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Abstract This paper presents the study of DNA codes over the chain ring R = F4 + vF4
with v? = 0 and mixed alphabet IF;R. First, we characterize skew cyclic codes over these rings
and study reversible and complement conditions to obtain the DNA codes. Then, we use a Gray
map to get DNA strings corresponding to the elements of R and F4R, respectively. Finally, we
provide some examples based on the results established in the preceding sections.

1 Introduction

In 1994, Adleman performed the first successful experiment to solve a computationally difficult
problem using DNA molecules [2]. Since then, due to the uses of DNA molecules in parallel
computing, researchers have found it to be one of the most compelling methods to tackle compu-
tationally challenging problems. Due to DNA molecules’ high density and long-term durability,
DNA data storage is a promising medium for storing data. It uses sophisticated processes and
specific physical conditioning to perform such operations, which makes it prone to errors. Some
common errors that occur in DNA computing are the long run length of an oligonucleotide, un-
desirable hybridization, common prefix codewords, and others. To overcome such errors, some
DNA constraints, such as no higher run-length of bases, balanced GC-content, and Hamming
distance, are applied in finding DNA codes. Here, we illustrate algebraic coding schemes to find
error-correcting code in the practical implementation of algorithms in the different domains of
DNA computing. Mathematically, a DNA code of length n is a set of n-length strings over the
alphabets {A, T, G, C}.

Interestingly, for the last two decades, algebraic methods have been widely used to con-
struct DNA codes compared to other methods, such as the greedy approach and the lexico-
graphic method. Towards this, researchers ideally consider the algebraic structures (rings) of
characteristic 2 or 4. On the other hand, being rich algebraic structures, cyclic codes are exten-
sively examined for reversible and DNA code construction over some finite commutative rings
[1, 3, 8, 17, 18]. Besides, a polynomial ring F,[z] is a unique factorization domain( UFD) that
provides limited polynomials for code construction. However, in the case of the non-unique
factorization domain, being many factorizations of a polynomial, we have more generating poly-
nomials. Hence, we may have a high chance of getting codes with better parameters. Here, we
recall a few initial works on the constructions of skew-cyclic codes (non-UFD) [5, 6, 7]. More
recently, some works have been presented on the construction of quantum codes using skew-
cyclic and generalized skew-cyclic codes [16, 20, 21]. The study by Dinh et al. [8] pertains to
the study of DNA encoding via the utilization of cyclic codes over a non-chain ring and a mixed
alphabet. Notably, the examination of classical codes or DNA codes over chain rings has yet to
undergo extensive exploration. The present study analyzes DNA codes using skew cyclic codes
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over a chain ring and mixed alphabets (ring). The work of this paper is arranged as follows:
Section 2 contains basic definitions and results related to the study. In Section 3, we give the
structure of skew cyclic codes and find reversibility conditions in terms of their generating poly-
nomials. Section 4 studies the reversible skew cyclic codes over F4R while the complementary
condition and DNA codes over 4 and [F4R are studied in Section 5. Section 6 concludes the
work. Let Fy = Fp[w]/{w? + w + 1) be the Galois field of order 4. Suppose R := Fy + vFy
where v?> = 0, then any element v € R can be uniquely represented as v = 7| + rv where
r1,rp € Fy. Also, v is a unit if and only if r; is a unit. Moreover, R has unique maximal ideal
{2,v). Thus, R is a finite commutative local ring with characteristic 2 and order 16. Now, we
define two sets F4R = {(s,t) : s € F4,t € R} and F}R™ = {(r,s) : r € F}, s € R™}. The set
F}R™ is not an R-module under the standard multiplication. To make F}R™ an R-module, we
define a projection map I' : R — F4 by v + rv — 7| for all v € R. Thus, we can define a
multiplication
#: R xFYR™ — FyR™
by
¥ (Sa t) = (F(T)Sa Tt)v

where s = (sg, s1,...,5,—1) € Fy and t = (to,t1,...,tm_1) € R™. It can be easily verified that
the set F;R™ is an R-module under componentwise sum and the multiplication ‘s’

Lett =7 + v € Rand ® : R — R be a map defined by vt —> 77 + r3v. Then © is an
automorphism over R of order 2. We represent the set of automorphisms of R by Aut(R) and
order of ® by o(0®).

Definition 1.1. Let ® € Aut(R). Then the skew polynomial ring over R with respect to @ is the
set
R[3:0] ={bo+ b3+ - +bi" | b;eR,Vi=0,1,....0

endowed with addition as the usual addition of polynomials, and multiplication of polynomials
is defined under the rule (b;3)(b;3) = b;®(b;)3°.

From the multiplication of skew polynomials, it is easy to verify that ring R[3; ®] is noncom-
mutative unless © is the identity automorphism.

Consider a linear code € of length n over R. This code is essentially an R-submodule of R";
its elements are called codewords. The Hamming weight of an element 9, denoted by wg (), is
defined as wy (0)=| {i : 9; # 0} | and Hamming distance d;(9,0") between any two elements
0 = (09,01,...0,) and = (02),011, . D'n) in € is defined as

dy(®,0) =wg(d=0).

Also, the minimum Hamming distance of the code €, denoted as dg (€), is given by the smallest
Hamming distance among all pairs of distinct codewords in €. It has been ascertained that the
concept of edit distance holds significant utility within the field of bioinformatics. This metric
finds relevance in gauging the similarity between two strings. When considering a pair of strings
denoted as 3; and 3, the edit distance e(31, 32) is precisely characterized as the minimum count
of operations, encompassing insertions, deletions, or substitutions, necessary to transform 3, into
31. For example, edit distance between 3; = “TTATTATTA” and 3, = “ATTATTATT” is 2
whereas Hamming distance of 3; and 3, is 6.

Now, we define a Gray map ® : R — F? as

®(ag + arv) = (ag, ao + ay), (1.1)

where a; € F4 for i = 0, 1. Here, the function @ is an Fy-linear distance preserving map, and
this map is extendable component-wise to R™. Further, we map A, T, G and C to 0, 1, w? and
w, respectively. Furthermore, to find the codons corresponding to the elements of FylF4[v]/{v?),
we define a Gray map @' from F4F4[v]/{v?) to F3 by

®'(a, a9 + ajv) = (a,ap,a0 + ay), where a, ag,a; € Fy.

For a cyclic code to have the property of reversibility over [y, it is necessary that the corre-
sponding generator polynomial exhibit self-reciprocal characteristics.
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0 AA v AT

WU AC wv AG

1 TT v+ 1 TA
wo+1 TG w?v+1 TC
w CC V4w CG
wo4+w CA wv+w CT
w? GG v+ w? GC
wo+w? GT w>v+w? GA

Table 1. Codons correspondence to ring(R) elements using map ®

Definition 1.2. Let f(3) = fo + f13 + ... + fm3™ be a polynomial in F4[3, §]. Then polynomial
f(3) is said to palindromic and #-palindromic if for each 7 in {1,2,...,m}, we have f; = f,,_;
and 0(f;) = fm—i, respectively.

Lemma 1.3. (i) Forany a = (ag + a1v) € R, we have
D(ap + a1v)" = ®[(ap + a1) + a1v], where ag, a; € Fy.
(ii) ®(ag+a1)” = Plag)” + P(a1)", where ag, a; € Fa.

Proof. Using the definition of the Gray map over R, we have the following statements.

(1) Leta = (ag + ajv) € R, then

®(ag + a1v)” = (ag, a0 +ay)"
= (ag + ai, ap)

=®P[(ap + a1) + a1v].

(i1) The proof is similar to the above part.

2 Reversible skew cyclic code over R

This section delves into the structure of skew cyclic codes over the ring R. Initially, we establish
a necessary and sufficient condition that characterises the reversibility of the codes. Towards
this, we begin with the skew cyclic code of length m.

Definition 2.1. A non-empty subset € of R is said to be skew cyclic code of length m if
(i) Cisaleft R submodule of module R™;

(1) 7 : R™ — R™ skew cyclic shift operator, then € is closed under 7, i.e., for ¢ =
(C(),Cl7 R 7Cm,l) el
= 7(c) = (O(cm-1),0(co),...,0(cm—2)) € €.

Similar to the commutative case, here also we can identify each element (ro, 1,

ooy Tm—1) € R™ to a skew polynomial 79+713+- - -+7,,_13™ ! in the quotient R[3; ®]/G™—1).
Since the skew polynomial ring R[3; ®] is noncommutative, {3 — 1) need not be a two-sided
ideal. But Jitman et al. [12] have shown that if m is a multiple of o(®), then (3 — 1) forms the
center of R[3, ®], hence a two-sided ideal. In this case, the quotient R[3; ®]/(3™ — 1) is a ring
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(0,0) AAA
(w,0) CAA
0,1) ATT
(w, 1) CTT
(0, w) ACC
(w,w) CCC
(0,w?) AGG
(w, w?) CGG
(0,v) AAT
(w,v) CAT

(0,v+1) ATA
( ) CTA
(0,v +w) ACG
) CCG

) AGC

(w,v +w?)  CGC
(0, wv) AAC
(w, wv) CAC
(0,wv + 1) ATG

(w,wv+1) CTG
(0,wv+w) ACA
(w,wv+w)  CCA

) AGT
(w,wv +w?) CGT
(0, w?v) AAG
(w, w?v) CAG

(0,w?v+1)  ATC
(w,w?v+1) CTC
(0,w?v +w) ACT
(w,w?v +w) CCT

(0,w?v +w?) AGA
) CGA

(L,v+1)
(w2 v+1)
(I,v+w)
(w? v +w)
(1,v + w?)
(w?, v+ w?)
(1,wv)
(w?, wv)
(I,wv + 1)
(w? wo + 1)
(1, wv + w)
(w2, wv + w)
(1,wv + w?)
(w?
(1,w?)
(w?, w?v)
(1,w?v + 1)
(w? w?v + 1)
(1,w?v 4+ w)

(w?, w?v +w)

(1,w?v + w?)

(w?, w?v + w?)

, wv + w?)

TAA
GAA
TTT
GTT
TCC
GCC
TGG
GGG
TAT

GAT
TTA

GTA
TCG
GCG
TGC
GGC
TAC

GAC
TTG
GTG
TCA
GCA
TGT
GGT
TAG
GAG
TTC

GTC
TCT

GCT
TGA
GGA

Table 2. Codons correspondence to ring(F4 R) elements using map ¢’
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and a linear code € of length m over R is defined as left ideal of R[3; ®]/(3™ — 1). However, if
m is not a multiple of o(®), then the quotient R[3; ®]/(3"™ — 1) is a left R[3; ®]-module with left
multiplication defined by r(3)(¢t(3) + 3™ — 1)) = r(3)t(3) + 3™ — 1), where r(3),t(3) € R[3; ®].
In this case, a skew cyclic code € of length m over R is defined as left submodule of R[3; ®]-
module R[3; ®]/G™ — 1).

In the following theorem, we consider the ring 5[3_(?1 to give the structure of skew cyclic
codes of even length n over the chain ring R.

Theorem 2.2. Let € be a skew cyclic code in g[{% Then the code € can be one of the following

forms:
(i) € ={go(3) +vg1(3)) with deg(g1(3)) < deg(go(3)) and go(3)|-(3" — 1) in F4[3,0].
(ii) € =<{vgi1(3)) with deg(g1(3)) < n and g1(3)|-(3" — 1) in F4[3, 0].

(iii) € ={go(3)+vg1(3), va(3)) withdeg(g1(3)) < deg(a(3)) < deg(go(3)) < nand a(3)|rg0(3)|-(G" —
1) in Fy[3, 0].

where polynomials go(3), 91(3) and a(3) are from F4[3, 6].

Definition 2.3. Given a code € = {gy(3)+vg1(3), va(3))in R[3, ®], we define &, by {q(3)| vq(3) €
¢}. In particular, since a(3)|rg0(3), €, = {a(3))-

Here, we give a result to get the distance of the code € using the above definition in terms of
<,.

Theorem 2.4. Given a code € = {go(3) +vg1(3),va(3)) in R[3, O], we have
dp(€) = dp(€y,).

Proof. Let k(3) = ko(3) + vki(3) € €. Then vk(3) = vko(3). We know that wy (vk(3)) <
wp (k(3)) and v€ is a subcode of € implies w (v€) < wy(€). Since Hamming distance is given
by a vector of minimum weight in the given code, wy (€) < wg(v€). Therefore, wy(€) =
’LUH(Q:U). O

Example 2.5. Consider a code of length n = 8 over R. Then
8 _ 2 2\2 2 .
§—1=06+)GE+DE+w) G +w) G+ DG +w);
and
3 -1=G+w)G+w)’

Now, consider go(3) = 3> + w3 +w and a(3) = 3 + w. Then, we get a skew cyclic code
(3* + w3 +w,v(3 +w)) over R of parameters [16, 13, 2].

For an odd length n, skew cyclic code and cyclic are the same because the order of the
automorphism is relative prime to the length of the code [19]. Thus, we have the following result
for an odd length.

Theorem 2.6. Let € be a skew cyclic code in g[a_(?l of odd length n. Then € = {gy(3),vg1(3)) =

(90(3) +vg1(3)) with g1(3)1r90(3)|-(3" — 1) in Fa[3;0].

Now, with the help of the above structure, we give the following lemmas to check the re-
versibility of skew cyclic code of different lengths.

Lemma 2.7. Let € = {¢(3)) be a skew cyclic code of even length n, where g(3) = 1+ g13+ ...+
Gm—13""" + 3™ is a monic right divisor of (37 — 1) in F4[3, 0] with deg(g(3)) = m is even. Then
code € is reversible iff skew polynomial (3) is 6-palindromic.
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Proof. Let € be a skew cyclic code of even length generated by §-palindromic polynomial g(3) of
even degree m over the ring IF4. Then elements of the generated code are given by Z?:_ol @i3'9(3).
By repetitive use of lemma 1.3, for ¢ = qS(Zf;OI a;3'9(3)) € €, we get

k-1 k-1
(@D iz'g(3))" = ¢ iz "1g3)) e €.
i=0 =0

Where a € Fy and £ = n — m. Since the codeword ¢” belongs to €, the code € is a reversible
code.

Conversely, let € be a reversible code generated by g(3) = 1 +g13+...+gm_13™ "' +3™. Then,
because n — m — 1 is odd, implies that

3 G) =T A 0T L+

n—2

0(gm—1)5" "2 +3" "

Since € is a reversible code,
" 9G] =1+ 0(gm—1)5 + 0(gm—2)5"
+ . 4 0(g)ym 3 e

Further we get deg(g(3) — [3" "™ '9(3)]") < m, which is contradiction to the fact that g(3) is
a minimal degree polynomial in € implies g(3) — [3" ™ '9(3)]" = 0. Comparing coefficients
we get [g; — 0(gm—i)] =0fori =1,...,m —1. g; = 6(gm—i). Thus the polynomial g(3) is
#-palindromic. O
Lemma 2.8. Let € be a skew cyclic code of even length generated by g(3) = 1 + g13 + ... +

Gm—13" "1 + 3™ where g(3)|-(3 — 1) in Fy[3,0] and m is odd. Then the code € is reversible if
and only if skew polynomial ¢(3) is palindromic.

Proof. Let € be a skew cyclic code of even length generated by a palindromic polynomial
g(3) of odd degree m over the ring F4. Then elements of the generated code are given by
Z?;& ;37 g(3). Further, applying the lemma [1.3] and the property of palindromic polynomial,

for ¢ = ¢(3_5 a;379(3)) € €, we get
k—1 k—1
(B aa9(3)" = o( ) 3" g(3) e €.
J=0 J=0

Where o € F4 and £ = n — m. Since the codeword ¢" belongs to €, the code € is a reversible
code.

Conversely, let € be a reversible code generated by g(3) = 1 +¢g13+. ..+ gm_13™"' +3™. Since
n —m — 1 is even, implies that

371,—7n—1g(3) — 371,—7n—1 + glzn—m 4.+ gmflﬁn_z +3n—l.
Also, € is a skew cyclic and reversible code, then [37 ™ !g(3)]" belong to € and we have

P 9G)] = 1+ Gt + Gm—2s” + .o g3 5™

Further, we get deg(g(3) —[3""™"'9(3)]") < m, which contradicts the fact that g(3) is a minimal
degree polynomial in € implies g(3) — [3" ™ '9(3)]" = 0. Hence, by comparing coefficients,
we get [g; — gm—i] = O fori = 0,1,...,m implies g; = gm—;. Thus, the polynomial g(3) is
palindromic. O

The next theorem follows from the above two lemmas where reversible code is given by palin-
dromic and #-palindromic polynomials, depending upon their degrees.

Theorem 2.9. Let € = {go(3),v91(3)> be a skew cyclic code of even length where go(3), g1(3)
and g»(3) right divide (3™ — 1) in Fa[3,0] and deg(gi(3)) is even(odd). Then code € is reversible
if and only if skew polynomials g;(3), i = 0, 1 is 6-palindromic (palindromic).

Example 2.10. Consider the code ¢ = {gy(3), vg1(3)> Where go(3) = 3° +13* +123> + 1232 +t3+1

and g|(3) = 3° +t3> + t3 + 1. Then € is a skew cyclic of length n = 12 over R. As polynomials
90(3) and g1 (3) are palindromic, implies that the code € is reversible.
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Length 9G); €=<9(3),v9(G)) Gray image
10 P+t twrd twit+3+1 20,40 4

24,414 4

24,410 6

12 3 +wi Wi+ 1
12 3w’ +wit P w1

36,42, 4
40,4% 4
48,4% 4

18 3+t twstrwir+3+1

( )

( )

( )

14 3P it e’ 457+ | (28,4146)
( )

20 3wt wp twi? w1 | ( )
( )

24 3+ twr twit s+ 1

Table 3. DNA codes and their Gray image

3 Reversible skew cyclic code over F,R
This section extends our study to the mixed alphabet F4R. Here, we begin with the following
definition.

Definition 3.1. Let ® € Aut(R). Then a non-empty subset € of [ R™ is said to be skew cyclic
code of length n + m if
(¢) the set €1is a left R submodule of module F}R™;

(i) there exists a skew cyclic shift operator Y : F}R™ — [FyR"™ such that the set € is closed
under Y, i.e., for any codeword (s, t) = (so, s1,. - -,
Sp—1 | to,t1,...,tm—1) € €, we have

Y((s,t)) =(O(sn-1), O(s0), - -, O(3n-2) | Otn—1), O(lo), - .., O(tm—2)) €€,

where s e )} andt € R™.

Let Rinm) = Z“P;?% X Z;,L?’fﬁ where ® € Aut(R). Here, we can associate each element

(s,t) € F}R™ by a polynomial (s(3),t(3)) € R(,,m) under the correspondence (s,t)

(5(3),t(3)), where s(3) = so+ s13 + -+ + s,_13™ ' € <§‘L‘E’]1> and t(3) = to +t13+--- +
tm_13™ ' € <7:[3,@i]> are used for s = (sg, s1,...,8,—1) € Fy and t = (to,t1,...,tm—1) € R™,
respectively. Moreover, R, ) is a left R[3; @]-module with respect to left multiplication

defined by 7(3) * (s3).1(3)) = (T(r(3))s(3),7(3)t3)) for s(3) € 2091 4(5) e 2Ol ang
r(3) =ro+ri3+---+re3t € R[3;0], where ['(r(3)) = T(ro) + T(r1)3 + - - - + T(rg)3%. Since T’

is a projection and <7:"[”§i@i]> is left R[3; ®]-module, thus the multiplication is well defined.

From the above discussion, the following lemma holds.

Lemma 3.2. Let € be a linear code of length (n, m) over F}R™. Then € is a skew cyclic code if
and only if € is a left R[3; ©]-submodule of R (, )-

LetIL, : FyR™ — F} and I1,, : F}R™ — R™ be canonical projection maps defined by
I, (s,t) = s and I1,,(s,t) = ¢, respectively. Since these maps are linear, for any F,R™ linear
code € of length (n, m), its canonical projection I, (€) = &,, and I1,,,(€) = &,, are linear codes
over F4 and R of length n and m, respectively. Moreover, € of block length (n, m) over F4R is
said to be separable code if and only if € = &, x &,,.

Let c = (s,t) = (80,8155 8n_1,t0,t1,---,tm_1) € € then reversible, complement and
reversible-complement of c is defined by ¢” = (s,,—1, Sn—2, .- ., 51, So
stm—1,tm—2,...,t1,t0), c® = (8§, 57, ..., 85|, t5,t5,...,t5, ;) and ¢ = (s&_,,
5 s L85, 86,10 1,8 5., 15, 15), respectively.

Definition 3.3. Let € be a [F4R-linear code of block length (n, m). Then € is said to be reversible
if forany ¢ = (s,t) € €, ¢” = (s",t") € €, and complement if for any c € €, c® = (s°,t°) € €
and reversible-complement if for any ¢ = (s, t) € €, ¢"® = (s"%,t"¢) € €.
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Now, we give the structure of separable skew cyclic codes over the ring F4R.

Theorem 3.4. Let € = €, x €, be a linear code of length (n, m) over F4R. The image of € is
a skew cyclic code under automorphism © if and only if €,, is a cyclic code of length n over 4
and €, is a skew cyclic code of length m over R.

The following theorem gives the structure of cyclic codes of length n and their dimension
over F4. The proof follows the similar approach given in [13].

Theorem 3.5. Let €,, be a cyclic code of length n over the field F4. Then there exists a unique
monic polynomial f(3) € F4[3]/G™ — 1) such that €, = {f(3)) where f(3)|(3™ — 1). The
dimension of the code € is n — deg(f(3)).

In our next attempt, we provide the condition for a cyclic code to be reversible and a reversible-
complement code over IF4. Part of the proof is given in [14] and reverse-complement condition
is straightforward by the codons correspondence.

Theorem 3.6. Let €,, be a cyclic code of length n over field 4 generated by the polynomial
f(3). Then the code &, is reversible if and only if polynomial f(3) is a self-reciprocal polyno-
mial. Furthermore, €, is a reversible-complement code if and only if f(3) is a self-reciprocal
polynomial and 37_11 e C,.

Now, we give the structure of additive DNA codes. Here, we study separable codes to find
the DNA codes.

Theorem 3.7. Let € = &, x €, be a linear code of block length (n, m) over F4R. Then € is a
DNA codes if and only if €,, and €,,, are DNA codes over F4 and R, respectively.



Length f(3) 9(3); €={9(3),v9()) Gray image
(13,12) | 37 + w3® + w?3 + w3t + w3 + W32 +ws + 1 3 twyp +wit+ P wi? + 1 (37,419,6)
(15, 14) W w+ Wi+ 3 +wt +w?P +wp +w? (43,47, 4)
(15,14) 3+ w3+ W twi w1 3w WP it wi w1 | (43,472)6)
(207 14) 34 +33 +32 +w3 +w2 35 +w234 +w233 +w3 +w2 (48 433 4)
(17,20) Frw+ w1 38+ Wit + 5 + Wi twy + WP (57,44, 4)
(17,24) R SR S w3 4 w? (65,44, 4)
(43, 16) 3w 4+t rwit + 1 IR R SR S e S (75,4%,5)
(43,18) R S S SR | 3w WP Fw Fwtw | (79,4%)5)
(30,28) 3 +wp” + w4 w? P tw it o i +w (86,4, 4)
(35,30) 3 twst twi iy +1 30+ w3 +wi +w? (95,478 4)
(17,42) R SR S R PP+t twi +wt + 1 (101,4% 4)
(35742) 35 + w34 + w232 + w23 + 1 36 + w235 + w234 + w53 + w32 + 1 (1197410274)

Table 4. Additive codes and their Gray image

SOP0J JI[OKD MIYS SATIIPPE ISAO SIPOd YN UQ

LoY1
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Proof. Suppose € is a DNA code, then for any ¢ = (s,t) = (sg, 51, .- s Sn—1,
to,t, . s tm—1) € € we get €™ = (s5_,,5° _,,...,87,80,t5, _1.t0 o, ... 11, t5) € €. Now

c"¢ e Cimplies s" € €, and t"¢ € &,,,. Therefore &,, and &,,, are DNA codes.

Conversely, suppose €,, and &,,, are DNA codes over 4 and R respectively. Then for s € &,
and t € €, we get s € €, and t"° € &€,,. Now for c = (s,t) € €, x €, = € we have
(s",t"¢) € €, x &€, = €. Thus, € is a DNA code. O

4 DNA codes over R and F, R

In this section, we obtain the complementary condition for the reversible codes. A code is a
DNA code if it satisfies both reversible and complementary conditions. In the following lemma,
we establish a relation between the code alphabets and their complement using considered Gray
map (1.1).

Lemma 4.1. For the given skew cyclic codes in Section 2 and 3, the following conditions hold:
(1) Foranyre R, r®=r+ 1.
(2) Foranyri,m e R, r{ +r5 =(r1 +1r)°+ L
(3) For (a,7) e B4R, (a,7)¢ = (a,7) + (1, 1).

Remark 4.2. We identify i, (3) by the polynomial 1 4+ 3 + 3 + - + 3".

Theorem 4.3. Given a polynomial a(3) of degree n in R[3], we have

a(3)" =a(3)" +1in(3)-

Proof: Leta(3) = ag+ai3+...+a, 13"~ +3" be a polynomial of degree n in R[3] where
ag is a non-zero element of R. Then

a3)™ =ag +a%_i3+ ... +af3" " +af"
=ap + 1+ (an_1 + D)3+ (ano+ 13> +... +
(ar +1)3" " + (a0 + 1)5"
=in(3) +a(3)"
The following corollaries are obvious from the above theorems.

Corollary 4.4. Let € be a cyclic code of length m over R. If code € is reversible and all-ones
vector ( that is, the value of each entry is 1) is in &, then € is a DNA code.

Corollary 4.5. Let € be an additive code of block length (n,m) over F4R. If code € is a re-
versible and all-ones vector is in €, then € is a DNA code.



Length 1) 96): €={g(3),v9(3)> | Grayimage
(17,10) e e Wl PAst el twit s+l | (37,47,4)
(13,12) | 3" + w3 + w5’ + w3t +wi’ + 07 +ws +1 | 57 +wi’ +w3t + 0’ Fwit + 1| (37,4°,6)
(15,12) W twit w1 3 +wi +u?? +1 (39,425 4)
(15,14) 3+ wp twst +wp’ +wp’ + 1 APt P 2 | (43,426
(20,12) 3 +wt + Wy W’ twi ] P e w41 (44,478 4)
(21,14) 3w+t tws 1 AP AWt P 2 | (49,4%,5)
(17,18) FAE A A A R 3+ twit w5+ (53,4%,4)
(20,20) 3 twst + 0 + Wy w1 3wt rwst +wi w1 | (60,4, 4)
(20,24) 3wt Wi Wi w1 0w rwgt sl (68,4% 4)

Table 5. DNA codes from F,R—skew cyclic codes

SOP0J JI[OKD MIYS SATIIPPE ISAO SIPOd YN UQ

6911
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5 Conclusion

In this work, we have studied the reversible and the DNA codes over a chain-ring R = Fy[v]/{v?)
and F4R. First, we gave a table for a string of oligonucleotides corresponding to the elements of
the respective structure using a Gray map. Then, we have discussed the structure of reversible
and DNA codes over these structures. Interestingly, we found some better DNA codes using this
method.
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