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Abstract In this paper we study the existence of solutions to the following nonhomogenous
p-Kirchhoff elliptic systems in RN .

-M (/ (IVul” +V |ul”) dx) (Apu +V |u|p_2 u) =fi(z,u,v) in RY,
RN
-M </ (IVol” + Vlvlp)dm) (Apv+V|v|”*2v) =f(z,u,v)  inRY,
RN
u(z) — 0,v(x) — 0 as|z| — .

Under more relaxed assumptions on V(z) and fy, f». The solutions will be obtained by the
Mountain Pass Theorem, Eklend’s variational principle and Nehari manifold.

1 Introduction

In this paper we examine the multiplicity results of nontrivial solutions to the following nonho-
mogenous p-Kirchhoff system

-M /RN (IVul? + V(x)[ul”) dm) (Apu + V() ulf 2 u) =fi(z,u,v)  inRY,

-M /RN (Vo] + V(z) |v|?) d:z:) (Apv—l—V(x) |v|pi2 v) =fo(x,u,v) in RY,

u(z) = 0,v(z) = 0 as |z| = oo.
(1.1)
where fi(x,u,v) = %Fu(u,v) + MMul|? + g(2), fo(z,u,v) = %Fv(u, v) + ||+ h(z).

The function F is assumed to be a class C' in R?, and Ayu = div(|Vu|70—2 Vu) is the p-
laplacian operator with 1 < p < N, and the functions g(x), h(z) can be seen as a perturbations
terms.

Recently, many authors consider the following Kirchhoff-type problem:

— (a—l— b/ |Vu|2dx) Au+V(x)u =f(x,u), (1.2)
RN

where a > 0,b > 0 are constantants. problem (1.2) is an important nonlocal quasilinear
problem because of the appearance of the term ( / |Vu|2 dx)Au, which provokes some mathe-
N

matical difficulties and also makes the study of such a class of problem particularly interesting.
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In [18] using Ekeland’s variational principle, Corra and Nascimento proved the existence
of a weak solution for the boundary problem associated with the nonlocal elliptic system of

p-Kirchhoff type.

p—1
_ <M1/|Vu|p dm) Apu = f(u,v) + pi(z) inQ,
)

p—1
- (Mz/ [Vol? dm) Apv = g(u,v) + pa(x)  in Q,
)

ou ou

Wu in [19] obtained five new critical point theorems on the product space and three existence
theorems for a sequence of high energy solutions for the following system of Kirchhoff-type:

- a+b/ |Vu|2dx>Au+V(x)u:Fu(x,u) inRY,
RN

- a+b/ |Vv|2dx> Au+V(x)o =F,(z,u) inRY, (1.3)
RN

u(z) = 0,v(z) = 0 as || — .

The purpose of this paper is to study the existence and multiplicity results for a coupled system
of Kirchhoff type equations in RN under some natural assumptions. We will get the existence
and multiplicity results of nontrivial solutions by exploiting the Nehari manifold method and the
mountain-pass theorem, Ekeland’s variational principle.

To state our main theorems, let us introduce the following hypotheses.
We assue that M (t) = t* k > 0,t > 0 and V is a continuous santiying

(H)) there exist by > 0 such that V (z) > by in RN. Morever V(x) — +oc as |z| — +o0.

(H,) Let F(u,v) € C'(IR?) be positively homogeneous of degree r € (p,p*), that is, F(tu,tv) =
t"F(u,v), (t > 0) forany (u,v) € R%. Also, assume F(u,0) = F(0,v) = F,(u,0) = F,(0,v) =
0 and F(u,v) > 0 for any (u,v) € R*\ {(0,0)}. Furthermore, there exists a consatant ky > 0
such that

0< F(u,0) < ki (Jul" + o), ¥(u,v) € R?, (1.4)

and for all (u,v) € R?,

Fulu,v)] < Ry (™™ + o), (15)
1By, 0) < (Jul ™ o),

withp(k+1) <r < p*.

By hypothesis (H;) , we have the so-called Euler identity
Fy(u,v)u+ F,(u,v)v = rF(u,v), Y(u,v) e R% (1.6)

Clearly, the function F(u,v) = |u|* |v|” with o+ 8 = r and F(u,v) = (u® + v*)"/? satisfy
(H3).

This work is organized as follows: in section 2 we present some preliminary results and in
sectin 3 and 4, we prove the main results.
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Theorem 1.1. Let g,h € LP (RY) and g,h # 0 in RN. Assume that (H,),(H,) holds and
I<p<qg<plk+1)<r<p*

Then there exist Cy,Cy > 0 such that the problem (1.1) has at least two nontrivial weaks
solutions provided

m—gq

(1A= 4 ™) < Co, and |lgll™ IRl ™t <y (A ™) T
where ]la + é =1landm =p(k+1).

Theorem 1.2. Assume (H,), (Hy) and 1 < p(k+ 1) < g < r < p* hold. Then for any \, u € R,
the system (1.1) with g = h = 0 admits at least one a pair of solution.

2 Preliminaries

We introduce some Sobolev space X = W'P(RN) endowed with the norm,
Jully = [ (¥l + uP)ds, 1<p<oc
RN
The norm in LP(Q) will be denoted by,

fully = [ fuf da.
RN

We now consider the following subspace

E= {uéX |/ (IVul? + V(x) |u|p)dx<oo}. 2.1
RN

FE is a Banch space with the norme

= [ (Vul? + V(@) lul" ). 22)
RN
Obviously, we have

lullx <llulg, vuecX.

The continous embeddings
E— X < LYRY) and |ull, < Sy llullx <Sqllully VueX (2.3)

where p < q < p* and S; > 0, see [21, 22]
The following Sobolev inequality [21] is well known. There is a constant S > 0 such that for

every u € C§°(RY),
. p/p*
S (/ ul” dx) < / |Vul? dz.
RN RN

Lemma 2.1. Let (Hy) hold true. Then embedding E — LP(RY) is compact.

The proof for Lemma 2.1 in [20]
For the product space Y = E x E, the norme of (u,v) € Y, is defined by

I, )" = Nl + ol -

Lemma 2.2. Under assuption (Hy), the embedding Y — L"(R™) x L"(RY) is continuous for
p<r<p‘andY — L} (RN)x L} (RN)iscompactforp <r < p*.

loc loc
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Proof. By [23], we know under the assuption (H;) the embeding E — L"(R") is continuous

for r € [p,p*],and E — L7 (RY) is compact for r € [p,p*),that is, there exist constante

Sy > 0 such that ||ul|,, < S, |ju|g,Vu € E and for any bounded sequence {u,} C E, there
exists a subsequence of {u,} such that u,, — ug in E ans u,, — ug in L}, _(RY), r € [p,p*).
Then for any (u,v) € Y, there exist C' > 0 such that

1w )l < 7 (lull + lvllz) < S5l (w0l (2.4)

that is, [|(u,v)]|. < SI|(u,v)||", that is Y — L"(RN) x L"(R") is continuous for r €
[p,p*] .On the other hand, suppose {(uy,v,)} C Y are bouneded, that is, {u,} and {v,} are
bounded in F, then there exist {u,} and {v,, } such that
Up — g, vy, — v in LY (RY), 7 € [p,p*).

Therefor,

(e vn) = (w0, v0) 7. < ST ([lum — woll; + lon = voll7) — 0, asn — oo,

that is

(unvvn) - (u07U0)7 in L{oc(RN) X L;oc(RN)v re [pap*)a

thatis, Y < L7 (RN) x L7

loc loc

(RY) is compact for p < r < p*. The proof is completed. O

Definition 2.3. We say that (u,v) is a weak solution to (1.1) if
for all (1, 2) € Y, we have

i [ (V™ VuTin +V o upn)da

+ Hv||%k/ (V0?2 VoV + V |02 vy ) da
RN

1

- /RN (Fu(u, 0)p1 + Fy(u,v)2) da

= [l + e ) do
R

- /RN (g1 + hey) dx

=0.

We see that weak solutions of system (1.1) are critical points of the functional I :Y — R
given by,

1 m m 1
) = o (ullg +oll) — 1 [ Plaso)ds

1
——/ ()\|u|q+u|v|q)dx—/ (gu+ hv) dz.
RN RN

q

Definition 2.4. Let ¢ € R, X be a Banach space and I € C'(X,R)
(i) {zn} is a (PS).—sequence in X for I if I(z,) = ¢+ o(1) and I'(z,) = o(1) strongly in
X~lasn — oo.

(ii) We say that [ satisfies the (PS) condition if any (PS).-sequence {z,} in X for [ has a
convergent subsequence.
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Lemma 2.5. [ 14 ](Mountain Pass Theorem)
Suppose X is a Banach space, I € C'(X,R) with I(0) = 0. If I satisfies (PS) condition and
(Ay) there are p, o > 0, such that I(u) > ag when |jul|y = p
(Ay) thereis e € X, ||e| x > p such that I(e) < 0.
Define

I'={yeC'([0,1],X,):7(0) =0, v(1) = e} .
Then

= inf 1 >
o= 00 2

is a critical value of I.

3 Proof of Theorem 1.1

Lemma 3.1. Assume (H,),(H,) and (Hs) holds.Then there exist Cy > 0 such that I(u,v)
satisfies the assuptions (Ay) — (Az) in lemma 2.5 provided

(AP ™ 0) < Coand g™ IR ™ < G (I )
wherel—lj—i-i—landm:p(k—i-l).

p

Proof. In fact, it follows from (H3) and (2.4), we have

‘ .

I(u,v) > ¢

3

1
mw%+m%ﬂ“——/ F(u, v)de 3.1
RN

r

|
=
=

A |u|® + p|v|?) dx — / (gu + hv) dz,
N RN

1 k r r
1) 2 g o) =2 [l o) de (32)
1
- - Au|? ) dx — , — |2l .
q/RN( lul® + p o) dz = gl lullg = 1Al vlg
Using Young inequality, we get
€y’ m m/m—1
gl el < =2l + Ca llgll ™" (3:3)

where Cy = Ca(m, gp) = (m — 1)66”/7”_1/m and g € (0, e~ (kt1)n2/m),

1(u,0) > g w,0)[™ = 287w, )l

Z 5%
S 2e
_ 24N 0 0\1/0 e\ m
. (AL [l M (uy 0) ] . [ (u, v) |
m —1 m—1
=& (g™ + il ")
with = 2,
m—q
|- 2kt w ki, ,
I(u,v) > (W) [(u, )| = 7Sr [ (w, 0) | (3.4)

Sq
= SN ") )

m/m— m/m—1
=G (llglly™ " + lnlly ™).
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Let a(t) = t™ (a1 — B(t)), with 8(t) = apt"™™ + a3t~ ™ for ¢t > 0,
where
1 —2ktlem

= 2km,

Sq
. ay = kST and a3 = ;‘IW + |ul)17?

Note that 3(t) — +o00 as t — +o00.The function 4 has a minimum at:
o 1/r—q
— G -0,
(r—m)ay

Moveover ((t) < a; implies that

(m—g)(r—m)

a (A7 ™) TR < a

(m—q)S¢
g(r—m)ay

1/r—q | cq
)+ s

and consequently there existe some Cj > 0 such that

with a4 = an (

(™™ [ ™) < g

To verify (A;) in Lemma 2.5 it suffice to show that
m/m—1 m/m—1
a(tmin) = s (Ilglly™ "+ IRl 1) > 0 (3.5)
We deduce that for some constant C'; > 0

m—1 ” —1 m/m— m/m— m—q/r—q
gl ™t R < ey (I ) .

(3.6)

Then from (3.4) and (3.6), that there exist Cy, C'y and «p > 0 such that

I(u,v) > ag with [|g||7/™ " + |1/ < Co and
m/m—1 m/m—1 m — m —

e [ o (i

Thus (A;) in Lemma 2.5 is true.

)m,q/r,q

We now verify (A;) in Lemma 2.5.
Choose (i1, ¢2) € C°(RN) x C5°(RY) such that F(¢y,¢2) > 0. Then

$m m m +r
I(tor,tp2) = — (leillg + lleally) — —/ F(p1,p2)da
m T RN

tq
——/ (A|¢1|q+u|¢z|q)da¢—t/ (g1 + hepy) d.
q JrN RN

and I (te;,te,) — —ooast — +oo since m < r. Therefore, there there exists ¢ large enough,
such that I(tp1,tp;) < 0. Then, we take e = (tp;,tp2) € Y and I(e) < 0 and (4,) in Lemma
2.5 is true. This completes the proof of Lemma 3.1. O

Lemma 3.2. Let ¢ € R. Then each (PS),_ sequence for I is bounded in'Y.

Proof. Let {(un,v,)} be an arbitrary (PS)  sequence of I in Y, that is

I(tp,v,) = ¢, I'(u,v) = 0inY ™! (3.7)
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1
c+ 1+ |[(un, va) || > I(un, vn) — T (I(tn,vn), (un, vn))
= (m~" =7 (Jullz + lulE)

—7“_1/ (rF (un, vn) — Fu(tin, vn)tn — Fy(tn, vn)v,) do
RN

=) [ O e+ 07 = 1) [+ o) da

RN

+ (=" = )ymax(llgll Il 1 (tns )

Since 1 < p < ¢ < m, we conclude that {(u,, v, )} is bounded in Y.

Lemma 3.3. The functional I satisfies (PS) condition on'Y.

Proof. Let {(un,v,)} be an arbitrary (PS)_ sequence of I in Y’

> 27 (m = — ) (s, 0) ™ = S2 g — N+ [l ()|

By Lemma 3.2 {(un,v,)} is bounded in Y. Then there exist subsequence (still denote by

{(tn,v,)}) and (u,v) € X such that ||(un, vy )| = to > 0.

If ty = O, then the proof is finished. In the following, we assume ¢y > 0. Then for n

sufficiently large, ||(un,v,)|| > $to > 0.
We now show that {(u.,, v,,)} has convergent subsequence in Y.

Uy — U, v, — v weakly in F.
RN A 1 N
U, U, Up v a.ein RY,
and by Lemma 2.1

Up —> U, vy, — v strongly in L”(]RJV)7

we assume ||(un, vy, )|| < M for some constant M > 0, and all n € N.
Let

Pn = <I,(un7 Un)7 (un — U,V — U)>
- HunH%k/ |Vun|p*2 Vu,V (uy, —u) +V |un|p72 U (ty, — u)dz
RN
+ Jon |2 / Vo P2 Vo,V (0n — v) + V |va [P vp (0n, — v)da
RN

1 / (Fu(ttns vn) (ttn — 10) + Fy (11, vn) (0 — v)) dt

T JRN
— / Atin |9 % i (g — w)da — / 11 |von | vn (vn, — v)da
RN RN

—/RNg(un—u)dx—/RNh(vn—v)dx.

(3.8)

(3.9)

(3.10)

3.11)

(3.12)

The fact I'(uy,v,) — 0 in Y* implies that P, — 0 as n — co. Similarly, the fact u,, — u,

v, — v in Y implies that @,, — 0 as n — oo, where

Qn = ||un||%k /RN |Vu|p_2 VuV (uy, —u)+V |u|p_2 w(uy, — u)dx

+ [Jon |2 / IVolP "2 VoV (v, —v) + V o] 2 v(v, — v)da.
RN

(3.13)
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We define,
R, = / Fou(upn,vp) (uy, —u) dz (3.14)
RN
S, = / Fy(tn, vy) (v, — v) dz (3.15)
RN
T, = / g (up, —u)dx (3.16)
RN
K, = h (v, —v) dx (3.17)
RN
D, — / A |2 ( — u)da (3.18)
RN
L, = / 1[0 T2 0 (0 — 0)d (3.19)
RN

We now prove R,, — 0,5, — 0,7, = 0and k,, — 0 as n — oo.
It follows from the assuption (H3) and by Hleder’s ineqaulity, we have

|R,| < - Fy(un,vn) (un — u) de (3.20)

<k / (|u|r71 + |v|r71) |t — wp| dx
r—I1 r—I1
<k (Ml ™" =+ Nl ™) fan = anll,
r—1 r—1
< kiSy (Ilull " + el ") an = unll,
< 2k S, M Juy —u),.

By interpolation inequality we have

0 1-6
e — ull, < un =l un — uf] 17 (3.21)

withe 6 € (0,1) and 1 = £ 4 =2

p
Since {u,, } bounded in E, then {u,,} is bounded in " (RY). Morover, il follows from (3.21)
that |ju,, — u,|,, — 0, as n — oo and thus, R,, — 0 as.n — oo
Similarly, we have

|Sul < 2815 M |o, — ]|,

And S,, — 0asn — oo,
we have

T, < /R ol — ul s (3.22)

< lgll, [lun —ul[, = O0asn — oo

We prove ||(u, — u,v, —v)|| = 0in Y.
Notice that

Py — Qn = llunl2 Uy + Jon |2 Vo — Ry — S — Ty — K. (3.23)
Where
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Un = /RN ((|vun|p*2 YV, — |[Vul[P2 vu) V (un — u)) da (3.24)

+ /RN (V (|un|p*2 U — |ulP 2 u) (un — u)) dx,

and

V, = /RN ((|wn|”‘2 Vo, — |Vo|P 2 vu) V (vn — v)) (3.25)

+ /RN (V (|vn|p*2 Up — |V[P v) (vn, — v)) dx.

Using the standard inequality in RY.
For any 2,y € RY

(ol 22— P 2 ye—y) > Colo -y, p>2, (3.26)
and
2
<|x|p72x — |y|p72 Y, T — y> > %, l<p<?2. (3.27)
T Y

Then, P, — Q,, — 0asn — oo, that U, — 0, V,, — 0as n — oc.
We obtain ||(u,, — u,v, —v)|| = 0in Y. Thus I(u,v) satisfies (P.S) on Y and we finish the
proof of Lemma 3.3. O

By Lemma 3.1 and Lemma 3.3 I satisfies all assumptions in Lemma 2.5. Then there exists
(ur,v1) €Y such that (uy,vy) is a solution of problem (1.1) Furthermore I(uy,vy) > ap > 0.

We now seek a solution (uy, vp) of problem (1.1).
Choose (1, 2) € C§°(RY) x C§°(RN) such that [ (gp1da + hepy) dz > 0 and

T

tm . et
I(tpr,tes) = e (letllg + lle2llz) — - /RN F(p1,¢2)da (3.28)

— t/ (gu + hv) dz.
RN
Since v > m, we have from (3.28) that I(tp1,tps) < 0 for t > 0 samll. Thus

—00 < ¢, = infI(u,v) < 0and (%%f I(u,v) >0, (3.29)

B,

where p given in Lemma 2.5 and B, is open ball in Y centered at the origin with radius p
Let £, — 0 such that

¢p < ep < igf](u,v) - i%f I(u,v) (3.30)

P P

Then, by Ekeland’s variational principle in [15]

cp < I(tup,vn) < cp+ey (3.31)
and

I(un,vp) < I(u,v) +ep || (un — u, v — 0)|| (3.32)
Then it follows from (3.29) and (3.31) that
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I(up,vn) < cp+e, < iélf](u,v) +e, < g%f I(u,v) (3.33)

3 P

so that (un,v,) € B,,. B
We now consider the functional F' : B, — R given by

F(u,v) = I, (un, vn) + & [[(un — u, v, —0)|| (3.34)
Then (3.32)shows that F(u,,vy,) < F(u,v) for (u,v) € B, (tn,vs) # (u,v)

and thus (u, v) is a strict local minimum of F.
Moreover

t= (F(un + tor, vn 4 tr) — F(tn,v,)) >0 (3.35)
Sforsmall t > 0 and ||(¢1,2)|| < 1. Hence

¢! (I(un, + tor,vn + to2) — I(un, vy)) + en || (01, 92)]] > 0. (3.36)
Lett — 0T

(I'(tn,vn), (1, 02)) +en l(01,02)| >0, Y(p1,92) € B (3.37)

Replacing (i1, ¢2) in (3.37) by (=1, —p2), we get

— (I'(un,vn), (01, 92)) +enll(@1,92)| >0, Y(e1,92) € By (3.38)
So that

(11" (s vn) || < e (3.39)

Therfore, there is a sequence {(u,,v,)} C B, such that Ij\’u(un,vn) — ¢, < 0and
M(un,vn) —0inY lasn — .
By Lemma 3.3 {(un,v,)} has a convergent subsequence in X, still denoted by {(un,v,)},
such that (un,vy,) — (u,v2) in X.
Thus (up,v) is a solution of (1.1) with I' (up,v,) < 0. Then the proof of theorem 1.1 is
complete.

1

4 Proof of Theorem 1.2

To prove of solution for the system (1.1), we introduce the Nehari manifold.

N ={(u,v) € Y\ (0,0) : I'(u,v)(u,v) = 0} 4.1
that is, (u,v) € N if and only if (u,v) # 0 and

Il + ol = [ (F)+ Aul? + ol o @2)

Furthermore, we define the fibering maps ¢(t) = I(u,v) for t > 0. Clearly, (u,v) € N if
and only if ¢’ (1) = 0 and, more generally, (tu,tv) € N if and only if ¢’ (t) = 0, that is, elements
in N correspond to stationary points of fibring maps ¢(t). By definition, we have

tm m m tT
00 = = (Jullg + ol) = = [ Plaso)ds
t4
~2 [ Ol e
q JrN

and
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00 =t (Jallg + ol — ! [ Plwo)do
—tq—'/ Ol + 2 [o]?) da.
RN

Notice that, if (u,v) € N, then

Hu,0) = (o = 2 (g + 1) + G = ) [ Fluods @3
= (= D el + 10l + (= 2) [l + ol de

In the following, we derive some properties for the Nehari manifold N

Lemma 4.1. Let p < q < r and (H,). then the Nehari manifold N' # (.

Proof. Let (u,v) €Y, (u,v) # 0. consider the following function for ¢ > 0,
V(t) = I'(tu, to) (tu, tv) = t™ ([[ull g + [vlp)—t" fon F(u,v)do—t? [on (X |ul” + plo|?) da.
Since p < g < r, it follows that y(¢) > 0 for small ¢ > 0, and ~(¢) — —oco as t — +o0.

Then there exists ¢; > 0 such that y(¢;) = 0. Obviously, (tju,t1v) # (0,0).
We conclude that (tju,tjv) € N and N # (). O

Lemma 4.2. Let the conditions in theorem 1.2 hold. then, the functional I is coercive and
bounded from below on N'. Moreover

d= inf I(u,v).
(u,v)eEN

Proof. Let (u,v) € N. Then it follows from (2.3) and (4.2) that

Jullg + ol = [ (F(0)+ Al + o) da
< Co (lully + ol + s + 1ol %) (4.4)

where Cy = max {S,k1, Sy, max(|A|,|u|)}
Inequality (4.4) implies

277 < GolllCw, o) I A+ 1w, ) [*7). (4.5)

If || (u, v) || < 1, (4.5) gives 2% < 2C || (u, v)[|*™™".
So we have

1

o) = min {1, (2441C0) 77 } = . (uwo) €. “6)

Therfore, if (u,v) € A, we have from (4.3) that

1 1
I > (— — = m ™ >
(u,0) 2 (— q) (lullz + llvlE) = Ca
where Cy = 27F(.L — 2)CF > 0.
Thus, the proof of Lemma 4.2 is finished. m|

Lemma 4.3. Let all conditions in Theorem 1.2 hold. Then, there exists a nonnegative function
(uo,v0) € N such that d = inf,, e n I(u,v) = I(uo, o).
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Proof. Let {(un,vy,)} be a minimizing sequence for d in /. The fact I(un,v,) = I(Jun|, |vn|)
implies that {(Ju,|, |v,|)} is also a minimizing sequence, so that you can assume from beginning
Un, vy, > 0a.einRY. Since [ is coercive and bounded from below on V, the sequence {(u,,,v,)}
is bounded in Y. We can assume that, up to subsequence, (., v,) — (ug,vp) in Y. By Lemma??,
we have

Uy — UQY, Uy, — Vg IN L”(]RN) N Lq(]RN)

and

Un () = uo(z), va(x) = vo(x) ae. in RY.

We now prove that (ug,vg) € N and d = I(ug, vo).
Since (uy, v,) € N, then

Junlg + ol = [ (Pl )+ Alunl + o) 47

By the weakly lower semi-continuity of norms, we have from (4.7).

[uollz + Ilvolly < Tim inf ([lunllz + onllz) (4.8)
S/ (F(uo, vo) + A luol|* + pe|vol?) da.
RN

If the equality in (4.8) holds, then (ug, vo) € N.
So, arguing by contradiction, we assume that

Juoll+ ool < [ (FCu ) + Al + ]
R

Let ¢(t) = I' (tug, tvo) (tug, tvg). Clearly, ¢(t) > 0 for small ¢ > 0 and ¢(1) < 0. So that
there exists ¢ € (0, 1) such that ¢(¢) = 0 and (uo, v9) € N. Then we have

11 11
d < I(tug, tvg) = t"(— — E) (luoll + llvollz) +¢ (5 - - F(ug, vo)dx
1
——)/ F(ug,vo)dz
RN

1
q

m m 1 1
) el + o)+ G = 1) [Pl
q T JrN

) (luolls + llvollz) + (

1
<(E

Q| =

1 1
< lim inf ((— - -
n—o00 m q
<lim inf I(uy,,vy,).
n—oo

This contradiction prove that the equality in (4.8) holds and then (ug,v9) € N and the proof
of Lemma (4.3) is completed. O

Clearly, it is enough to prove that (ug, vo) is a critical point for I in' Y, that is, I’ (ug, vo)(p, V) =
0forall (p,) €Y and I'(ug,vy) = 0in Y*, where (ug, vo) is in the position of Lemma (4.3)

For every (p,1) € Y, we choose € > 0 such that (ug + sp,vg + s1) # 0 for all s € (—¢,¢).
Define a function

w(s, t) =Tt (uo + s) ,t (vo + s1))(t (ug + s¢) ,t (vo + sv))
=t (w0 + 592+ 1t o+ s0)E ¢ [ Fluot st si)de  49)
£ (M luo + sell? + oo + 07 -

Then
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w0,1) = ol + enllf — [ F(uo, ) (4.10)
RN
= (Mluollg + e o)

and

aw m m
S = Ul + el ~ v [ Flun,w)ds
RN

= (Auollf + p[wol1) (“.11)
= (m =) (Jaoll + ool ) + (4 =) | Fluo,mm)ao <0.
So, by the implicit function Theorem, there exists a C' function t(s) such that t(0) = 1 and
w(s,t(s)) = 0 forevery s € (—egp,g0) C (—¢,€).

This also shows that t(s) # 0, at least for ey small enough.
Therfore, t(s)(up + s, vo + s1) € N. Denote t = t(s) and

x(s) = I(t (uo + s9) .t (vo + 5v))

tm m m

(It (uo + s9) g + It (vo + sv)lI ) (4.12)
tT

- = F(up + sp,vo + s1))dx
T JRN

t4
= (Mo sl 4 o + 597
We see that the function x(s) is differentiable and has a minimum point at s = 0. Therefore,

0=x'(s) =t (0)w(0, 1) + I'(ug, v0) (¢, ¥).

Since (ug,vo) € N, it follows from (4.10) that I' (ug,vo)(p,v) = 0 for all (p,%) € Y and
thus I' (ug,vg) = 0in Y*. So, (ug,vo) is a critical point for I and then (ug,vo) is a weak solution
of the problem (1.1). Thus the proof of Theorem1.2 is completed.
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