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Abstract Graphs constructed to translate some graph problem into another graph problem are
usually called auxiliary graphs. Specifically, total graphs of simple graphs are used to translate
the total colouring problem of the original graph into a vertex colouring problem of the trans-
formed graph. In this paper, we obtain a new characterisation of total graphs of simple graphs.
We also design algorithms to compute the inverse total graph when the input graph is a total
graph. These results improve upon the work of Behzad (in terms of complexity and simplic-
ity of the algorithm), by using novel observations on the properties of the local structure in the
neighbourhood of each vertex. The earlier algorithm was based on BFS and distances. Our theo-
rems result in an iterative partitioning of the vertex set of the total graph into the original graph
(inverse total graph) and its line graph. We obtain direct constructive results for total graph of
complete graphs.

1 Introduction

A total colouring of a simple graph is a simultaneous assignment of labels to its vertices and
edges such that adjacent vertices get distinct colours, adjacent edges get distinct colours and
the colour of each edge is distinct from the colours of its endpoint vertices (or equivalently the
colour of each vertex is distinct from the colours of its incident edges). It is thus a combination
of a proper vertex colouring, a proper edge colouring and a further restriction on the interplay
between these colourings. The notion of total colouring was introduced by Behzad [1] and
Vizing [2] and those papers also conjectured that χT (G) ≤ ∆(G) + 2 Here, χT (G) denotes total
chromatic number (the fewest colors needed in any total coloring of the graph) of G and ∆(G)
denotes the maximum degree of the graph G. It is immediate that χT (G) ≥ ∆(G) + 1, since a
vertex of maximum degree and its incident edges must all get distinct colours. A lot of work has
been done on total colouring [3, 4], based on frugal colouring [5], the list colouring conjecture
[6] etc.

Definition 1. The total graph T (G) of a graph G = (V,E) has one vertex for each edge as well as
each vertex in G as a vertex set. Two vertices in T (G) are adjacent precisely when the elements
(vertex or edge) of G they represent are adjacent/incident to each other in G.

Vertex colouring is a way of colouring the vertices of a graph such that no two adjacent
vertices are of the same colour. Whereas, in the total colouring, no adjacent edges, no adjacent
vertices and no edge and either end vertex are assigned the same colour. From the definition of
the total graph, it is clear that total colouring of G becomes a vertex colouring of T (G).

In this work, our aim is not to make headway in the total colouring problem but rather to get
a complete characterisation of the class of total graphs of simple graphs. Work on characterising
naturally defined classes of graphs has attracted the attention of researchers in the field of graph



A New Characterisation of Total Graphs 1445

theory, and thus our work is an important contribution. Examples of work on characterising
graph classes include planar graphs [7], line graphs [8], interval graphs [9], bipartite graphs [10],
graph factoring under the cartesian product operation [11].

The vertex set of the total graph of a simple graph can be partitioned into two sets, one corre-
sponding to the vertex set of the original graph (inverse total graph) and the other the line graph
of the original graph, with crossing edges between these two vertex sets. A result characterising
total graphs was obtained by Behzad [12] in 1970, and earlier works obtained interesting prop-
erties on this class of graphs [13]. The fact that any total graph has a unique preimage under the
inverse total graph operator was proved in [14].

We obtain a new characterisation of total graphs based on the induced subgraphs on the
neighbourhood of maximum degree vertices. These characterisations allow us to distinguish
vertex vertices from edge vertices among the vertices of maximum degree. We also rely on
the preponderance of maximal triangles (maximal cliques on exactly three vertices) between the
vertex graph and the line graph consisting of two vertices from the vertex part and one vertex
from the line graph part. Using this characterisation, we develop an efficient algorithm which
iteratively creates the partition of the vertex set of the candidate total graph into its inverse total
graph and line graph.

The paper is organised as follows. The detailed definitions of structures as well as notation is
presented in Section 2. In the same section, basic properties and known results on total graphs
are also presented along with our results for complete graphs. In Section 3, we present our
results characterising the two classes of vertices and an algorithm for reconstructing the inverse
total graph of a given total graph. Detailed comparison with the existing approach is presented
in Section 4. We summarise our work and indicate possible future directions for research in
Section 5.

2 Preliminaries

In this section we present some of the basic definitions and notation we use, throughout the
paper. We also present known results related to total graphs. All graphs we consider are finite,
simple, undirected and connected. Disconnected graphs do not add any new dimension to the
problem.

Our main focus in this work is on total graphs. The vertex set of the total graph of a graph
can be partitioned (uniquely upto isomorphism) into two parts such that the subgraph induced on
one part is the original graph (inverse total graph) and the subgraph induced on the other is the
line graph of the original graph. The bipartite subgraph induced by this partition joins a vertex
in the original graph to a vertex (representing an edge) in the line graph if and only if the vertex
is an endpoint of the edge. Our interest in line graphs is limited to their role in total graphs, and
their role in the partitioning procedure to obtain the inverse total graph.

Definition 2. The line graph L(G) of a graph G = (V,E) is defined as the graph with vertex set
having one vertex corresponding to each edge in G and an edge between two vertices of L(G)
precisely when the edges of G that those vertices correspond to, have a common endpoint.

Not all graphs are line graphs of a simple graph (or for that matter even of a multigraph).
Similarly not all graphs are total graphs. Viewing the total graph concept as a function from the
class of graphs to the class of graphs analogous to line graphs, the function is non-surjective.
A natural problem, therefore, is to determine the range of this function. In addition, it is also
interesting to design an algorithm that either reports that an input graph is not a total graph of any
simple graph or returns the inverse total graph of the given total graph. It has been established
that the total graphs viewed as a function from the class of graphs to the class of graphs is
injective [14].

With reference to a total graph T (G) we have a partition of its vertex set into two parts,
inducing G and L(G) as explained in the previous paragraph. For a total graph such a partition
is unique upto isomorphism and is called a valid partition. The individual vertices belonging to
these two parts in a valid partition are introduced in the following definition.

Definition 3. The vertex set of the total graph of a graph can be partitioned into:

(i) The vertices of the original graph (we call such a vertex a vertex vertex)
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(ii) The vertices of the line graph (we call such a vertex an edge vertex).

Definition 4. A mixed clique in a total graph is a clique which has at least one vertex from the
set of vertex vertices and at least one vertex from the set of edge vertices in a valid partition of
the total graph.

Definition 5. A pure clique in a total graph is a clique consisting exclusively of vertex vertices
or exclusively of edge vertices.

We show intuitive step by step process of construction of the total graph of the given graph.
To visualise this, view any graph as a union of stars centred at each of its vertices. These stars
translate into complete graphs with number of vertices equal to the degree of the central vertex
of the corresponding star in the line graph portion (see Figure 1).Since we used a decomposition
rather than a partition, some pairs of vertices from these cliques in the line graph will have non-
empty intersection with respect to their neighbours in the original graph. Collapse them into
identical vertices (See Figure 2). Connect the central vertex of each star to each vertex of its
corresponding clique in the line graph. The resultant graph is the total graph of the given graph
(See Figure 3).

Figure 1: Line graph construction from the given graph

Figure 2: Line graph
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Figure 3: Total graph

We now present results expressing the degrees of vertices of a total graph in terms of the
degrees of vertices in its inverse total graph. We denote the degree of a vertex u in a graph
G by dG(u). The following two results are derived in [15]. Figures 4 and 5 illustrate these
statements.

Lemma 2.1. The degree of a vertex vertex in a total graph is 2 times the degree of the original
vertex in the inverse total graph.

Lemma 2.2. The degree of an edge vertex in a total graph is equal to the sum of the degrees of
the endpoint vertices of the original edge in the inverse total graph.

Figure 4: Degree characteristics of vertex-vertex

Figure 5: Degree characteristics of edge-vertex

The following Lemma is an immediate consequence of Lemmas 2.1 and 2.2 and taken
from [13].

Lemma 2.3. The total graph of a graph is regular if and only if the original graph is regular.

We list down results expressing the number of vertices and edges of a total graph in terms of
the corresponding parameters of the inverse total graph [16].
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Lemma 2.4. Let T (G) = (V ′, E′) for the given G = (V,E).

(i) |V ′| = |V |+ |E|

(ii) |E′| ≤ |E|(|V |+ 1) (after simplifying the original experssion |E′| = 2|E|+ 1
2
∑

d2
i where

di represents vertex degrees of G)

Results on Complete Graphs
The following lemmas give the structure and other parameters of the total graphs of complete

graphs. Lemma 2.5 is taken from [17].

Lemma 2.5. Let T (G) = (V ′, E′) for the given K|V |.

(i) |V ′| = |V ||(|V |+1)
2

(ii) |E′| = |V |(|V |−1)(|V |+1)
2

(iii) ∀v ∈ T (G), dT (G)(v) = 2(|V | − 1).

Isomorphism between the line graph of a complete graph and the total graph of a complete
graph with one fewer vertex is well established [18, 19].

Lemma 2.6. L(Kn) = T (Kn−1) where L(Kn) denotes the line graph of Kn.

Our proposed characterisation assumes that the given input graph is not the total graph of
cycle graph or complete graph. The same assumption was also made by Behzad [12]. Hence, we
present an efficient algorithm to identify whether the input graph is the total graph of a complete
graph or not. This algorithm helps us in eliminating the special case of complete graph while
characterising. Algorithm 1: Is a given graph the total graph of Kn

(i) From Lemma 6, T (Kn) = L(Kn+1) . For the given input graph, obtain its inverse line
graph in O(E′) [20].

(ii) If the obtained inverse line graph is Kn+1 then the G′ is T (Kn) (complexity of this step
O(E′)).

Since the total graph of a complete graph is considered as a special case, it is interesting to
explore its properties. Also, any total graph is a subset of the total graph of complete graph (for
some value p, T (G) ⊆ T (Kp)). Hence, it is possible to construct a total graph of any graph (with
n vertices) by constructing the total graph of Kn first and then, removing zero or more number
of edges from it. With this motivation, we present an elegant direct construction method for the
total graphs of complete graphs.

(i) Consider n+ 1 disjoint groups each consisting of exactly n vertices. (These correspond to
the n+ 1 cliques of size n of the total graph of the Kn).

(ii) The vertices in ith group Gi are labelled {1, . . . , n+ 1} \ {i}. Therefore, |Gi| = n.

(iii) For each Gi, construct Kn by connecting all its n vertices pairwise.

(iv) Combine the jth vertex of group i and the ith vertex of group j into a single vertex. The
neighbourhood of the new vertex is the union of the individual neighbourhoods. The degree
of each new vertex is exactly 2(n− 1) because degree of each original vertex is n− 1.

(v) The resultant graph is the total graph of the complete graph Kn.

The following observations explain why the proposed method is consistent with Lemma 2.5
(point 2).

• No edge is destroyed during the entire procedure.

• Each clique has (n2) edges and initially n+ 1 distinct cliques are considered.

• Thus, (n2) × (n + 1) edges are present in the graph which remains constant through the
course of this construction.
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Construction of the total graph of K3 using this direct method is shown in Figures 6 and 7. In
the figure the group number is written as subscript for each vertex and the vertex number within
the group is written in normal font. Note: For the rest of the paper, we assume that the input
graph is not the total graph of complete or cycles graphs. The same assumption was also made
by Behzad [12] also. These cases are considered as special cases and they are also characterised
separately [13]. Other significant contributions related to total graphs are documented in [21, 22].

Figure 6: Initial steps of direct construction of the total graph of K3

Figure 7: Resultant Total Graph of K3 after step 4

3 Main Results

As explained earlier, an algorithm for computing the inverse total graph of a given graph (if it is
a total graph) is based on finding a valid partition of the vertex set. The following propositions
together form the building blocks of this partition algorithm.

Proposition 1. The largest mixed clique consisting of at least two vertex vertices in a total graph
is of size 3.

Proof. Consider a clique consisting of three vertex vertices. Clearly there is no edge in any
graph incident to three distinct vertices. Hence this clique cannot be augmented to include any
edge vertices, and thus is not the subset of any mixed clique. It follows that a mixed clique can
consist of at most two adjacent vertex vertices. In this case this can be augmented by only one
vertex, the edge vertex representing the link between these two adjacent vertex vertices.

As a corollary, we have the following result:

Corollary 3.1. A maximal mixed clique is either:

(i) A vertex vertex and all its adjacent edge vertices; or
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(ii) Two adjacent vertex vertices and the connecting edge vertex.

In summary, a maximal mixed clique is either of size 3 or of size k+1 where 2k is the degree
of its only vertex vertex in the total graph. In fact, every edge of the original graph (inverse total
graph) gives rise to a unique maximal mixed clique of size 3 involving one edge vertex and two
vertex vertices. This is together with its two end points in the original graph. Such a triangle
has two of its edges in the bipartite subgraph of the total graph induced by a valid partition and
the third edge is between the two vertices in the vertex part. These are the maximal triangles we
referred to in Section 1.

The next result follows from Definition 4 and Proposition 1.

Proposition 2. Consider a maximal mixed clique of size 3 in a total graph with two vertex
vertices. Let the two vertex vertices be of degrees a and b, with a ≥ b. Then the degree of the
edge vertex of this clique is c = a+b

2 . Clearly a ≥ c ≥ b with equalities holding if and only if
a = b.

One can also immediately infer the following proposition.

Proposition 3. In the inverse total graph there are two adjacent vertices of maximum degree if
and only if there is a maximal mixed clique of exactly three maximum degree vertices two from
the vertex part and one from the line graph part in the total graph.

We will use this property extensively in our algorithm. If there is no triangle of vertices of
maximum degree, a maximum degree vertex along with two of its neighbours with degree in
arithmetic progression constitutes a mixed triangle with the highest and lowest degree vertices
among them being from the vertex part and the mean value degree vertex from the edge part.
This fact significantly reduces the work involved in finding a partition of the vertex set of the
total graph into the vertex part and the line graph part iteratively.

Proposition 4. Given a vertex vertex va of degree 2k in a total graph, its neighbours can be
divided into k pairs representing:

• Its distinct incident edges (v1, . . . , vk) in the inverse total graph and

• the other endpoints of those edges (v′1, . . . , v
′
k) respectively.

The k pairs are {(v1, v
′
1), . . . , (vk, v

′
k)}.

Proof. See Figure 8. The degrees of each pair is related to the degree of the selected vertex
vertex according to Proposition 2.

Now we prove two propositions which give conditions for a maximum degree vertex in a
candidate total graph to be a vertex vertex or an edge vertex. These propositions are used to
iteratively find a maximum degree vertex vertex (one is guaranteed to exist by Proposition 2)
and partition its neighbours into vertex vertices and edge vertices. At each round a maximum
degree vertex vertex is selected as a part of the inverse total graph and it along with its edge
vertex neighbours are eliminated to get a smaller graph to recurse on. A partition of the vertex
set of the given graph into the inverse total graph and the line graph of the inverse total graph
is created iteratively, if one exists; or we infer that no such partition exists if there is a violation
of the combinatorial conditions at any iteration. Our propositions in this section work only for
total graphs of non-complete graphs. Thus the algorithm developed in this section also uses the
algorithm of Section 2, when appropriate, to handle the case of complete graphs.

Proposition 5. An arbitrary maximum degree vertex v (of H) of degree 2k, is a vertex vertex, if
and only if the following properties hold in the subgraph induced on its open neighbourhood.

(i) Its neighbours can be divided into two disjoint and exhaustive groups of k vertices each,
one corresponding to its vertex neighbours NV(v) in the inverse total graph and the other
corresponding to its incident edges NE(v) in the inverse total graph.

(ii) The maximum degree of G[NV(v) ∪NE(v)] is k. This number is achieved by each vertex
in NE(v) and at least one vertex of NV(v) falls short of this degree.
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Proof. The first statement follows from Proposition 4.
Vertices present in NE(v) are corresponding to k edges incident on v and hence all the k edge
vertices will be pairwise adjacent to one another (from the definition of total graph).
Vertices present in NV(v) are corresponding to k vertex neighbours of v and if, all these vertices
achieve degree k, then the graph in the vertex part becomes complete graph. This is because
if G(NV(v)) is k-regular then all the vertices are saturated in terms of degree (if a vertex v’ is
present with unsaturated degree p, then dG(v′) = k + p and hence dT (G)(v

′) = 2(k + p) which
contradicts the assumption of 2k maximum degree) and hence, no more vertices can be present
in the vertex part. We assume that the given graph is not complete and hence, at least one vertex
from NV(v) falls short of this k degree.

Figure 8: Characteristics of Vertex-Vertex

Figure 9: Characteristics of Edge-Vertex

Proposition 6. An arbitrary maximum degree vertex v (of H), of degree 2k, is an edge vertex, if
and only if the following property holds in the subgraph induced on its open neighbourhood.

(i) Its neighbours can be partitioned into 2 maximal cliques of exactly k vertices each. Each
of these cliques consist of one vertex vertex and k − 1 edge vertices.

Proof. The statement follows from an inspection of Figure 9.

In 4-regular candidate total graphs (total graphs of cycles), each vertex satisfies the conditions
of both the above propositions. That is because the two parts of any valid partition are isomorphic
to each other.

Theorem 3.2. Given any input (candidate total) graph H , if it is indeed a total graph then the
graph H ′ is a total graph where H ′ is obtained from H by eliminating a vertex with maximum
degree (satisfying the criteria of Proposition 5) and all its edge neighbours (edge vertices).

Proof. Let v be the vertex satisfying Proposition 5. If the given input graph H is the total graph
of some graph (say G), then removing v, along with its edge neighbours will effectively remove
the vertex vertex v and edge vertices incident on v. This effectively eliminates the vertex and the
incident edges from the inverse total graph G, converting it into G′. Clearly, H ′ = T (G′).
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Note: Even if the input graph is not total, it can satisfy the criteria of Proposition 5 (and/or
Proposition 6) in some iteration(s), but eventually, the condition(s) will be violated (see Algo-
rithm 4 and its correctness proof for more details).
Algorithm 2: Algorithmic version of Proposition 5
Input: Consider a maximum degree vertex vertex x of a candidate total graph H
Output: Classification of neighbours of x into vertex neighbours (vertex vertices) and edge
neighbours (edge vertices)

(i) x has a neighbour with degree less than dH(x) (since H is not a total graph of a complete
graph/cycle graph).

(ii) Consider a neighbour of x, y such that dH(y) < dH(x) but there is no vertex z in H such
that dH(y) < dH(z) < dH(x). In other words, consider a neighbour of x having second
highest degree in H . Classify such a y as an edge vertex (from Proposition 2).

(iii) Identify a common neighbour of x and y (say z) where dH(y) = dH (z)+dH (x)
2 . Classify z as

a vertex vertex (from Proposition 2).

(iv) Find all common neighbours of x and y (except z) and classify them as edge vertices (this
is because y is a part of a clique containing k vertices and x is adjacent to all the vertices of
this clique).

(v) Classify remaining vertices of the neighbourhood of x as vertex vertices.

Theorem 3.3. If G is not a complete graph and H = T (G) then Algorithm 3 correctly identifies
a vertex vertex of maximum degree.

Proof. Algorithm 3: Find Max Vertex Vertex.
Input: The input graph H
Output: v ∈ V (H) (where v is maximum degree vertex vertex)
The input graph has a partition of its vertex set into vertex vertices and edge vertices.

(i) We find a maximal triangle of maximum degree vertices if one exists (Proposition 3). From
this triangle, we identify one vertex which satisfies Proposition 5 and return such vertex as
maximum degree vertex vertex v.

(ii) If there is no triangle of maximum degree vertices, then it is guaranteed that any vertex of
maximum degree, say v, is a vertex vertex by Proposition 2 and Corollary 3.1. Verify if it
is indeed a vertex vertex using the Proposition 5 and return v.

As discussed earlier, for the maximum degree vertex vertex v only two cases are possible:
1) v is a part of a maximum degree triangle (where all 3 vertices are having maximum degrees-
Proposition 3) or 2) v is a part of a triangle (where degrees in arithmetic progression- Proposi-
tion 2). Both cases are considered in Algorithm 3 and the identified vertex v is further verified
with respect to structural properties with the help of Proposition 5.

In H , for the maximum degree vertex vertex (satisfying the conditions of Proposition 5), partition
its neighbours into vertex vertices and edge vertices. We are left with the (candidate) total graph
of the graph with one vertex deleted i.e. H ′. Hence by recursing on the smaller graph, we can
obtain the partition or conclude that one does not exist if at some iteration there is a maximum
degree vertex violating both Proposition 5 and Proposition 6. We thus have an algorithm which
starts with a candidate total graph of a non-complete graph and decides whether it is indeed a
total graph by recursing on the smaller graph or recurse to the case of complete graph.

Algorithm 4: Inverse Total Graph.
Input: The input graph H
Output: The inverse total graph G (where T (G) = H) if the input graph H is total. Else conclude
that the input graph H is not a total graph.
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(i) Check if the given graph is the total graph of a complete graph using Algorithm 1. If so
augument the vertices of that complete subgraph to the vertices obtained in earlier iterations
and return.

(ii) Else consider maximal triangles containing three vertices of maximum degree using Propo-
sition 3. If a such a triangle exists then find a maximal clique containing all these three
vertices. Some vertex in this clique must be a maximum degree vertex vertex. Identify such
a vertex x using Proposition 5. In the process of examining these vertices, if any of them
violates both Propositions 5 and 6 or no such x exists, conclude that the input graph is not
a total graph.

(iii) If no triangle of maximum degree vertices were found in step 2 then find a vertex x of
maximum degree involved in a triangle satisfying Proposition 2. Check that x satisfies
Proposition 5 and if not, conclude that the input graph is not a total graph.

(iv) If such an x was found in step 2 or 3, then partition its neighbours into vertex vertices and
edge vertices by the algorithmic version of Proposition 5.

(v) Add x to the vertex set of the inverse total graph and repeat the steps with the graph obtained
by deleting x and its edge neighbours.

(vi) Return the set of vertices (and the induced subgraph on them) accumulated in Step 5 over
all the iterations.

Correctness Proof:
Part 1: The algorithm 4 correctly identifies the non-total input graph.
Proof: In the case of non-total graph, lets say, in some iteration i, a vertex x is the maximum
degree vertex.

(i) If dH(x) is odd then the input graph is not a total graph. This case is handled by step 2 and
3 of the algorithm (since both the steps are using Proposition 5 and Proposition 6 where
whether the maximum degree is even or not is checked first).

(ii) If dH(x) is even then, there are two cases possible:a) The candidate graph may mimic as a
total graph for the iteration i and in this case, after obtaining valid partition, the algorithm
will be executed for the next j iterations. b) After i + j iterations (where j ≥ 0), lets say
the (new) maximum degree vertex is y (dH(y) is even and y = x if j = 0). Since the input
graph is not total, it is guaranteed that valid partition with respect to vertex y is not possible
and hence structural conditions of Proposition 5 and/or Proposition 6 will be violated and
the algorithm correctly handles this case too (in steps 2 and 3).

Part 2: The algorithm 4 correctly identifies the total (input) graph.
The algorithm’s invariant is based on Proposition 3.2 (step 5). All the steps are correct because
of correctness of Algorithm 1 (step 1), algorithmic version of Proposition 5- Algorithm 2 (step
4), Proposition 3 (step 2), Proposition 2(step 3), Proposition 5 (steps 2 − 3), and Proposition 6
(step 2).

An example of the application of the algorithm
Consider a candidate input graph as shown in figure 10. We will classify vertices into vertex
vertices (to be highlighted by red colour) and edge vertices (to be highlighted by green colour).
In the first step, the maximum degree vertex B is identified as vertex vertex. Neighbours of B are
classified as per the algorithmic version of Proposition 5. E is one of the neighbour of B having
second highest degree in H and hence, we classify it as an edge-vertex. A satisfies the criteria
of Proposition 2, so we classify it as a vertex vertex. F and I are common neighbours (except
A) of B and E. Hence, we classify them as edge vertices (see Figure 11. Remaining neighbours
of B i.e. C and D are classified as vertex vertices. B is removed along with its edge neighbours
(neighbouring edge vertices: E, F and I). The modified graph H ′ is shown in Figure 12. C has
the highest degree in H ′ and it is already classified as vertex vertex. H is one of the neighbour of
C having second highest degree in H ′ and hence, we classify it as an edge-vertex. G is common
neighbour H and C (except A) and hence, we classify it as edge vertex. All the vertices of H are
correctly partitioned and hence, we stop and conclude that the candidate input graph is a total
graph.
Runtime analysis of Algorithm 3:
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Figure 10: Input Graph and Classification of vertices A, B and E

Figure 11: Classification of the neighbourhood of B into edge vertices and vertex vertices

Figure 12: Classification of the neighbourhood of C into edge vertices and vertex vertices
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Assume input graph is G′(V ′, E′) and the representation of G′ is adjacency list representation.
Pre-processing:
Find the degrees of all the vertices of the graph in O(|E′| + |V ′|) and sort all the vertices in
non-increasing order of their degrees in O(|V ′|log|V ′|).

Note: In each iteration, we identify exactly one vertex vertex and hence after |V | iterations,
all the vertex vertex (and hence the inverse total graph) will be found.

(i) Step 1: Equivalent to complexity of Algorithm 1: O(|E′|)

(ii) Step 2: Check for Proposition 4, O(1). Proposition 6, O(2k) for identification of neigh-
bours and O(|k2|) for checking condition 2 of Proposition 6. Same amount of time is
required for checking conditions of Theorem 3.2. At most p times check for Propositions 6
and Theorem 3.2 (where p is the size of the clique containing maximum degree vertices).

Total complexity of this step : O(|V | ∗ |E|) +O(|E′| − |E|)
Note: After each iteration, a maximum degree vertex vertex is removed along with its edge
vertex neighbours and hence |E′| − |E| edges will be considered exactly once over all
iterations in the worst case.

(iii) Step 3 and 4: We can use algorithmic version of Proposition 6 for identification of all
vertex vertex and edge vertex neighbours of v and also for partitioning, which will take
O(|V | ∗ |E|) +O(|E′| − |E|) time in total (similar to the previous step) Verify Proposition
3 in O(1) after getting the required partition.

(iv) Step 5: Repeat steps 2, 3, 4 and 5 for O(|V |) times. Already considered.

(v) Step 6: O(|V |) time.

After each iteration, for each deleted vertex w, the degrees of neighbours of w will be decre-
mented by 1. After each decrement in the degree value, in order to maintain the sorted list of
degrees, the vertex degree which is decremented will be compared with the immediate next de-
gree (in the sorted list) and if required a swap will be done. In total, |E′| edges will be removed
and hence, O(|E′|) operations are required for re-computation of degrees and maintaining the
sorted list of degrees.

The complexity of Algorithm 3 is: O(|V | ∗ |E|) since O(|V | ∗ |E|) is the dominant term.

4 Comparing with the existing characterisation

Behzad’s characterisation uses a similar type of terminology with respect to vertices. In his
work, vertex vertices are called special vertices and edge vertices are called non-special vertices.

The first step in Behzad’s approach is consideration of a non special vertex v and classify all
the vertices of the graph in {i} where i = 0, 1, 2, ...n denote the distance. i.e. vertex u will be in
class i if and only if distance between v and u is i.

The core idea behind Behzad’s algorithm is to identify special vertices for each class {i}
where i = 0, 1, 2, . . . n based on the following key observations [12]:

• With respect to a non special vertex v, each nonspecial vertex of graph in {i} is adjacent
with exactly two special vertices of graph both of which are in {i} or one in {i} and the
other in {i+ 1}.

• Every {i} (where 1 ≤ i ≤ (n− 1)) contains both special and non-special vertices of graph
while the class {n} can not solely contain some non special vertices.

• Each nonspecial element in i for i ≥ 1 is adjacent with at least one nonspecial element in
i − 1 and each special element in i for i ≥ 2 is adjacent to at least one special element in
i− 1.

Assume that we already have all the classes {i} with respect to a non special vertex v. Let
S denotes the complete set of special vertices and N denotes the complete set of non-special
vertices. The objective is to compute So, S1, . . .Sn where Si denotes a set of special vertices
corresponding to class {i}.
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Clearly, S0 = ϕ and N0 = {v}. From the structure of the total graph, we can say that v
is adjacent to exactly two special vertices, say u1 and v1 and hence S1 = {u1, v1} and N1 =
{1} − S1. Since each non-special element of {2} is adjacent to at least one non-special element
of {1}, we can conclude that N1 ̸= ϕ.

Let w1 ∈ N1. w1 is adjacent with one of u1 and v1, say u1 and a special element say u2 which
is in {2}. Since there is a unique special vertex u2 which is adjacent with both w1 and u1, u2
can be uniquely determined. By repeating the same argument for all the elements of N1, we can
obtain a set S2.

Using above mentioned procedure we can compute S3, S4 . . .Sn (Separation of special and
non-special elements of {i}). S = S0 ∪ S1 ∪ . . . Sn. The induced subgraph on S is the original
graph of the given total graph.

The complexity of Behzad’s Algorithm depends upon the initial guess about v(a non special
vertex). If the initial guess is correct then one can apply BFS in order to efficiently compute
classes {i} and then based on distance related observations, one can compute S.The time com-
plexity of BFS is O(|V ′|+ |E′|). In at most |V ′| − |V | iterations, all the special vertices will be
discovered. Notice that, |V ′| − |V | = |E| where |E| denotes total number of edges in the inverse
total graph.

In each iteration, O(|V ′|) comparisons are required in order to identify a special vertex based
on distances and common neighbour criteria (assuming adjacency matrix representation of the
graph). So total time complexity is O(|V ′|+|E′|)+ O(|V ′|×|E|) and hence the overall complexity
is O(|V ′| × |E|).

As discussed earlier, the complexity of our proposed algorithm is is O(|V | × |E|) which is
better than Behzad’s approach.

Further, as compared to the Behzad’s characterisation, our characterisation is simpler due to
following reasons:

• Behzad’s approach only provides guidelines for the selection of the very first vertex v as a
non-special vertex and u1 and v1 as special vertices. The algorithm vaguely mentions about
suitable non-special vertex v and special vertices (u1 and v1). In the case of wrong choice
of v, multiple calls of the Behzad’s algorithm are required in order to correctly identify the
inverse total graph or to declare that the graph is not a total graph of any simple graph. The
paper [12] itself mentions that the procedure for determining whether the given graph is
total or not is long. The approach also does not discuss ways to eliminate possibilities for
u1 and v1. This is mainly due to missing characterisation for a special as well as non-special
vertex.

• We have provided characterisations for a maximum degree vertex vertex (special vertices)
and a maximum degree edge vertex (non special vertices), using which it is clear what is to
be done in each step precisely. There is no ambiguity in our proposed algorithm.

• Behzad’s algorithm does not consider cases where the given graph is a total graph of a cycle
graph or a complete graph whereas our approach considers those cases too.

5 Conclusions & Future Directions

We have proved properties of the vertex degrees of total graphs. We have developed a precise
characterisation of the structure of the neighbourhoods of maximum degree vertices of the total
graph of any graph. Combining these results we have designed an efficient iterative algorithm
to compute the inverse total graph of a candidate total graph, or report that the graph is not a
total graph. We also present a direct construction for the total graphs of complete graphs. One
interesting direction of future research is to see if a given n and m pair admits a connected
unique total graph if any. One can also look at minimum number of dynamic graph operations
(adding/deleting vertices and edges or moving edges around the graph) to transform a non-total
graph into a total graph.
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