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Abstract This paper presents the study of DNA codes over the chain ring R “ F4 ` vF4

with v2 “ 0 and mixed alphabet F4R. First, we characterize skew cyclic codes over these rings

and study reversible and complement conditions to obtain the DNA codes. Then, we use a Gray

map to get DNA strings corresponding to the elements of R and F4R, respectively. Finally, we

provide some examples based on the results established in the preceding sections.

1 Introduction

In 1994, Adleman performed the first successful experiment to solve a computationally difficult

problem using DNA molecules [2]. Since then, due to the uses of DNA molecules in parallel

computing, researchers have found it to be one of the most compelling methods to tackle compu-

tationally challenging problems. Due to DNA molecules’ high density and long-term durability,

DNA data storage is a promising medium for storing data. It uses sophisticated processes and

specific physical conditioning to perform such operations, which makes it prone to errors. Some

common errors that occur in DNA computing are the long run length of an oligonucleotide, un-

desirable hybridization, common prefix codewords, and others. To overcome such errors, some

DNA constraints, such as no higher run-length of bases, balanced GC-content, and Hamming

distance, are applied in finding DNA codes. Here, we illustrate algebraic coding schemes to find

error-correcting code in the practical implementation of algorithms in the different domains of

DNA computing. Mathematically, a DNA code of length n is a set of n-length strings over the

alphabets tA, T,G,Cu.
Interestingly, for the last two decades, algebraic methods have been widely used to con-

struct DNA codes compared to other methods, such as the greedy approach and the lexico-

graphic method. Towards this, researchers ideally consider the algebraic structures (rings) of

characteristic 2 or 4. On the other hand, being rich algebraic structures, cyclic codes are exten-

sively examined for reversible and DNA code construction over some finite commutative rings

[1, 3, 8, 17, 18]. Besides, a polynomial ring Fqrxs is a unique factorization domain( UFD) that

provides limited polynomials for code construction. However, in the case of the non-unique

factorization domain, being many factorizations of a polynomial, we have more generating poly-

nomials. Hence, we may have a high chance of getting codes with better parameters. Here, we

recall a few initial works on the constructions of skew-cyclic codes (non-UFD) [5, 6, 7]. More

recently, some works have been presented on the construction of quantum codes using skew-

cyclic and generalized skew-cyclic codes [16, 20, 21]. The study by Dinh et al. [8] pertains to

the study of DNA encoding via the utilization of cyclic codes over a non-chain ring and a mixed

alphabet. Notably, the examination of classical codes or DNA codes over chain rings has yet to

undergo extensive exploration. The present study analyzes DNA codes using skew cyclic codes
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over a chain ring and mixed alphabets (ring). The work of this paper is arranged as follows:

Section 2 contains basic definitions and results related to the study. In Section 3, we give the

structure of skew cyclic codes and find reversibility conditions in terms of their generating poly-

nomials. Section 4 studies the reversible skew cyclic codes over F4R while the complementary

condition and DNA codes over F4 and F4R are studied in Section 5. Section 6 concludes the

work. Let F4 “ F2rωs{xω2 ` ω ` 1y be the Galois field of order 4. Suppose R :“ F4 ` vF4

where v2 “ 0, then any element r P R can be uniquely represented as r “ r1 ` r2v where

r1, r2 P F4. Also, r is a unit if and only if r1 is a unit. Moreover, R has unique maximal ideal

x2, vy. Thus, R is a finite commutative local ring with characteristic 2 and order 16. Now, we

define two sets F4R “ tps, tq : s P F4, t P Ru and F
n
4 R

m “ tpr, sq : r P F
n
4 , s P R

mu. The set

F
n
4 R

m is not an R-module under the standard multiplication. To make F
n
4 R

m an R-module, we

define a projection map Γ : R ÝÑ F4 by r1 ` r2v ÞÝÑ r1 for all r P R. Thus, we can define a

multiplication

˚ : Rˆ F
n
4 R

m ÝÑ F
n
4 R

m

by

r ˚ ps, tq “ pΓprqs, rtq,
where s “ ps0, s1, . . . , sn´1q P F

n
4 and t “ pt0, t1, . . . , tm´1q P R

m. It can be easily verified that

the set Fn
4 R

m is an R-module under componentwise sum and the multiplication ‘˚1.
Let r “ r1 ` r2v P R and Θ : R ÝÑ R be a map defined by r ÞÝÑ r2

1 ` r2
2v. Then Θ is an

automorphism over R of order 2. We represent the set of automorphisms of R by AutpRq and

order of Θ by opΘq.
Definition 1.1. Let Θ P AutpRq. Then the skew polynomial ring over R with respect to Θ is the

set

Rrz; Θs “ tb0 ` b1z` ¨ ¨ ¨ ` bℓz
ℓ | bi P R,@i “ 0, 1, . . . , ℓu

endowed with addition as the usual addition of polynomials, and multiplication of polynomials

is defined under the rule pbizqpbjzq “ biΘpbjqz2.

From the multiplication of skew polynomials, it is easy to verify that ring Rrz; Θs is noncom-

mutative unless Θ is the identity automorphism.

Consider a linear code C of length n over R. This code is essentially an R-submodule of Rn;

its elements are called codewords. The Hamming weight of an element d, denoted by wHpdq, is

defined as wHpdq= | ti : di ‰ 0u | and Hamming distance dHpd, d1q between any two elements

d “ pd0, d1, . . . dnq and d
1 “ pd1

0, d
1
1, . . . d

1
nq in C is defined as

dHpd, d1q “ wH pd´ d
1q.

Also, the minimum Hamming distance of the code C, denoted as dH pCq, is given by the smallest

Hamming distance among all pairs of distinct codewords in C. It has been ascertained that the

concept of edit distance holds significant utility within the field of bioinformatics. This metric

finds relevance in gauging the similarity between two strings. When considering a pair of strings

denoted as z1 and z2, the edit distance epz1, z2q is precisely characterized as the minimum count

of operations, encompassing insertions, deletions, or substitutions, necessary to transform z2 into

z1. For example, edit distance between z1 “ “TTATTATTA” and z2 “ “ATTATTATT ” is 2

whereas Hamming distance of z1 and z2 is 6.

Now, we define a Gray map Φ : R ÝÑ F
2
4 as

Φpa0 ` a1vq “ pa0, a0 ` a1q, (1.1)

where ai P F4 for i “ 0, 1. Here, the function Φ is an F4-linear distance preserving map, and

this map is extendable component-wise to R
n. Further, we map A, T , G and C to 0, 1, ω2 and

ω, respectively. Furthermore, to find the codons corresponding to the elements of F4F4rvs{xv2y,
we define a Gray map Φ1 from F4F4rvs{xv2y to F

3
4 by

Φ
1pa, a0 ` a1vq “ pa, a0, a0 ` a1q, where a, a0, a1 P F4.

For a cyclic code to have the property of reversibility over F4, it is necessary that the corre-

sponding generator polynomial exhibit self-reciprocal characteristics.
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0 AA v AT

ωv AC ω2v AG

1 TT v ` 1 TA

ωv ` 1 TG ω2v ` 1 TC

ω CC v ` ω CG

ωv ` ω CA ω2v ` ω CT

ω2 GG v ` ω2 GC

ωv ` ω2 GT ω2v ` ω2 GA

Table 1. Codons correspondence to ring(R) elements using map Φ

Definition 1.2. Let fpzq “ f0 ` f1z` . . .` fmzm be a polynomial in F4rz, θs. Then polynomial

fpzq is said to palindromic and θ-palindromic if for each i in t1, 2, . . . ,mu, we have fi “ fm´i

and θpfiq “ fm´i, respectively.

Lemma 1.3. (i) For any a “ pa0 ` a1vq P R, we have

Φpa0 ` a1vqr “ Φrpa0 ` a1q ` a1vs, where a0, a1 P F4.

(ii) Φpa0 ` a1qr “ Φpa0qr ` Φpa1qr, where a0, a1 P F4.

Proof. Using the definition of the Gray map over R, we have the following statements.

(i) Let a “ pa0 ` a1vq P R, then

Φpa0 ` a1vqr “ pa0, a0 ` a1qr
“ pa0 ` a1, a0q
“ Φrpa0 ` a1q ` a1vs.

(ii) The proof is similar to the above part.

2 Reversible skew cyclic code over R

This section delves into the structure of skew cyclic codes over the ring R. Initially, we establish

a necessary and sufficient condition that characterises the reversibility of the codes. Towards

this, we begin with the skew cyclic code of length m.

Definition 2.1. A non-empty subset C of Rm is said to be skew cyclic code of length m if

piq C is a left R submodule of module R
m;

piiq τ : R
m ÝÑ R

m skew cyclic shift operator, then C is closed under τ , i.e., for c “
pc0, c1, . . . , cm´1q P C

ùñ τpcq “ pΘpcm´1q,Θpc0q, . . . ,Θpcm´2qq P C.

Similar to the commutative case, here also we can identify each element pr0, r1,

. . . , rm´1q P R
m to a skew polynomial r0`r1z`¨ ¨ ¨`rm´1z

m´1 in the quotient Rrz; Θs{xzm´1y.
Since the skew polynomial ring Rrz; Θs is noncommutative, xzm ´ 1y need not be a two-sided

ideal. But Jitman et al. [12] have shown that if m is a multiple of opΘq, then xzm ´ 1y forms the

center of Rrz,Θs, hence a two-sided ideal. In this case, the quotient Rrz; Θs{xzm ´ 1y is a ring



1462 Ashutosh Singh, Ravindra Kumar and Om Prakash˚

p0, 0q AAA p1, 0q TAA

pω, 0q CAA pω2, 0q GAA

p0, 1q ATT p1, 1q TTT

pω, 1q CTT pω2, 1q GTT

p0, ωq ACC p1, ωq TCC

pω, ωq CCC pω2, ωq GCC

p0, ω2q AGG p1, ω2q TGG

pω, ω2q CGG pω2, ω2q GGG

p0, vq AAT p1, vq TAT

pω, vq CAT pω2, vq GAT

p0, v ` 1q ATA p1, v ` 1q TTA

pω, v ` 1q CTA pω2, v ` 1q GTA

p0, v ` ωq ACG p1, v ` ωq TCG

pω, v ` ωq CCG pω2, v ` ωq GCG

p0, v ` ω2q AGC p1, v ` ω2q TGC

pω, v ` ω2q CGC pω2, v ` ω2q GGC

p0, ωvq AAC p1, ωvq TAC

pω, ωvq CAC pω2, ωvq GAC

p0, ωv ` 1q ATG p1, ωv ` 1q TTG

pω, ωv ` 1q CTG pω2, ωv ` 1q GTG

p0, ωv ` ωq ACA p1, ωv ` ωq TCA

pω, ωv ` ωq CCA pω2, ωv ` ωq GCA

p0, ωv ` ω2q AGT p1, ωv ` ω2q TGT

pω, ωv ` ω2q CGT pω2, ωv ` ω2q GGT

p0, ω2vq AAG p1, ω2vq TAG

pω, ω2vq CAG pω2, ω2vq GAG

p0, ω2v ` 1q ATC p1, ω2v ` 1q TTC

pω, ω2v ` 1q CTC pω2, ω2v ` 1q GTC

p0, ω2v ` ωq ACT p1, ω2v ` ωq TCT

pω, ω2v ` ωq CCT pω2, ω2v ` ωq GCT

p0, ω2v ` ω2q AGA p1, ω2v ` ω2q TGA

pω, ω2v ` ω2q CGA pω2, ω2v ` ω2q GGA

Table 2. Codons correspondence to ring(F4R) elements using map φ1
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and a linear code C of length m over R is defined as left ideal of Rrz; Θs{xzm ´ 1y. However, if

m is not a multiple of opΘq, then the quotient Rrz; Θs{xzm´1y is a left Rrz; Θs-module with left

multiplication defined by rpzqptpzq`xzm´1yq “ rpzqtpzq`xzm´1y, where rpzq, tpzq P Rrz; Θs.
In this case, a skew cyclic code C of length m over R is defined as left submodule of Rrz; Θs-
module Rrz; Θs{xzm ´ 1y.

In the following theorem, we consider the ring
Rrz;Θs
xzn´1y to give the structure of skew cyclic

codes of even length n over the chain ring R.

Theorem 2.2. Let C be a skew cyclic code in
Rrz;Θs
xzn´1y . Then the code C can be one of the following

forms:

(i) C “ xg0pzq ` vg1pzqy with degpg1pzqq ă degpg0pzqq and g0pzq|rpzn ´ 1q in F4rz, θs.
(ii) C “ xvg1pzqy with degpg1pzqq ă n and g1pzq|rpzn ´ 1q in F4rz, θs.

(iii) C “ xg0pzq`vg1pzq, vapzqywith degpg1pzqq ă degpapzqq ă degpg0pzqq ă n and apzq|rg0pzq|rpzn´
1q in F4rz, θs.

where polynomials g0pzq, g1pzq and apzq are from F4rz, θs.
Definition 2.3. Given a code C “ xg0pzq`vg1pzq, vapzqy in Rrz,Θs, we define Cv by tqpzq| vqpzq P
Cu. In particular, since apzq|rg0pzq, Cv “ xapzqy.

Here, we give a result to get the distance of the code C using the above definition in terms of

Cv .

Theorem 2.4. Given a code C “ xg0pzq ` vg1pzq, vapzqy in Rrz,Θs, we have

dHpCq “ dHpCvq.
Proof. Let kpzq “ k0pzq ` vk1pzq P C. Then vkpzq “ vk0pzq. We know that wHpvkpzqq ď
wH pkpzqq and vC is a subcode of C implies wH pvCq ď wHpCq. Since Hamming distance is given

by a vector of minimum weight in the given code, wHpCq ď wH pvCq. Therefore, wHpCq “
wH pCvq.
Example 2.5. Consider a code of length n “ 8 over R. Then

z8 ´ 1 “ pz` ω2qpz` 1qpz` ω2q2pz` ωq2pz` 1qpz` ωq;
and

z8 ´ 1 “ pz` ω2q4pz` ωq4.

Now, consider g0pzq “ z2 ` ωz ` ω and apzq “ z ` ω. Then, we get a skew cyclic code

xz2 ` ωz` ω, vpz` ωqy over R of parameters r16, 13, 2s.
For an odd length n, skew cyclic code and cyclic are the same because the order of the

automorphism is relative prime to the length of the code [19]. Thus, we have the following result

for an odd length.

Theorem 2.6. Let C be a skew cyclic code in
Rrz;Θs
xzn´1y of odd length n. Then C “ xg0pzq, vg1pzqy “

xg0pzq ` vg1pzqy with g1pzq|rg0pzq|rpzn ´ 1q in F4rz; θs.
Now, with the help of the above structure, we give the following lemmas to check the re-

versibility of skew cyclic code of different lengths.

Lemma 2.7. Let C “ xgpzqy be a skew cyclic code of even length n, where gpzq “ 1` g1z` . . .`
gm´1z

m´1 ` zm is a monic right divisor of pzn´ 1q in F4rz, θs with degpgpzqq “ m is even. Then

code C is reversible iff skew polynomial gpzq is θ-palindromic.
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Proof. Let C be a skew cyclic code of even length generated by θ-palindromic polynomial gpzq of

even degree m over the ring F4. Then elements of the generated code are given by
řk´1

i“0 αiz
igpzq.

By repetitive use of lemma 1.3, for c “ φpřk´1
i“0 αiz

igpzqq P C, we get

pφp
k´1ÿ
i“0

αiz
igpzqqqr “ φp

k´1ÿ
i“0

αiz
k´i´1gpzqq P C.

Where α P F4 and k “ n ´m. Since the codeword cr belongs to C, the code C is a reversible

code.

Conversely, let C be a reversible code generated by gpzq “ 1`g1z` . . .`gm´1z
m´1` zm. Then,

because n´m´ 1 is odd, implies that

zn´m´1gpzq “zn´m´1 ` θpg1qzn´m ` . . .`
θpgm´1qzn´2 ` zn´1.

Since C is a reversible code,

rzn´m´1gpzqsr “1 ` θpgm´1qz` θpgm´2qz2

` . . .` θpg1qzm´1 ` zm P C.

Further we get degpgpzq ´ rzn´m´1gpzqsrq ă m, which is contradiction to the fact that gpzq is

a minimal degree polynomial in C implies gpzq ´ rzn´m´1gpzqsr “ 0. Comparing coefficients

we get rgi ´ θpgm´iqs “ 0 for i “ 1, . . . ,m ´ 1. gi “ θpgm´iq. Thus the polynomial gpzq is

θ-palindromic.

Lemma 2.8. Let C be a skew cyclic code of even length generated by gpzq “ 1 ` g1z ` . . . `
gm´1z

m´1 ` zm where gpzq|rpzn ´ 1q in F4rz, θs and m is odd. Then the code C is reversible if

and only if skew polynomial gpzq is palindromic.

Proof. Let C be a skew cyclic code of even length generated by a palindromic polynomial

gpzq of odd degree m over the ring F4. Then elements of the generated code are given byřk´1
j“0 αjz

jgpzq. Further, applying the lemma [1.3] and the property of palindromic polynomial,

for c “ φpřk´1
j“0 αjz

jgpzqq P C, we get

pφp
k´1ÿ
j“0

αjz
jgpzqqqr “ φp

k´1ÿ
j“0

αjz
k´j´1gpzqq P C.

Where α P F4 and k “ n ´m. Since the codeword cr belongs to C, the code C is a reversible

code.

Conversely, let C be a reversible code generated by gpzq “ 1`g1z` . . .`gm´1z
m´1` zm. Since

n´m´ 1 is even, implies that

zn´m´1gpzq “ zn´m´1 ` g1z
n´m ` . . .` gm´1z

n´2 ` zn´1.

Also, C is a skew cyclic and reversible code, then rzn´m´1gpzqsr belong to C and we have

rzn´m´1gpzqsr “ 1 ` gm´1z` gm´2z
2 ` . . .` g1z

m´1 ` zm.

Further, we get degpgpzq´rzn´m´1gpzqsrq ă m, which contradicts the fact that gpzq is a minimal

degree polynomial in C implies gpzq ´ rzn´m´1gpzqsr “ 0. Hence, by comparing coefficients,

we get rgi ´ gm´is “ 0 for i “ 0, 1, . . . ,m implies gi “ gm´i. Thus, the polynomial gpzq is

palindromic.

The next theorem follows from the above two lemmas where reversible code is given by palin-

dromic and θ-palindromic polynomials, depending upon their degrees.

Theorem 2.9. Let C “ xg0pzq, vg1pzqy be a skew cyclic code of even length where g0pzq, g1pzq
and g2pzq right divide pzn ´ 1q in F4rz, θs and degpgipzqq is even(odd). Then code C is reversible

if and only if skew polynomials gipzq, i “ 0, 1 is θ-palindromic (palindromic).

Example 2.10. Consider the code C “ xg0pzq, vg1pzqy where g0pzq “ z5`tz4`t2z3`t2z2`tz`1

and g1pzq “ z3 ` tz2 ` tz` 1. Then C is a skew cyclic of length n “ 12 over R. As polynomials

g0pzq and g1pzq are palindromic, implies that the code C is reversible.
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Length gpzq; C “ xgpzq, vgpzqy Gray image

10 z5 ` z4 ` ωx3 ` ωz2 ` z` 1 p20, 410, 4q
12 z5 ` ω2z3 ` ω2z2 ` 1 p24, 414, 4q
12 z7 ` ωz5 ` ω2z4 ` ω2z3 ` ωz2 ` 1 p24, 410, 6q
14 z7 ` z5 ` ω2z4 ` ω2z3 ` z2 ` 1 p28, 414, 6q
18 z7 ` z6 ` ωz4 ` ωz3 ` z` 1 p36, 422, 4q
20 z7 ` ω2z6 ` ωz5 ` ωz2 ` ω2z` 1 p40, 426, 4q
24 z7 ` z6 ` ωz5 ` ωz2 ` z` 1 p48, 434, 4q

Table 3. DNA codes and their Gray image

3 Reversible skew cyclic code over F4R

This section extends our study to the mixed alphabet F4R. Here, we begin with the following

definition.

Definition 3.1. Let Θ P AutpRq. Then a non-empty subset C of Fn
4 R

m is said to be skew cyclic

code of length n`m if

piq the set C is a left R submodule of module F
n
4 R

m;

piiq there exists a skew cyclic shift operator ϒ : Fn
4 R

m ÝÑ F
n
4 R

m such that the set C is closed

under ϒ, i.e., for any codeword ps, tq “ ps0, s1, . . . ,

sn´1 | t0, t1, . . . , tm´1q P C, we have

ϒpps, tqq “pΘpsn´1q,Θps0q, . . . ,Θpsn´2q | Θptn´1q,Θpt0q, . . . ,Θptm´2qq P C,
where s P F

n
4 and t P R

m.

Let Rpn,mq “ F4rz,Θs
xzn´1y ˆ Rrz;Θs

xzm´1y where Θ P AutpRq. Here, we can associate each element

ps, tq P F
n
4 R

m by a polynomial pspzq, tpzqq P Rpn,mq under the correspondence ps, tq ÞÝÑ
pspzq, tpzqq, where spzq “ s0 ` s1z ` ¨ ¨ ¨ ` sn´1z

m´1 P F4rzs
xzn´1y and tpzq “ t0 ` t1z ` ¨ ¨ ¨ `

tm´1z
m´1 P Rrz;Θs

xzm´1y are used for s “ ps0, s1, . . . , sn´1q P F
n
4 and t “ pt0, t1, . . . , tm´1q P R

m,

respectively. Moreover, Rpn,mq is a left Rrz; Θs-module with respect to left multiplication

defined by rpzq ‹ pspzq, tpzqq “ pΓprpzqqspzq, rpzqtpzqq for spzq P F4rz,Θs
xzn´1y , tpzq P Rrz,Θs

xzm´1y and

rpzq “ r0 ` r1z` ¨ ¨ ¨ ` rℓz
ℓ P Rrz; Θs, where Γprpzqq “ Γpr0q ` Γpr1qz` ¨ ¨ ¨ ` Γprℓqzℓ. Since Γ

is a projection and
Rrz;Θs
xzm´1y is left Rrz; Θs-module, thus the multiplication is well defined.

From the above discussion, the following lemma holds.

Lemma 3.2. Let C be a linear code of length pn,mq over Fn
4 R

m. Then C is a skew cyclic code if

and only if C is a left Rrz; Θs-submodule of Rpn,mq.

Let Πn : Fn
4 R

m ÝÑ F
n
4 and Πm : Fn

4 R
m ÝÑ R

m be canonical projection maps defined by

Πnps, tq “ s and Πmps, tq “ t, respectively. Since these maps are linear, for any F4R
m linear

code C of length pn,mq, its canonical projection ΠnpCq “ Cn and ΠmpCq “ Cm are linear codes

over F4 and R of length n and m, respectively. Moreover, C of block length pn,mq over F4R is

said to be separable code if and only if C “ Cn ˆ Cm.

Let c “ ps, tq “ ps0, s1, . . . , sn´1, t0, t1, . . . , tm´1q P C then reversible, complement and

reversible-complement of c is defined by c
r “ psn´1, sn´2, . . . , s1, s0

, tm´1, tm´2, . . . , t1, t0q, cc “ psc0, sc1, . . . , scn´1, t
c
0, t

c
1, . . . , t

c
m´1q and c

rc “ pscn´1,

scn´2, . . . . . . , s
c
1, s

c
0, t

c
m´1, t

c
m´2, . . . , t

c
1, t

c
0q, respectively.

Definition 3.3. Let C be a F4R-linear code of block length pn,mq. Then C is said to be reversible

if for any c “ ps, tq P C, cr “ psr, trq P C, and complement if for any c P C, cc “ psc, tcq P C

and reversible-complement if for any c “ ps, tq P C, crc “ psrc, trcq P C.
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Now, we give the structure of separable skew cyclic codes over the ring F4R.

Theorem 3.4. Let C “ Cn ˆ Cm be a linear code of length pn,mq over F4R. The image of C is

a skew cyclic code under automorphism Θ if and only if Cn is a cyclic code of length n over F4

and Cm is a skew cyclic code of length m over R.

The following theorem gives the structure of cyclic codes of length n and their dimension

over F4. The proof follows the similar approach given in [13].

Theorem 3.5. Let Cn be a cyclic code of length n over the field F4. Then there exists a unique

monic polynomial fpzq P F4rzs{xzn ´ 1y such that Cn “ xfpzqy where fpzq|pzn ´ 1q. The

dimension of the code C is n´ degpfpzqq.
In our next attempt, we provide the condition for a cyclic code to be reversible and a reversible-

complement code over F4. Part of the proof is given in [14] and reverse-complement condition

is straightforward by the codons correspondence.

Theorem 3.6. Let Cn be a cyclic code of length n over field F4 generated by the polynomial

fpzq. Then the code Cn is reversible if and only if polynomial fpzq is a self-reciprocal polyno-

mial. Furthermore, Cn is a reversible-complement code if and only if fpzq is a self-reciprocal

polynomial and z
n´1
z´1

P Cn.

Now, we give the structure of additive DNA codes. Here, we study separable codes to find

the DNA codes.

Theorem 3.7. Let C “ Cn ˆ Cm be a linear code of block length pn,mq over F4R. Then C is a

DNA codes if and only if Cn and Cm are DNA codes over F4 and R, respectively.
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Length fpzq gpzq; C “ xgpzq, vgpzqy Gray image

p13, 12q z7 ` ωz6 ` ω2z5 ` ωz4 ` ωz3 ` ω2z2 ` ωz` 1 z7 ` ωz5 ` ω2z4 ` ω2z3 ` ωz2 ` 1 p37, 416, 6q

p15, 14q z4 ` ω2z3 ` ωz2 ` ω2z` 1 z5 ` ω2z4 ` ω2z3 ` ωz` ω2 p43, 429, 4q

p15, 14q z7 ` ω2z6 ` ω2z5 ` ωz3 ` ωz` 1 z7 ` ωz6 ` ω2z5 ` ω2z4 ` ωz2 ` ω2z` 1 p43, 422, 6q

p20, 14q z4 ` z3 ` z2 ` ωz` ω2 z5 ` ω2z4 ` ω2z3 ` ωz` ω2 p48, 433, 4q

p17, 20q z4 ` ωz3 ` z2 ` ωz` 1 z6 ` ω2z4 ` z3 ` ω2z2 ` ωz` ω2 p57, 441, 4q

p17, 24q z4 ` ω2z3 ` z2 ` ω2z` 1 z6 ` ω2z5 ` z4 ` z` ω2 p65, 449, 4q

p43, 16q z7 ` ω2z5 ` z4 ` z3 ` ωz2 ` 1 z7 ` z6 ` z5 ` z3 ` ω2z` ω p75, 454, 5q

p43, 18q z7 ` ω2z5 ` z4 ` z3 ` ωz2 ` 1 z7 ` ω2z6 ` z4 ` ω2z3 ` ωz2 ` ω2z` ω p79, 458, 5q

p30, 28q z5 ` ωz2 ` ω2z` ω2 z6 ` ωz5 ` ω2z4 ` ω2z3 ` z` ω p86, 461, 4q

p35, 30q z5 ` ωz4 ` ω2z2 ` ω2z` 1 z6 ` ωz2 ` ωz` ω2 p95, 478, 4q

p17, 42q z4 ` ω2z3 ` z2 ` ω2z` 1 z6 ` ω2z5 ` ω2z4 ` ωz3 ` ωz2 ` 1 p101, 485, 4q

p35, 42q z5 ` ωz4 ` ω2z2 ` ω2z` 1 z6 ` ω2z5 ` ω2z4 ` ωz3 ` ωz2 ` 1 p119, 4102, 4q

Table 4. Additive codes and their Gray image
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Proof. Suppose C is a DNA code, then for any c “ ps, tq “ ps0, s1, . . . . . . , sn´1,

t0, t1, . . . , tm´1q P C we get c
rc “ pscn´1, s

c
n´2, . . . , s

c
1, s

c
0, t

c
m´1, t

c
m´2, . . . , t

c
1, t

c
0q P C. Now

c
rc P C implies src P Cn and t

rc P Cm. Therefore Cn and Cm are DNA codes.

Conversely, suppose Cn and Cm are DNA codes over F4 and R respectively. Then for s P Cn

and t P Cm we get src P Cn and t
rc P Cm. Now for c “ ps, tq P Cn ˆ Cm “ C we have

psrc, trcq P Cn ˆ Cm “ C. Thus, C is a DNA code.

4 DNA codes over R and F4R

In this section, we obtain the complementary condition for the reversible codes. A code is a

DNA code if it satisfies both reversible and complementary conditions. In the following lemma,

we establish a relation between the code alphabets and their complement using considered Gray

map p1.1q.
Lemma 4.1. For the given skew cyclic codes in Section 2 and 3, the following conditions hold:

(1) For any r P R, rc “ r ` 1.

(2) For any r1, r2 P R, rc1 ` rc2 “ pr1 ` r2qc ` 1.

(3) For pa, rq P F4R, pa, rqc “ pa, rq ` p1, 1q.
Remark 4.2. We identify inpzq by the polynomial 1 ` z` z2 ` ¨ ¨ ¨ ` zn.

Theorem 4.3. Given a polynomial apzq of degree n in Rrzs, we have

apzqrc “ apzqr ` inpzq.
Proof: Let apzq “ a0 `a1z` . . .`an´1z

n´1 ` zn be a polynomial of degree n in Rrzs where

a0 is a non-zero element of R. Then

apzqrc “acn ` acn´1z` . . .` ac1z
n´1 ` ac0z

n

“an ` 1 ` pan´1 ` 1qz` pan´2 ` 1qz2 ` . . .`
pa1 ` 1qzn´1 ` pa0 ` 1qzn

“inpzq ` apzqr.
The following corollaries are obvious from the above theorems.

Corollary 4.4. Let C be a cyclic code of length m over R. If code C is reversible and all-ones

vector ( that is, the value of each entry is 1) is in C, then C is a DNA code.

Corollary 4.5. Let C be an additive code of block length pn,mq over F4R. If code C is a re-

versible and all-ones vector is in C, then C is a DNA code.
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Length fpzq gpzq; C “ xgpzq, vgpzqy Gray image

p17, 10q z4 ` ω2z3 ` z2 ` ω2z` 1 z5 ` z4 ` ωz3 ` ωz2 ` z` 1 p37, 423, 4q

p13, 12q z7 ` ωz6 ` ω2z5 ` ωz4 ` ωz3 ` ω2z2 ` ωz` 1 z7 ` ωz5 ` ω2z4 ` ω2z3 ` ωz2 ` 1 p37, 416, 6q

p15, 12q z4 ` ω2z3 ` ωz2 ` ω2z` 1 z5 ` ω2z3 ` ω2z2 ` 1 p39, 425, 4q

p15, 14q z7 ` ωz5 ` ωz4 ` ωz3 ` ωz2 ` 1 z7 ` z5 ` ω2z4 ` ω2z3 ` z2 ` 1 p43, 422, 6q

p20, 12q z5 ` ωz4 ` ω2z3 ` ω2z2 ` ωz` 1 z5 ` ω2z3 ` ω2z2 ` 1 p44, 428, 4q

p21, 14q z7 ` ωz6 ` z4 ` z3 ` ωz` 1 z7 ` z5 ` ω2z4 ` ω2z3 ` z2 ` 1 p49, 428, 5q

p17, 18q z4 ` ω2z3 ` z2 ` ω2z` 1 z7 ` z6 ` ωz4 ` ωz3 ` z` 1 p53, 435, 4q

p20, 20q z5 ` ωz4 ` ω2z3 ` ω2z2 ` ωz` 1 z7 ` ω2z6 ` ωz5 ` ωz2 ` ω2z` 1 p60, 441, 4q

p20, 24q z5 ` ωz4 ` ω2z3 ` ω2z2 ` ωz` 1 z7 ` z6 ` ωz5 ` ωz2 ` z` 1 p68, 449, 4q

Table 5. DNA codes from F4R´skew cyclic codes
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5 Conclusion

In this work, we have studied the reversible and the DNA codes over a chain-ring R “ F4rvs{xv2y
and F4R. First, we gave a table for a string of oligonucleotides corresponding to the elements of

the respective structure using a Gray map. Then, we have discussed the structure of reversible

and DNA codes over these structures. Interestingly, we found some better DNA codes using this

method.
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