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Abstract This paper introduces a new class of metrics on an m-dimensional Riemannian manifold (M™, g), obtained
by non-conformal deformations of the metric g. We investigate the Levi-Civita connection and characterize the Riemannian
curvature of this metric. We also study harmonicity and bi-harmonicity with respect to this metric, and characterize some
classes of proper bi-harmonic maps. Finally, we provide examples of proper bi-harmonic maps in the case where (M™, g)
is an Euclidean space.

1 Introduction

Let (M™, g) be an m-dimensional Riemannian manifold. We denote by R, Ric, and Ric respectively the Riemannian
curvature tensor, the Ricci curvature, and the Ricci tensor of (M, g). They are defined as follows:

R(X,Y)Z =VxVyZ—-VyVxZ—-Vxy|Z,

Ric(X,Y) =) g(R(X,ei)ei,Y),

-

Ric(X) = > R(X, ei)ei,
i=1

where, V is the Levi-Civita connection with respect to g, {€;}i—1,..,m is an orthonormal frame, and X,Y, Z € T'(T'M).
Given a smooth function f on M, the gradient of f is defined by

g(grad f, X) = X (f), grad f = Zei(f)ei,
i=1

the Hessian of f is defined by
Hess;(X,Y) = g(Vx grad f,Y) = g(Vy grad f, X)
and the Laplacian of f is defined as

A(f) = traceHessy = Zg(vei grad f,e;).

i=1

(For more details, see for example [10]).
Let ¢ : (M, g) — (N, h) be a smooth map between two Riemannian manifolds, the tension field of ¢ is given by

m
T(p) = tracey Vdp = Z V& do(ei) —dp(Ve,e;).

i=1
where {e;} is an orthonormal frame on (M, g), and V¥ denote the pull-back connection on ™! (T'N). Then, ¢ is called
harmonic map if the tension field vanishes, i.e. 7(¢) = 0. (For more details on the concept of harmonic maps see [1], [2]).
The map ¢ : (M™, g) — (N™, h) is called a harmonic morphism if, for every harmonic function » : V' — R defined on
an open subset V of N with ! (V") non-empty, the composition u o ¢ is harmonic on ¢ ~!(V'). Furthermore ¢ is harmonic
morphism if and only if for all  : V' — R defined on an open subset V of N with o ~!(V') non-empty

A (wo g) = N(8Nw) o p,

where A is a positive function on M (for more details see [2] ).
The bi-tension field of ¢ is given by

72(p) = — tracey [VEV97(p) — VET(p)] — traceg RN (7(0), dop)dep,
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and ¢ is called bi-harmonic if and only if 7(¢) = 0.

Clearly, harmonic maps are bi-harmonic. G.Y. Jiang [7] proved that if M is compact without boundary and the sectional
curvature of (N, h) is negative, then any bi-harmonic map ¢ € C°° (M, N) is harmonic. So it is interesting to construct
bi-harmonic non-harmonic maps. We refer the reader to (see [6] [1], [9], [12]) for other examples and different approaches
to their construction. _

In [3], the authors deformed the codomain metric by ho = ah + (1 — a)df ® df, where a € (0,1) and f € C°(N),
in order to render a map bi-harmonic non-harmonic with respect to the new metric, they gave a necessary and sufficient
condition on f and « such that ¢ : (M, g) — (N, hq ) is bi-harmonic non-harmonic.

In this work, we study the harmonicity and bi-harmonicity with respect to a non conformal deformation of the metric. Let
(M™, g) be a connected Riemannian manifold and f : M — R a smooth non constant function. On M we consider a
deformation of g defined by

9(X,Y) =g(X,Y) + (df @ df)(X,Y) = g(X,Y) + X ()Y (S),

and we consider a map ¢ : (M, g) — (N, h). By deforming the metric on M and then the metric on N, we establish the
necessary and sufficient conditions in which a map is harmonic or bi-harmonic. so by suitable choices of f, we are able to
give examples of proper bi-harmonic maps.

2 Geometry of (M™, g)

Definition 2.1. Let M be a connected Riemannian manifold equipped with Riemannian metric g, and let f a smooth non-
constant function on M. We define on M a Riemannian metric denoted g, by

g=g+df ®df.
For X,Y € I'(T'M), we have the following
X, Y)e =9(X,Y)z + X(/)aY (f)z, VT € M. (2.1)

Note that g is a conformal metric to g on the distribution orthogonal to grad f, or if M is one-dimensional Riemannian
manifold.

Remark 2.2. Consider {e;}7*, to be an orthonormal frame on manifold M with respect to metric g, where ¢; = i:j;‘ .
Then, defining €; = ﬁel and €; = e; fori = 2,...,m, we obtain an orthonormal frame on M with respect to
+|gra

the metric g

In the following we put o = 1 + || grad f||?. Consequently, we have

grad f ~ grad f
e = —— and e =

Va—1 \/a(ozfl)'

By employing Kozul’s formula, we can establish the relationship between the Levi-Civita connection of the manifold
(M, g) and that of (M, g) as follows

Proposition 2.3. Let (M™, g) be a connected Riemannian manifold, f : M — R a smooth non constant function and
IX,Y)=g(X,Y)+ X(f)Y(f). If V (resp. V) denotes the Levi-Civita connection associated to g (resp. g), then

= 1
VxY =VxY + —Hess;(X,Y)grad f, VX, Y € [(TM). 2.2)
e

Corollary 2.4. Let (M™, g) be a connected Riemannian manifold, f : M — R a smooth non constant function. Then

~ 1
Vxgrad f = Vx grad f + Z—X(a) grad f, VX e T(TM). 2.3)
a

Now, consider the curvature tensor R of (M, ), writing R for the curvature tensor of (M, g). We have the following
result

Proposition 2.5. Let (M™, g) be a connected Riemannian manifold and f : M — R a smooth non constant. Then
VX,Y,Z e T(TM)

ﬁ(X7 Y)Z =R(X,Y)Z — lg(R(X, Y)Z, grad f) grad f
@

+ ﬁ [Y(a) Hess (X, Z) — X (a)Hess ¢ (Y, Z)] grad f (2.4)

1
+ — [Hess¢ (Y, Z)V x grad f — Hess (X, Z)Vy grad f].
a

Proof. By definition of the Riemannian curvature tensor, we have
forall X,Y,Z € I(TM).

R(X,Y)Z=VxVyZ-VyVxZ—VxyZ (2.5)
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Using Proposition 2.3 and Corollary 2.4, the first term in the right hand of the equation (2.5), becomes
%ﬁyz = 6x(VyZ+$HCSSf(Y,Z)gI'adf)
= %X(VYZ)JF%X(i Hess (Y, Z) grad f)
= VXVyZJrég(VX grad f,Vy Z) grad f
+ X[é Hess (Y, Z)] grad f + éHt:ssf(Y7 Z)V x grad f
= VxVyZ+ ig(vx grad f,Vy Z) grad f — éX(a) Hess ¢ (Y, Z) grad f
+ lg(VxVy grud f,2) + o(Vy grad £, V7)) grad |
+ ég(Vy grad f, Z)V x grad f + ﬁX(a)g(Vy grad f, Z) grad f

1
= VxVyZ+ —g(VxVy grad f, Z) grad f
(e}

1
+ 3 [9(Vx grad f, Vy Z) + g(Vy grad f, Vx Z)] grad f

1 1
+ —Hessy(Y,Z)Vx grad f — ﬁX(a) Hess ¢ (Y, Z) grad f. (2.6)
«a «a
The second term in the right hand of the equation (2.5), becomes
~ ~ 1
VyVxZ = VyVxZ+ —g(VyVxegradf,Z)grad f
«a
1
+ - [9(Vy grad f, Vx Z) + g(Vx grad f, Vy Z)] grad f
1 1
+ —Hessf(X,Z)Vy grad f — 2—2Y(o¢) Hess ¢ (X, Z) grad f. 2.7
«a o'
The third term in the right hand of the equation (2.5) is
~ 1
Vixy)4 =Vixy)Z+ EQ(V[X,Y] grad f, Z) grad f. (2.8)
Substituting (2.6), (2.7) and (2.8) in (2.5), we get the result of Proposition 2.5. O

Corollary 2.6. Let (M™, g) be a connected Riemannian manifold and f : M —> R a smooth non constant function, such
that || grad f|| = 1, then

~ 1
R(X,Y)Z =R(X,Y)Z — Eg(R(X, Y)Z, grad f) grad f
! (2.9)
+ 5 [Hess¢ (Y, Z)V x grad f — Hess¢ (X, Z)Vy grad f].

3 Mains results

3.1 Harmonic map

Let (M™,g), (N™, h) two Riemannian manifolds, with M is connected and § = g + df ® df, where f is a smooth non
constant function on M. Then we have the following

Proposition 3.1. Let ¢ : (M™,g) — (N™, h) be a smooth map. Then the tension field of @ associated to § is given by

~ 1 1 1
() = 7(6) = — [V pdiplerad f) = s—dp(erada) + (5= grad f(@) + A(f) Jdo(erad /)], B.D)
a 2 2c
where T(p) is the tension field of ¢ with respect to g.
Proof. .

Recall that, {e;};—1,.. m such that e; = NG grad f be an orthonormal frame on M with respect to g and {€; }i—1,.. m
such that

€l grad f, {€ =ei}tiza,..,m

1 1
= —e = —F—
Va Vala—1)
be an orthonormal frame on M with respect to g.
We have
[VZ dp(@:) — dp(V2IE)]

i

T(p) =

-,
I

-

(3.2)

VE dp(@) — dp(VYE) + Y [VE dples) — dp(Vies)).

e 1
=2
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‘We calculate the first term in the right hand of (3.2). To simplify calculations, we denote by 8 = ﬁ then
a(oe—

VEZdp(@) — dp(VYE) = V§ g pde(Berad f) = do(V i 15 grad f)
= B’[VE.apde(grad f)
— dp(VM, , erad ). (3.3)
From the corollary 2.4, we get
ﬁéﬁdf grad f = Vé\:{ldf grad f + i grad f(«) grad f,
then

VEZdp(@) —dp(VEe) = B[V pdelgnd f) — do(Vy, p grad f)]

1
= g [V;adfdgo(grad f) - dgo(vgédf grad f + o grad f (o) grad f)]
1

1
= ®
a m [Vgrad fdw(grad f) - Edcp(grad Oc)

- zi grad f(@)dip(grad f)]. (34
(0%

For the second term in the right hand of (3.2), we have

m

Z[Vé dp(e;) — d@(%é\fei)] Z[Vfi de(ei) — dgo(Vé\;Iei) — i Hess s (e;, e;)dp(grad f)]
i=2 i=2

= 7(p) = V& dp(e) +dp(Vile)

1
= S [A() —9(Ve, grad f, e1)]dip(grad )
(§) = Ve pdolamad ) + 5 dp(rada)
= 7(p)— —— ra —_— rad o
PP g Vema g tAE 2(a—1) vie
+ (; rad f(a) — lA(f))d (grad f) 35)
20(a — 1) & e vle ' ’
By substituting (3.5) and (3.4) in (3.2), we get the result of the Proposition 3.1. O
Corollary 3.2. The map ¢ : (M™,g) — (N™, h) is harmonic if and only if
) — i[w dip(grad ) — ——dip(grad ) + (i rad f(0) + A(f) ) dp(grad f)] =0
1 a grad f tae: za@g 2ag p(g =0.

Corollary 3.3. Let ¢ : (M™,q) — (N™, h) a smooth map. If || grad f|| is constant then, @ is harmonic if and only if
1
7(0) = (Adp(grad ) + Vi dplerad f)) =0
From the Corollary 3.2, we get the following

Remark 3.4. 1) The identity map ¢ = Idps : (M™,g) — (M™, g) is harmonic if and only if

o grad(a) + [i grad f(a) + A(f)] grad f = 0.

2) If || grad f|| is constant, then the identity map ¢ = Idys @ (M™,g) — (M™,g) is harmonic if and only if, f is
harmonic function.

Example 3.5. Let M = H? x R equipped with the Riemannian metric
1
g= ?(dwz + dy?) + dt?,

where H? = {(x,y) € R?/y > 0} is a 2-dimensional hyperbolic space and let
f(z,y,t) =at+0b, for (a,b)€R* xR
According to Remarks 3.4, the identity map ¢ = Idys : (M™,q) — (M™, g) is harmonic, with
. 1

g =
y2

(dx? 4 dy?) + (1 + a*)dt>.

Now we will study the harmonicity by deforming the metric of the codomain.

Let (M™,g), (N™, h) two Riemannian manifolds, with N is connected and h=h+ df ® df,where f: N — R isa
smooth non constant function, then we have the following
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Lemma 3.6. Let (M™, g), (N™, h) two Riemannian manifolds, with N is connected, o : (M, g) — (N, h) be a smooth
map and f : N — R is a smooth non constant function, then

~ 1
VeV =VEV + &h(v;’; (grad™ f) o, V) (grad? f) o ¢,
where o =1+ || grad™ f||?
Proof. Let X,V € T(TN), suchthat Vo =V and X o ¢ = dp(X). Then
VLV = (VEV) o
1 _
= [VEV + —n(V¥ grad™ f,V)grad" f] o ¢
X o WX
1
=V&V + ah(vgg grad™ f o, V)(grad? f)o ¢
O

Proposition 3.7. Let (M™,g), (N™, k) two Riemannian manifolds, with N is connected, ¢ : (M, g) — (N, h) be a
smooth map and f : N — R is a smooth non constant function. Then, the tension field of @ with respect to h is given by

(o) =7(p) + étrace h<V“”(gradN feoe, dw) (grad™ f) o

Proof. Let {e;}i—1,.. m be an orthonormal frame on M with respect to g. Then using Lemma 3.6 we get

m
= Z 6“"_ do(e;) — dap(ngei)
i=1

Ms

(V¢ doles) + —h(VE, (erad® )0 o, dp(e)) (graa® 1) o p — (VM er)]

i=1

=T1(p)+ 1 trace h(V“"(gradN f) o, dcp) (grad™ f) o
a

3.2 Harmonic Morphism

Let (M™,g), (N™, h) two Riemannian manifolds, with M is connected g = g + df ® df be a deformation of g, where
f M — R is a smooth non constant function, then we have the following

Proposition 3.8. Let ¢ : (M™,g) — (N™, h) be a smooth map, then for all harmonic function u : V. — R defined on
an open subset V of N with o~ (V') non-empty, we have

1
AM (y 0 ) = AM (w0 ) — — Hessyoy (grad f, grad f)
a

~ ~[A(f) ~ 5 g f()] grad f(uo ).

«

Proof. Recall that {e;};—i, m suchthat e = \/ﬁ grad f be an orthonormal frame on M with respect to g and

{€:}i=1,...m» suchthat &, = ﬁe] = \/é grad f and €; = e; for ¢ = 2,..,m be an orthonormal frame on M
e ala—1)

with respect to g. We have

-

Muop) = Y [a@Euoy) — (V&) (woy)]

S
Il

Il
™

(@(wo9) — (VY& (o)

M-

T
= e

[ei(ei(uo @) = (VMei) (uo )]

= zalgzaep) - (VY e)wey)

= 5

[ei(ei(uo ) — (ﬁé\fel) (wop)] —ere(uop))+ (ﬁgel)(u o)

.
I

I
—
\_

—ei(er(uo)) + (1 — é)(%é\:{m)(uog@)

[ei(es(uo ) — (%é\fel) (wop)].

N
Il

+
NGERE
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By using the Proposition 2.3, we get

a—1

AM (w0 ) [ = erertuwo ) + (Vi en(uop) + —g(Ve, grad fer) grad Fuo )]

£ faleiwo p) — (VXer)(wo p) = —(Ve, grad fe:) grad f o 9)]

: [ grad f(grad f(u 0 @)

« o —

[u—

= —— (Vg perad f)(uop) — (Veraa 5 grad f, grad f) grad f(u o ¢)]

a—1 a(a—l)g

— A e fuow) + AV (wo)

L erad £ (g(erad £, grad(u 0 9)) — 9(Vyraa s grad £, grad(u o )]

= AMuop)——
(0%

+ 721 > grad f(a) grad f(u o @) — iA(f) grad f(u o o)
o «
= AMuogp) - ! Hessyoy (grad f, grad f)
(07

[A(F) ~ 5 erad (@) grad f(u o 0)

LI~

O

Corollary 3.9. Let (M™,g), (N™, h) two Riemannian manifolds, with M is connected, ¢ : (M™,g) — (N™, h) be an
harmonic morphism and § = g + df ® df, where f is a smooth non constant function on M, then
@ (M™,g) — (N™, h) is harmonic morphism if and only if

1
Hessuo (grad f, grad f) + [A(f) — e grad f(c)] grad f(u o ) = 0,
for all harmonic function u : V. — R defined on an open subset V' of N with o~ (V') non-empty.

Corollary 3.10. Let p : (M™,g) —> (N™, h) be an harmonic morphism and § = g + df & df, where f is a smooth non
constant function on M. If || grad f|| is constant, then o : (M™,g) — (N™, h) is harmonic morphism if and only if

Hesswop(grad f, grad f) + A(f) grad f(uo ) =0,
for all harmonic function u : V' — R defined on an open subset V of N with = (V') non-empty.

From the Corollary 3.10, we get the following

Corollary 3.11. Let ¢ : (M™,g) — (N™, h) be an harmonic morphism and g = g + df ® df, where f is a smooth
non constant function on M, such that || grad f|| is constant, then the identity map o = Idyr : (M™,g) — (M™, g) is
harmonic morphism if and only if

Hess,, (grad f, grad f) + A(f) grad f(u) = 0,
forallu : V — R defined on an open subset V (non-empty) of N.

3.3 Bi-harmonic map

Theorem 3.12. Let (M™,g), (N™, h) two Riemannian manifolds, with M is connected, ¢ : (M™,g) — (N™, h) be a
smooth map and f : M — R a smooth non constant function such that || grad f|| = 1 and

g=9+df @ df,

then the bi-tension field of @ is given by
~ 1 1 1
72(#) = 2(0) + 5 Viraa £ Vraa s 7(0) + ERN(T(w),dso(grad Pde(grad £) + AV gaq £ 7()

5[~ J arad flerad (A7) — A grad F(A)] diolerad £)

AT o (dipgmad ) = 5 1o (V5 ydolemad £)

RN(VE,, pdp(arad f), dp(grad f))dip(grad f) + V', o) dip(arad )

N—= A= = =

[erad F(A(F) + 5 (A()?] P siplerad £),

where J,(V) = A? (V) + traceg RN (V, dp)dp, YV € @~ (TN) is the Jacobi operator of .



1424 R. Kada Benothmane and K. Zegga

Proof. Let {e;}i—1,... m such that e; = grad f be a local orthnormal frame on M with respect to g and {€; };—1,... m such
that e = % and €; = e; for i =2,...,m be alocal orthnormal frame on M with respect to g. The bi-tension field of
o with respect to g is given by

Palp) = = [VEVEF(p) = V2, 7(p)] - RV (7(e), dp(@) (@)

(3.6)
= ~VEVET(p) + VE - T(9) = RN (7(9), dp(@))do (@)

For the first term in the right hand of (3.6), we have
—VEVET(p) = —VEVET(p) = VEVET(P)
1 - - 3.7)
= _iv;&d fV;ad fT(QO) - Vfivfﬂ—(ﬂo)-
Recall that 7(¢) = 7(¢) — %A(f)d«p(grdd f) - gradfd (grad f), then

~ 1 1
Viraa ;7(P) = Va5 7(9) = 5 grad f(A(f) dp(grad f) = SA(F)V grpq pdiplrad f)
1
- Ev;ad fv(gﬁad fdgo(grad )
therefore,
1
2

~ 1 1
V;ad fv;ad fT(Sﬂ) = _Ev;ad fvffmd fT(‘P) + 1 grad f(grad f(A(f)))dp(grad f)

T égrad FAUN) Vg (w20 )+ (A Vg Vi pllolerad ) B9)

v‘P

+ V grad f

erad f V;adfdgp(grad 1)

on the other hand . 1
VEF(p) = VE(e) — SeilAF))dp(grad f) — SA(F)VE, dip(grad )

1
— 3VE Vg pdielerad f),

then

~ 1
—VEVET(P) = -VEVET(P) + Eei(ei(A(f)))dsO(grad F) +ei(A(f))VE, dp(grad f)
(3.9
+ %A(f)V‘P Ve dp(grad f) + V“p \% 4 vgradf p(grad f).
Substituting (3.8) and (3.9) in (3.7), we get
1 1

_Ev;ad fvg—ad fT(‘P) - Vfi vfiT(‘P) + 7(A(f))vg¢;ad fV;ad fdzp(grad f)

P TP () —
—vgivar(w) = 1

+ [ g femd S + Seilesl ()] dplerad )

+ 3 8d F(A() Vg pdip(grad ) + e4(A(T)) V¥, dip(arad f) (3.10)

v%o

1
+ Ve grad f

1
4 ¥ erad fV;'}adf dp(grad f) + EA(f)V‘p V. do(grad f)

+ V"" %4 ngdfdgo(grad -
For the second term in the right hand of (3.6), we recall that

~ 1~ ~
VMez = Evgr{mfgradervgei

_oMe,
1
= VMeZ + 2A(f) grad f,

then

ve ~’/;(W):vg%ﬁr(«pw;A(f)vgmdf 7(¢)

- ngef(‘”) - %(Vgei)(A(f))dtp(grad )

1 1
- 5A(f)VéM‘iidap(gradf) - EVgMeiV;adfdcp(gradf) (3.11)

4 A [V 7(0) — 5 812 F(A())dp(grad §) — A7)V yiplgmad f)

1
— EV;ade;adfdap(gradf)].
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Now, we calculate the third term in the right hand of (3.6)

—RY(7(), de(€))dp (&) = —%RN (T(p), dip(grad f)dp(grad f) — RN (7(i0), dp(es))dip(e:)

= —%RN (7(¢p), dep(grad f))dp(grad f) — RN (7(p), dip(e;))dep(e;)

b TRN (VS pdp(erad f), dio(grad f))dip(arad f) (3.12)

+ —A(f)RN (de(grad f), dep(e;))do(es)

— N =

5 RN (Vi pdiplerad £), di(eq)dip(e:).

Recall that
72) = = [Viua s Vioua 57(0) + VEVET(0) = Vs, 7(0)]

— RN (1(¢0), dp(grad f))dep(grad f) — RN (1(0), dp(eq))dp(er),
the Jacobi operator is defined by
Jo(V) = AP (V) — traceg RN (V, dyp)dep,
and
AA(S) = [ grad f(grad FAU))) + eleil M) = (Ve (AS))]
then, by substituting (3.12), (3.11) and (3.10) in (3.6), we deduce the result of Theorem 3.12. O

4 Construction of proper bi-harmonic maps

From Theorem 3.12, we deduce the following results

Corollary 4.1. Let (M™, g), (N™, h) two Riemannian manifolds, with M is connected, p : (M™,g) — (N™, h) be an
harmonic map, f : M — R a smooth non constant function such that || grad f|| = 1 and § = g + df ® df. Then
p: (M™,g) — (N™, h) is bi-harmonic if and only if

1

+ 5[~ 3 s flerad F(A1) — SA() erad F(A)] dolerad £)

— AU o (dp(erad 1)) = 3 35 (Voy diplarad £)) = RN (Vi pdiolamad f), dio(erad f)di(grad f),

1
Vs delerd ) = 3 [ erad FA) + 5 ()] Vg pdplerad ) = 0

1
2
Example 4.2. Let n > 2, M = R" equipped with the canonical metric g = d:p% + dm% + ...+ dm%l and N =H =
{(y1,92,--sYn) /yn > 0} be an-dimensional hyperbolic space, equipped with the metric
h=yp(dyi +dy3 + ..+ dy,).

Consider the harmonic map
©:(M,g) — (N, h),

@o(x1, T2, Tn) = (T1, T2, ., Tn_1, VN — 11 /a2 + 1),

and let the function f(z1, 2, ..,Tn) = Tn. Thus with respect to the Riemannian metric
G=g+df @df = g+ da? +da3 + ... + 2da?,
the map ¢ : (M, g) — (IV, h) is bi-harmonic non harmonic.
From Corollary 4.1 and Remark 3.4, we get the following
Corollary 4.3. Ler (M™, g) be a connected Riemannian manifold, f : M — R a non constant and non harmonic smooth

Sfunction such that || grad f|| = 1 and g = g + df ® df, then the identity map ¢ = Idy; - (M,q) — (M, g) is a proper
bi-harmonic if and only if

[A(af) = 5 grad flerad f() — A7) grad F(A()] grad §
—A(f)J1a,, (grad f) + ngr{\d(A(f)) grad f = 0.

Remark 4.4.If f : M — R is non harmonic function such that || grad f|| = 1 and A(f) = k # 0, then the identity map
p=1Idp : (M,g) — (M, g) is a proper bi-harmonic if and only if

A(grad f) + Ric(grad f) = 0.
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