since $IK \notin \rho(R)$ and $JK \notin \rho(R)$, it follows from 6 that $ab \in IJ \subseteq P$. Therefore P is a $(2, \rho)$ -ideal of R.

Proposition 2.15. Let ρ be a special radical.

- (i) The intersection of any set of $(2, \rho)$ -ideals of the ring R is a $(2, \rho)$ -ideal.
- (ii) Let R be a ring. $\rho(R)$ is a $(2, \rho)$ -ideal of R if and only if it is a 2-absorbing ideal of R.

- *Proof.* (i) Let $\{P_i : i \in \Delta\}$ be a set of $(2, \rho)$ -ideals. Let $aRbRc \subseteq \cap \{P_i : i \in \Delta\}$ and suppose $ac \notin \rho(R)$ and $bc \notin \rho(R)$. Since $aRbRc \subseteq P_i$ for every $i \in \Delta$, we have $ab \in P_i$ for every $i \in \Delta$. Hence $ab \in \cap \{P_i : i \in \Delta\}$ and therefore $\cap \{P_i : i \in \Delta\}$ is a $(2, \rho)$ -ideal.
- (ii) This follows from the definition of a $(2, \rho)$ -ideal and a 2-absorbing ideal.

Definition 2.16. A proper ideal P of a ring R is said to be a $(2, \rho)$ -primary ideal if $aRbRc \subseteq P$ for $a, b, c \in R$, then $ab \in P$ or $ac \in \rho^*(P)$ or $bc \in \rho^*(P)$.

Proposition 2.17. Let ρ be a special radical and *P* a proper ideal of the ring *R*. The following statements are equivalent:

- (i) P is a $(2, \rho)$ -primary ideal of the ring R and $\rho^*(P) = \rho(R)$.
- (ii) P is a $(2, \rho)$ -ideal of R.
- *Proof.* $1 \Rightarrow 2$ Suppose P is a $(2, \rho)$ -primary ideal of the ring R and $\rho^*(P) = \rho(R)$. Let $aRbRc \subseteq P$ for $a, b, c \in R$ and suppose $ac \notin \rho(R) = \rho^*(P)$ and $bc \notin \rho(R) = \rho^*(P)$. Since P is a $(2, \rho)$ -primary ideal, we have $ab \in P$ and we are done.
- $2 \Rightarrow 1$ Suppose *P* is a $(2, \rho)$ -ideal of *R*. From Proposition 2.5 we have $P \subseteq \rho(R)$. Now, since ρ is a special radical and $P \subseteq \rho(R)$, we have $\rho(R) = \rho^*(P)$. Let $aRbRc \subseteq P$ for $a, b, c \in R$. Since *P* is a $(2, \rho)$ -ideal of *R*, we have $ab \in P$ or $ac \in \rho(R) = \rho^*(P)$ or $bc \in \rho(R) = \rho^*(P)$. Hence *P* is a $(2, \rho)$ -primary ideal.

П

Theorem 2.18. Let R and S be rings and $f : R \to S$ be a surjective ring-homomorphism. If ρ is a special radical, then the following statements hold:

- (i) If I is a $(2, \rho)$ -ideal of R and ker $(f) \subseteq I$, then f(I) is a $(2, \rho)$ -ideal of S.
- (ii) If J is a $(2, \rho)$ -ideal of S and ker $(f) \subseteq \rho(R)$, then $f^{-1}(J)$ is a $(2, \rho)$ -ideal of R.
- *Proof.* (i) Let $d, e, h \in S$ such that $dSeSh \subseteq f(I)$ and $dh \notin \rho(S)$ and $eh \notin \rho(S)$. Since f is surjective, we can choose $a, b, c \in R$ such that f(a) = d and f(b) = e and f(c) = h. Now, $dSeSh = f(a)f(R)f(b)f(R)f(c) = f(aRbRc) \subseteq f(I)$ and since ker $(f) \subseteq I$, we have $aRbRc \subseteq I$. Then $ab \in I$ or $ac \in \rho(R)$ or $bc \in \rho(R)$ since I is a $(2, \rho)$ -ideal of R. If $ac \in \rho(R)$ then $f(ac) = f(a)f(c) = dh \in f(\rho(R)) \subseteq \rho(S)$ since ρ is a special radical which is a contradiction. Similarly, if $bc \in \rho(R)$, then $eh \in \rho(S)$. Hence $ab \in I$. This gives $f(ab) = f(a)f(b) = de \in f(I)$, as needed
- (ii) Let a, b, ∈ R such that aRbRc ⊆ f⁻¹(J) and ac ∉ ρ(R) and bc ∉ ρ(R). Now, f(a)Sf(b)Sf(c) = f(aRbRc) ⊆ J with f(ac) ∉ f(ρ(R)) and f(bc) ∉ f(ρ(R)). From [3, Theorem 1.10 (2)] we have f(a)f(c) ∉ ρ(S) and f(b)f(c) ∉ ρ(S). Since J is a (2, ρ)-ideal of S, we have f(a)f(b) ∈ J. Hence ab ∈ f⁻¹(J). It follows that f⁻¹(J) is a (2, ρ)-ideal of R.

Corollary 2.19. Let ρ be a special radical. Let R be a ring and let I, K be two ideals of R with $K \subseteq I$. Then the following hold.

- (i) If I is a $(2, \rho)$ -ideal of R, then I/K is a $(2, \rho)$ -ideal of R/K.
- (ii) If I/K is a $(2, \rho)$ -ideal of R/K and $K \subseteq \rho(R)$, then I is a $(2, \rho)$ -ideal of R.
- (iii) If I/K is a $(2, \rho)$ -ideal of R/K and K is a $(2, \rho)$ -ideal of R, then I is a $(2, \rho)$ -ideal of R.
- *Proof.* (i) Assume that I is a $(2, \rho)$ -ideal of R with $K \subseteq I$. Let $\pi : R \to R/K$ be the natural epimorphism defined by $\pi(R) = r + K$. Note that $\ker(\pi) = K \subseteq I$. Thus, by Theorem 2.18 1., it follows that $\pi(I) = I/K$ is a $(2, \rho)$ -ideal of R/K.
- (ii) Again, consider the natural epimorphism $\pi : R \to R/K$. Since $K \subseteq \rho(R)$, by Theorem 2.18 2., $I = \pi^{-1}(I/K)$ is a $(2, \rho)$ -ideal of R.

(iii) This is clear by 2. and Theorem 2.18.

Proposition 2.20. Let R be a ring, I and J be two $(2, \rho)$ -ideals of R. Then I + J is a $(2, \rho)$ -ideal of R.

Proof. Since $I \subseteq \rho(R)$ and J is a proper ideal, we then have I + J is proper ideal of R. On the other hand, $I \cap J$ and $I/I \cap J$ are $(2, \rho)$ -ideals of R and $R/I \cap J$, respectively. From the isomorphism $(I + J)/J \simeq I/I \cap J$ and Corollary 2.19, we conclude that I + J is a $(2, \rho)$ -ideal, as needed.

Lemma 2.21. Let ρ be a special radical and let R be a ring and I an ideal of R. If $\rho(R)$ is a prime ideal of R and $I \subseteq \rho(R)$ then I is a $(2, \rho)$ -ideal.

Proof. Let $aRbRc \subseteq I$ for $a, b, c \in R$. If $bc \in \rho(R)$, then we done so suppose $bc \notin \rho(R)$. Now $aRbc \subseteq \rho(R)$ and since $\rho(R)$ is a prime ideal, we get $a \in \rho(R)$. Hence $ac \in \rho(R)$ and therefore I is a $(2, \rho)$ -ideal.

3 Idealization

for all R - R-bimodules M.

We now show how to construct ρ -ideals using the Method of Idealization. In what follows, R is a ring (associative, not necessarily commutative and not necessarily with identity) and M is an R-R-bimodule. The idealization of M is the ring $R \boxplus M$ with $(R \boxplus M, +) = (R, +) \oplus (M, +)$ and the multiplication is given by (r, m)(s, n) = (rs, rn + ms). $R \boxplus M$ itself is, in a canonical way, an R-R-bimodule and $M \simeq 0 \boxplus M$ is a nilpotent ideal of $R \boxplus M$ of index 2. We also have $R \simeq R \boxplus 0$ and the latter is a subring of $R \boxplus M$. Note also that $R \boxplus M$ is a subring of the Morita ring $\begin{bmatrix} R & M \\ 0 & R \end{bmatrix}$ via the mapping $(r, m) \mapsto \begin{bmatrix} r & m \\ 0 & R \end{bmatrix}$. We will require some knowledge about

the ideal structure of $R \boxplus M$. If I is an ideal of R and N is an R - R-bi-submodule of M, then

 $I \boxplus N$ is an ideal of $R \boxplus M$ if and only if $IM + MI \subseteq N$. If ρ is a special radical, it follows from [11] that if R is any ring, then $\rho(R \boxplus M) = \rho(R) \boxplus M$

Proposition 3.1. Let ρ is a special radical. Let I be a proper ideal of R. Let M be a R - R-bimodule. Now I is a $(2, \rho)$ -ideal of R if and only if $I \boxplus M$ is a $(2, \rho)$ -ideal of $R \boxplus M$.

Proof. \Rightarrow Let $x_i = (r_i, m_i) \in R \boxplus M$ for $1 \leq i \leq 3$. Suppose $x_1 R \boxplus M x_2 R \boxplus M x_3 \subseteq I \boxplus M$ with $x_1 x_3 \notin \rho(R \boxplus M) = \rho(R) \boxplus M$ and $x_2 x_3 \notin \rho(R \boxplus M) = \rho(R) \boxplus M$. Now we have $r_1 R r_2 R r_3 \subseteq I$ and $r_2 r_3 \notin \rho(R)$ and $r_1 r_3 \notin \rho(R)$. Since I is a $(2, \rho)$ -ideal of R, we have $r_1 r_2 \in I$. Hence $x_1 x_2 = (r_1 r_2, r_1 m_2 + m_1 r_2) \in I \boxplus M$ and $I \boxplus M$ is a $(2, \rho)$ -ideal.

 $\leftarrow \text{Let } aRbRc \subseteq I \text{ for } a, b, c \in R \text{ and suppose } ac \notin \rho(R) \text{ and } bc \notin \rho(R). \text{ Now } (a, 0)R \boxplus M(b, 0)R \boxplus M(c, 0) \subseteq I \boxplus M \text{ with } (a, 0)(c, 0) = (ac, 0) \notin \rho(R) \boxplus M = \rho(R \boxplus M) \text{ and } (b, 0)(c, 0) = (bc, 0) \notin \rho(R) \boxplus M = \rho(R \boxplus M). \text{ Since } I \boxplus M \text{ is a } (2, \rho)\text{-ideal of } R \boxplus M, \text{ we get } (a, 0)(b, 0) = (ab, 0) \in I \boxplus M. \text{ Hence } ab \in I \text{ and therefore } I \text{ is a } (2, \rho)\text{-ideal of } R. \square$

Definition 3.2. [3, Definition 2.4] Let ρ be a special radical and let M be an R - R-bi module. The proper R - R bi-submodule N of M is a ρ -submodule if for $a \in R$ and $m \in M$, whenever $mRa \subseteq N$ and $a \notin (\rho(R)M : M)$, then $m \in N$.

Theorem 3.3. Let ρ is a special radical. Let I be a $(2, \rho)$ -ideal of R and N an R - R-bisubmodule of the R - R-bi-module M. Then if $(\rho(R)M : M) = \rho(R)$ and N is a ρ -submodule of M with $IM + MI \subseteq N$, then $I \boxplus N$ is a $(2, \rho)$ -ideal of $R \boxplus M$.

Proof. Let $x_i = (r_i, m_i) \in R \boxplus M$ for $1 \leq i \leq 3$. such that $x_1R \boxplus Mx_2R \boxplus Mx_3 \subseteq I \boxplus N$. Suppose $x_2x_3 \notin \rho(R) \boxplus M = \rho(R \boxplus M)$ and $x_1x_3 \notin \rho(R \boxplus M) = \rho(R) \boxplus M$. We have $r_1Rr_2Rr_3 \subseteq I$ and $r_1r_3 \notin \rho(R)$ and $r_2r_3 \notin \rho(R)$. Since I is a $(2, \rho)$ -ideal of R and $r_1r_3 \notin \rho(R)$ and $r_2r_3 \notin \rho(R)$. Now, $(r_1, m_1)(1, 0)(r_2, m_2)(1, 0)(r_3, m_3) \in x_1R \boxplus Mx_2R \boxplus Mx_3 \subseteq I \boxplus N$. Hence $(r_1r_1r_3, r_1r_2m_3 + (r_1m_2 + m_1r_2)r_3) \in I \boxplus N$ and we have $r_1r_2m_3 + (r_1m_2 + m_1r_2)r_3 \in N$. Since $r_1r_2m_3 \in N$, we have $(r_1m_2 + m_1r_2)r_3 \in N$. Since

 $r_2r_3 \notin \rho(R)$, we have $r_3 \notin \rho(R)$. Now since $(r_1m_2 + m_1r_2)r_3 \in N$ and $r_3 \notin \rho(R)$ and N is a ρ -submodule of M, we have $(r_1m_2+m_1r_2) \in N$. Hence $(r_1,m_1)(r_2,m_2) = (r_1r_2,r_1m_2+m_1r_2) \in I \boxplus N$ and $I \boxplus N$ is a $(2,\rho)$ -ideal of $R \boxplus M$.

Proposition 3.4. Let ρ is a special radical. Let I be an ideal of R and N a proper R - R-bisubmodule of the R - R-bi-module M. Suppose $\rho(R)$ is a prime ideal. If $I \subseteq \rho(R)$ then $I \boxplus N$ is a $(2, \rho)$ -ideal of $R \boxplus M$.

Proof. Since $\rho(R)$ is a prime ideal, it follows from [11, Proposition 8] that $\rho(R) \boxplus M$ is a prime ideal of $R \boxplus M$. Also $I \boxplus N \subseteq \rho(R) \boxplus N \subseteq \rho(R) \boxplus M = \rho(R \boxplus M)$. Hence from Lemma 2.21 $I \boxplus N$ is a $(2, \rho)$ -ideal.

4 Product of rings

Next, we characterize $(2, \rho)$ -ideals of a Cartesian product of two rings.

Lemma 4.1. [1, Lemma] Suppose that \mathcal{R} is a Amitsur-Kurosh radical class of rings. If R_1, R_2, \dots, R_n are rings, then $\mathcal{R}(R_1 \times R_2 \times \dots \times R_n) = \mathcal{R}(R_1) \times \mathcal{R}(R_2) \times \dots \times \mathcal{R}(R_n)$. Hence, \mathcal{R} is always closed under finite products.

Let in what follows R_1 and R_2 be rings, not necessarily commutative and let ρ be a special radical.

Remark 4.2. Let R_1 and R_2 be noncommutative rings and let I be a $(2, \rho)$ -ideal of R_1 . Then we do not necessarily have that $I \times R_2$ is a $(2, \rho)$ -ideal of $R = R_1 \times R_2$. For example if ρ is the prime radical $M_2(4\mathbb{Z}_8) \subseteq M_2(\mathbb{Z}_8)$ is a $(2, \rho)$ -ideal, but $I = M_2(4\mathbb{Z}_8) \times M_2(\mathbb{Z}_8) \subseteq M_2(\mathbb{Z}_8) \times M_2(\mathbb{Z}_8) = R$ is not $(2, \rho)$ -ideal. Indeed,

$$\begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} R \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} R \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \subseteq I,$$

$$\begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \notin P(R)$$

$$\text{and} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \notin I.$$

Theorem 4.3. Let ρ be a special radical and R_1 and R_2 be noncommutative rings with identities. Consider the ideal $I \subset R$. The following statements are equivalent.

- (i) $I \times R_2$ is a $(2,\rho)$ -ideal of $R = R_1 \times R_2$.
- (*ii*) I is a prime ideal of R_1 .
- (iii) $I \times R_2$ is a prime-ideal of $R_1 \times R_2$.

Proof. (1) \Rightarrow (2) Let $a, b \in R_1$ such that $aR_1b \subseteq I$. Now $(a, 1)R(1, 1)R(b, 1) \subseteq I \times R_2$. Since $(a, 1)(b, 1) \notin \rho(R_1) \times \rho(R_2) = \rho(R)$ and $(1, 1)(b, 1) \notin \rho(R_1) \times \rho(R_2) = \rho(R)$, we have $(a, 1)(1, 1) = (a, 1) \in I \times R_2$. Hence $a \in I$ and therefore I is a prime ideal. (2) \Rightarrow (3) \Rightarrow (1) is clear.

Theorem 4.4. Let ρ be a special radical and R_1 and R_2 be noncommutative rings with identities. Consider ideals $I_1 \subset R_1$ and $I_2 \subset R_2$. The following statements are equivalent.

- (*i*) $I = I_1 \times I_2$ is a $(2, \rho)$ -ideal of $R = R_1 \times R_2$.
- (ii) $I_1 = \rho(R_1) \subset R_1$ and $I_2 = \rho(R_2) \subset R_2$ are prime ideals.
- (iii) $I = I_1 \times I_2$ is a 2-absorbing ideal of R and $I \subseteq \rho(R)$.

Proof. (1) \Rightarrow (2) Assume that $I_1 \neq \rho(R_1)$, and take $a \in I_1 \setminus \rho(R_1)$. Then $(a, 1)R_1 \times R_2(1, 1)R_1 \times R_2(1, 0) \subseteq I$. Now $(a, 1)(1, 0) \notin \rho(R) = \rho(R_1) \times \rho(R_2)$. Since I is a $(2, \rho)$ -ideal of R, we conclude that $(a, 1)(1, 1) \in I_1 \times I_2$ or

 $(1,1)(1,0) \in \rho(R) = \rho(R_1) \times \rho(R_2)$, a contradiction. Thus $I_1 = \rho(R_1)$. If $I_1 = \rho(R_1)$ is not prime, then there are elements $a, b \notin I_1 = \rho(R_1)$ such that $aR_1b \subseteq I_1$. Then $(a, 1)R(1, 0)R(b, 1) \subseteq I$, $(a, 1)(1, 0) \notin I_1 \times I_2$,

 $(a, 1)(b, 1) \notin \rho(R) = \rho(R_1) \times \rho(R_2)$ and $(1, 0)(b, 1) \notin \rho(R_1) \times \rho(R_2)$, a contradiction. Thus I_1 is prime in R_1 . The same arguments show that $I_2 = \rho(R_2)$ is a prime ideal of R_2 .

 $(2) \Rightarrow (3)$ Suppose that $I_1 = \rho(R_1) \subseteq R_1$ and $I_2 = \rho(R_2) \subseteq R_2$ are prime ideals. Hence, $(I_1 \times R_2)$ and $(R_1 \times I_2)$ are prime ideals of $R = R_1 \times R_2$. Since the intersection of two prime ideals is always 2-absorbing by [2, Proposition 1.9], we conclude that $I = (I_1 \times R_2) \cap (R_1 \times I_2)$ is a 2-absorbing ideal of R.

 $(3) \Rightarrow (1)$ Let $(x_i, y_i) \in R$ for $1 \leq i \leq 3$ such that $(x_1, y_1)R(x_2, y_2)R(x_3, y_3) \subseteq I$. Since I is 2-absorbing and $I \subseteq \rho(R)$, we have $(x_1, y_1)(x_2, y_2) \in I$ or $(x_1, y_1)(x_3, y_3) \in I \subseteq \rho(R)$ or $(x_2, y_2)(x_3, y_3) \in I \subseteq \rho(R)$. Hence I is a $(2, \rho)$ -ideal of R.

Corollary 4.5. Let ρ be a special radical and R_1 and R_2 be noncommutative rings with identities. Consider ideals $I_1 \subset R_1$ and $I_2 \subset R_2$. If $I = I_1 \times I_2$ is a $(2, \rho)$ -ideal of $R = R_1 \times R_2$, then I_1 is a ρ -ideal of R_1 and I_2 is a ρ -ideal of R_2

Proof. Suppose $I = I_1 \times I_2$ is a $(2, \rho)$ -ideal of $R = R_1 \times R_2$. From 4.4 it follows that $I_1 = \rho(R_1) \subset R_1$ and $I_2 = \rho(R_2) \subset R_2$ are prime ideals. It now follows from [3, Proposition Proposition 1.13] that I_1 is a ρ -ideal of R_1 and I_2 is a ρ -ideal of R_2 .

5 $(2,\mathcal{J})$ -ideals

In this section the special radical will be the Jacobson radical. In [5] Khashan et al. introduced the notion of J-ideals for commutative rings with identity element. In [12] Yildiz et al. introduced the concept of (2, J)-ideal as a generalization of a J-ideal. They investigate many properties of (2, J)-ideals. We show that for the Jacobson radical many of the results proved by Yildiz et al. are also true for noncommutative rings.

In what follows for the noncommutative ring R, $\mathcal{J}(R)$ will denote the Jacobson radical of the ring R.

Definition 5.1. A proper ideal *I* of a ring *R* is a \mathcal{J} -ideal if whenever $a, b \in R$ such that $aRb \subseteq I$ and $a \notin \mathcal{J}(R)$, then $b \in I$.

If R is a commutative ring, then the notion of a \mathcal{J} -ideal coincides with a J-ideal as been defined by Khashan et al. in [5].

Definition 5.2. A proper ideal I of a ring R is a $(2, \mathcal{J})$ -ideal if whenever $a, b, c \in R$ such that $aRbRc \subseteq I$ then $ab \in I$ or $ac \in \mathcal{J}(R)$, or $bc \in \mathcal{J}(R)$. If R is a commutative ring, then the notion of a $(2, \mathcal{J})$ -ideal coincides with a (2, J)-ideal as been defined by Yildiz et al. in [12].

Proposition 5.3. (See [12, Proposition 1])Let \mathcal{J} be the Jacobson radical and I a proper ideal of the ring R. We have the following:

- (i) Every \mathcal{J} -ideal of R is a $(2, \mathcal{J})$ -ideal.
- (ii) If I is a $(2, \mathcal{J})$ -ideal of R then $I \subseteq \mathcal{J}(R)$.
- (iii) If ρ_1 is a special radical such that $\rho_1 \leq \mathcal{J}$, then every $(2, \rho_1)$ -ideal is a $(2, \mathcal{J})$ -ideal of R.

Proof. This follows from Proposition 2.5 by taking ρ equal to \mathcal{J} .

Proposition 5.4. (See [12, Proposition 2])Let \mathcal{J} be the Jacobson radical and I a proper ideal I the ring R. Suppose I is a principally right 2-absorbing primary ideal of R. I is a $(2, \mathcal{J})$ -ideal of R if and only if $I \subseteq \mathcal{J}(R)$.

Proof. This follows from Proposition 2.12 by taking ρ equal to \mathcal{J} .

Proposition 5.5. Let \mathcal{J} be the Jacobson radical and R a ring with $I \subseteq K$ proper ideals. If K is a \mathcal{J} -ideal of R, then I is a $(2, \mathcal{J})$ -ideal.

Proof. This follows from Proposition 2.9 by taking ρ equal to \mathcal{J} .

Corollary 5.6. Let \mathcal{J} be the Jacobson radical and R a ring with I_1, I_2 two proper ideals of R. If I_1 or I_2 is a \mathcal{J} -ideal of R, then I_1I_2 and $I_1 \cap I_2$ are $(2, \mathcal{J})$ -ideals.

Theorem 5.7. (See [12, Theorem 1]) Let \mathcal{J} be the Jacobson radical and P a proper ideal of the ring R. The following are equivalent:

- (i) P is a $(2, \mathcal{J})$ -ideal of R.
- (ii) $(P: xRyR) \subseteq (\mathcal{J}(R): xR) \cup (\mathcal{J}(R): yR)$ for all $x, y \in R$ with $xy \notin P$.
- (iii) $(P: xRyR) \subseteq (\mathcal{J}(R): xR)$ or $(P: xRyR) \subseteq (\mathcal{J}(R): yR)$ for all $x, y \in R$ with $xy \notin P$.
- (iv) For all $x, y \in R$ and each ideal J of R, $xRyJ \subseteq P$ implies either $xy \in P$ or $xJ \subseteq \mathcal{J}(R)$ or $yJ \subseteq \mathcal{J}(R)$.
- (v) For all $x \in R$ and ideals J and K of R, $xJK \subseteq P$ implies either $xJ \subseteq P$ or $xK \subseteq \mathcal{J}(R)$ or $JK \subseteq \mathcal{J}(R)$.
- (vi) For all ideals I, J, K of R such that $IJK \subseteq P$ either $IJ \subseteq P$ or $IK \subseteq \mathcal{J}(R)$ or $JK \subseteq \mathcal{J}(R)$.

Proof. This follows from Theorem 2.14 by taking ρ equal to \mathcal{J} .

Proposition 5.8. (See [12, Proposition 3])Let \mathcal{J} be the Jacobson radical.

- (i) The intersection of any set of $(2, \mathcal{J})$ -ideals of the ring R is a $(2, \mathcal{J})$ -ideal.
- (ii) Let R be a ring. $\mathcal{J}(R)$ is a $(2, \mathcal{J})$ -ideal of R if and only if it is a 2-absorbing ideal of R.

Proof. This follows from Proposition2.15 by taking ρ equal to \mathcal{J} .

Theorem 5.9. (See [12, Theorem 2])Let R be a ring and ρ be the Jacobson radical \mathcal{J} . The following statements are equivalent:

- (i) R is a local ring.
- (ii) Every proper ideal of R is a $(2, \mathcal{J})$ -ideal.
- (iii) Every proper principal ideal of R is a $(2, \mathcal{J})$ -ideal.
- *Proof.* $1 \Rightarrow 2$ Let R be a local ring and let P be a proper ideal of R such that $xRyRz \subseteq P$ for $x, y, z \in R$. Suppose $xz \notin \mathcal{J}(R)$ and $yz \notin \mathcal{J}(R)$. Since R is a local ring, xz and yz are unit elements. If xz is a unit, then $xy = x1y(xz)^{-1}xz \in xRyRz \subseteq P$. If yz is a unit then $xy = x1y(yz)^{-1}yz \in xRyRz \subseteq P$. Hence P is a $(2, \mathcal{J})$ -ideal.
- $2 \Rightarrow 3$ This is clear,
- $3 \Rightarrow 1$ Suppose every proper principal ideal of R is a $(2, \mathcal{J})$ -ideal and take a maximal left ideal M of R. Now $\mathcal{J}(R) \subseteq M$. We show $M \subseteq \mathcal{J}(R)$. Let $a \in M$ and suppose $a \notin \mathcal{J}(R)$. Now $1R1Ra \subseteq \langle a \rangle$. Since $\langle a \rangle$ is a $(2, \mathcal{J})$ -ideal, we have $1 \in \langle a \rangle \subseteq M$. A contradiction and hence $\mathcal{J}(R) = M$ is the unique maximal left ideal of R. Therefore R is a local ring from [7, Theorem 19.1].

Proposition 5.10. (See [12, Proposition 4]) Let \mathcal{J} be the Jacobson radical and P a proper ideal of the ring R. The following statements are equivalent:

- (i) P is a $(2, \mathcal{J})$ -primary ideal of the ring R and $\mathcal{J}(P) = \mathcal{J}(R)$.
- (ii) P is a $(2, \mathcal{J})$ -ideal of R.

Proof. This follows from Proposition2.17 by taking ρ equal to \mathcal{J} .

Theorem 5.11. (See [12, Proposition 5]) Let R and S be rings and $f : R \to S$ be a surjective ring-homomorphism. For the Jacobson radical radical \mathcal{J} , the following statements hold:

- (i) If I is a $(2, \mathcal{J})$ -ideal of R and ker $(f) \subseteq I$, then f(I) is a $(2, \mathcal{J})$ -ideal of S.
- (ii) If J is a $(2, \mathcal{J})$ -ideal of S and ker $(f) \subseteq \mathcal{J}(R)$, then $f^{-1}(J)$ is a $(2, \mathcal{J})$ -ideal of R.

Proof. This follows from Theorem 2.18 by taking ρ equal to \mathcal{J} .

Proposition 5.12. (See [12, Proposition 6])Let \mathcal{J} be the Jacobson radical and let R be a ring and let I, K be two ideals of R with $K \subseteq I$. Then the following hold:

- (i) If I is a $(2, \mathcal{J})$ -ideal of R, then I/K is a $(2, \mathcal{J})$ -ideal of R/K.
- (ii) If I/K is a $(2, \mathcal{J})$ -ideal of R/K and $K \subseteq \mathcal{J}(R)$, then I is a $(2, \mathcal{J})$ -ideal of R.
- (iii) If I/K is a $(2, \mathcal{J})$ -ideal of R/K and K is a $(2, \mathcal{J})$ -ideal of R, then I is a $(2, \mathcal{J})$ -ideal of R.

Proof. This follows from Corollary2.19 by taking ρ equal to \mathcal{J} .

Proposition 5.13. Let R be a ring, I and J be two $(2, \mathcal{J})$ -ideals of R. Then I+J is a $(2, \mathcal{J})$ -ideal of R.

Proof. This follows from Proposition 2.20 by taking ρ equal to \mathcal{J} .

Proposition 5.14. Let \mathcal{J} be the Jacobson radical and let R be a noncommutative ring with identity. Let I be a proper ideal of R. Let M be a R - R-bi-module. Now I is a $(2, \mathcal{J})$ -ideal of R if and only if $I \boxplus M$ is a $(2, \mathcal{J})$ -ideal of $R \boxplus M$.

Proof. This follows from Proposition 3.1 by taking ρ equal to \mathcal{J} .

Theorem 5.15. Let the \mathcal{J} be the Jacobson radical radical and R a noncommutative ring with identity. Let I be a $(2, \mathcal{J})$ -ideal of R and N an R - R-bi-submodule of the R - R-bi-module M. Then, if $(\mathcal{J}(R)M : M) = \mathcal{J}(R)$ and N is a \mathcal{J} -submodule of M with $IM + MI \subseteq N$, then $I \boxplus N$ is a $(2, \mathcal{J})$ -ideal of $R \boxplus M$.

Proof. This follows from Theorem 3.3 by taking ρ equal to \mathcal{J} .

Proposition 5.16. Let the \mathcal{J} be the Jacobson radical and R a noncommutative ring with identity. Let I be an ideal of R and N a proper R - R-bi-submodule of the R - R-bi-module M. Suppose $\mathcal{J}(R)$ is a prime ideal. If $I \subseteq \mathcal{J}(R)$ then $I \boxplus M$ is a (2, J)-ideal of $R \boxplus M$.

Proof. This follows from Proposition 3.4 by taking ρ equal to \mathcal{J} .

6 $(2.\mathcal{P})$ -ideals

In this section the special radical will be the prime radical. In [9] Tekir et al. introduced the notion of *n*-ideals for commutative rings with identity element. In [8] Tamekkante et al. introduced the concept of (2, n)-ideals as a generalization of an *n*-ideal. They investigate many properties of (2, n)-ideals. We show that for the prime radical many of the results proved by Tamekkante et al. are also true for noncommutative rings.

In what follows for the noncommutative ring R, $\mathcal{P}(R)$ will denote the prime radical of the ring R.

Definition 6.1. A proper ideal I of a ring R is a \mathcal{P} -ideal if whenever $a, b \in R$ such that $aRb \subseteq I$ and $a \notin \mathcal{P}(R)$, then $b \in I$.

If R is a commutative ring, then the notion of a \mathcal{P} -ideal coincides with a n-ideal as been defined by Tekir et al. in [9].

Definition 6.2. A proper ideal I of a ring R is a $(2, \mathcal{P})$ -ideal if whenever $a, b, c \in R$ such that $aRbRc \subseteq I$ then $ab \in I$ or $ac \in \mathcal{P}(R)$, or $bc \in \mathcal{P}(R)$. If R is a commutative ring, then the notion of a $(2, \mathcal{P})$ -ideal coincides with a (2, n)-ideal as been defined by Tamekkante et al. in [8].

П

П

Proposition 6.3. (See [8, Theorem 2.4])Let \mathcal{P} be the prime radical and P a proper ideal of the ring *R*. The following statements are equivalent:

- (i) P is a $(2, \mathcal{P})$ -primary ideal of the ring R and $\mathcal{P}(P) = \mathcal{P}(R)$.
- (ii) P is a $(2, \mathcal{P})$ -ideal of R.

Proof. This follows from Proposition2.17 by taking ρ equal to \mathcal{P} .

Proposition 6.4. (See [8, Corollary 2.5]) Let \mathcal{P} be the prime radical and I a proper of the ring R. If I is a prime ideal, then the following are equivalent:

- (i) I is a $(2, \mathcal{P})$ -ideal of R.
- (*ii*) $I = \mathcal{P}(R)$.
- (iii) I is a \mathcal{P} -ideal of R.

Proof. This follows from Proposition 2.11 by taking ρ equal to \mathcal{P} .

Theorem 6.5. (See [8, Proposition 2.7]) Let \mathcal{P} be the prime radical and P a proper ideal of the ring *R*. The following are equivalent:

- (i) P is a $(2, \mathcal{P})$ -ideal of R.
- (ii) $(P: xRyR) \subseteq (\mathcal{P}(R): xR) \cup (\mathcal{P}(R): yR)$ for all $x, y \in R$ with $xy \notin P$.
- (iii) $(P: xRyR) \subseteq (\mathcal{P}(R): xR)$ or $(P: xRyR) \subseteq (\mathcal{P}(R): yR)$ for all $x, y \in R$ with $xy \notin P$.
- (iv) For all $x, y \in R$ and each ideal J of R, $xRyJ \subseteq P$ implies either $xy \in P$ or $xJ \subseteq \mathcal{P}(R)$ or $yJ \subseteq \mathcal{P}(R)$.
- (v) For all $x \in R$ and ideals J and K of R, $xJK \subseteq P$ implies either $xJ \subseteq P$ or $xK \subseteq \mathcal{P}(R)$ or $JK \subseteq \mathcal{P}(R)$.
- (vi) For all ideals I, J, K of R such that $IJK \subseteq P$ either $IJ \subseteq P$ or $IK \subseteq \mathcal{P}(R)$ or $JK \subseteq \mathcal{P}(R)$.

Proof. This follows from Theorem 2.14 by taking ρ equal to \mathcal{P} .

Proposition 6.6. (See [8, Proposition 2.8]Let \mathcal{P} be the prime radical.

- (i) The intersection of any set of $(2, \mathcal{P})$ -ideals of the ring R is a $(2, \mathcal{P})$ -ideal.
- (ii) Let R be a ring. $\mathcal{P}(R)$ is a $(2,\mathcal{P})$ -ideal of R if and only if it is a 2-absorbing ideal of R.

Proof. This follows from Proposition2.15 by taking ρ equal to \mathcal{P} .

Theorem 6.7. (See [8, Proposition 3.1]) Let R and S be rings and $f : R \to S$ be a surjective ring-homomorphism. For the prime radical \mathcal{P} , the following statements hold:

- (i) If I is a $(2, \mathcal{P})$ -ideal of R and ker $(f) \subseteq I$, then f(I) is $a(2, \mathcal{P})$ -ideal of S.
- (ii) If J is a $(2, \mathcal{P})$ -ideal of S and ker $(f) \subseteq \mathcal{P}(R)$, then $f^{-1}(J)$ is $a(2, \mathcal{P})$ -ideal of R.

Proof. This follows from Theorem 2.18 by taking ρ equal to \mathcal{P} .

Proposition 6.8. (See [8, Corollary 3.3])Let \mathcal{P} be the prime radical and let R be a ring and let I, K be two ideals of R with $K \subseteq I$. Then the following hold.

- (i) If I is a $(2, \mathcal{P})$ -ideal of R, then I/K is a $(2, \mathcal{P})$ -ideal of R/K.
- (ii) If I/K is a $(2, \mathcal{P})$ -ideal of R/K and $K \subseteq \mathcal{P}(R)$, then I is a $(2, \mathcal{P})$ -ideal of R.
- (iii) If I/K is a $(2, \mathcal{P})$ -ideal of R/K and K is a $(2, \mathcal{P})$ -ideal of R, then I is a $(2, \mathcal{P})$ -ideal of R.

Proof. This follows from Corollary2.19 by taking ρ equal to \mathcal{P} .

П

Proposition 6.9. Let \mathcal{P} be the prime radical and let R be a noncommutative ring with identity. Let I be a proper ideal of R. Let M be a R - R-bi-module. Now I is a $(2, \mathcal{P})$ -ideal of R if and only if $I \boxplus M$ is a $(2, \mathcal{P})$ -ideal of $R \boxplus M$.

Proof. This follows from Proposition 3.1 by taking ρ equal to \mathcal{P} .

Theorem 6.10. Let the \mathcal{P} be the prime radical and R a noncommutative ring with identity. Let I be a $(2, \mathcal{P})$ -ideal of R and N an R - R-bi-submodule of the R - R-bi-module M. If $(\mathcal{P}(R)M : M) = \mathcal{P}(R)$ and N is a \mathcal{P} -submodule of M with $IM + MI \subseteq N$, then $I \boxplus N$ is a $(2, \mathcal{P})$ -ideal of $R \boxplus M$.

Proof. This follows from Theorem 3.3 by taking ρ equal to \mathcal{P} .

Proposition 6.11. Let the \mathcal{P} be the prime radical radical and R a noncommutative ring with identity. Let I be an ideal of R and N a proper R - R-bi-submodule of the R - R-bi-module M. Suppose $\mathcal{P}(R)$ is a prime ideal. If $I \subseteq \mathcal{P}(R)$ then $I \boxplus M$ is a (2, J)-ideal of $R \boxplus M$.

Proof. This follows from Proposition 3.4 by taking ρ equal to \mathcal{P} .

П

References

- [1] John R. Fisher, Axiomatic radical and semisimple classes of rings, Pacific Journal of Mathematics, 1, (1981), 81–91.
- [2] NJ Groenewald, On 2-absorbing ideals of non-commutative rings, JP Journal. Algebra Number Theory Appl., 2018, 855-867.
- [3] N.J. Groenewald, On radical ideals of noncommutative rings, Journal of Algebra and its applications, https://doi.org/10.1142/S0219498823501967.
- [4] N.J. Groenewald, On principally 2-absorbing right primary and weakly principally 2-absorbing right primary ideals, Journal of Algebra and Related Topics, 9, No 1, (2021), 47-67.
- [5] Hani A. Khashan and Amal B. Bani-Ata, *J-ideals of commutative rings*, International Electronic Journal of Algebra, **29**, (2021), 148-164.
- [6] Abdelhaq El Khalfi, *Generalization of (m, n)-closed ideals*, Palestine Journal of Mathematics **11**(3)(2022), 161–166.
- [7] T.Y. Lam, A First Course in Noncommutative Rings, second ed., Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 2001.
- [8] M. Tamekkante and E.M. Bouba, (2,n)-ideals of commutative rings, Journal of Algebra and its Applications, (2019), 1950103.
- [9] U. Tekir, S. Koc and K.H. Oral, *n-Ideals of commutative rings*, Filomat, **31**(10) (2017), 2933-2941.
- [10] Jenan Shtayat, Rashid Abu-Dawwas and Ghadeer Bani Issa, Graded Almost Prime Ideals over Non-Commutative Graded Rings, Palestine Journal of Mathematics, 12(3)(2023), 294–300.
- [11] S. Veldsman, A Note on the Radicals of Idealizations, Southeast Asian Bulletin of Mathematics, **32**, (2008), 545-551.
- [12] E. Yildiz, Ü. Tekir, S.Koç, (2,J)-ideals of commutative rings, Comptes rendus de l'Acad'emie bulgare des Sciences, Tome 73, No 9, 2020.
- [13] B.J. Gardner, R. Wiegandt, Radical Theory of Rings, Marcel Dekker Inc., New York, 2004.

Author information

N. Groenewald, Department of Mathematics, Nelson Mandela University, South Africa. E-mail: nico.groenewald@mandela.ac.za

Received: 2023-07-22 Accepted: 2024-01-12