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Abstract In this paper we study the existence of solutions to the following nonhomogenous

p-Kirchhoff elliptic systems in RN .























−M

(
∫

RN

(|∇u|p + V |u|p) dx

)

(

∆pu+ V |u|p−2
u
)

=f1(x, u, v) in R
N ,

−M

(
∫

RN

(|∇v|p + V |v|p) dx

)

(

∆pv+V |v|p−2
v
)

=f2(x, u, v) in R
N ,

u(x) → 0, v(x) → 0 as |x| → ∞.

Under more relaxed assumptions on V (x) and f1, f2. The solutions will be obtained by the

Mountain Pass Theorem, Eklend’s variational principle and Nehari manifold.

1 Introduction

In this paper we examine the multiplicity results of nontrivial solutions to the following nonho-

mogenous p-Kirchhoff system























−M

(
∫

RN

(|∇u|p + V (x) |u|p) dx

)

(

∆pu+ V (x) |u|p−2
u
)

=f1(x, u, v) in R
N ,

−M

(
∫

RN

(|∇v|p + V (x) |v|p) dx

)

(

∆pv+V (x) |v|
p−2 v

)

=f2(x, u, v) in R
N ,

u(x) → 0, v(x) → 0 as |x| → ∞.
(1.1)

where f1(x, u, v) =
1
rFu(u, v) + λ |u|q + g(x), f2(x, u, v) =

1
rFv(u, v) + µ |v|q + h(x).

The function F is assumed to be a class C1 in R2, and ∆pu = div(|∇u|p−2 ∇u) is the p-

laplacian operator with 1 < p < N , and the functions g(x), h(x) can be seen as a perturbations

terms.

Recently, many authors consider the following Kirchhoff-type problem:

−

(

a+ b

∫

RN

|∇u|2 dx

)

∆u+ V (x)u =f(x, u), (1.2)

where a > 0, b > 0 are constantants. problem (1.2) is an important nonlocal quasilinear

problem because of the appearance of the term (

∫

RN

|∇u|2 dx)∆u, which provokes some mathe-

matical difficulties and also makes the study of such a class of problem particularly interesting.
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In [18] using Ekeland’s variational principle, Corra and Nascimento proved the existence

of a weak solution for the boundary problem associated with the nonlocal elliptic system of

p-Kirchhoff type.
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M1

∫

Ω

|∇u|p dx





p−1

∆pu = f(u, v) + ρ1(x) in Ω,

−



M2

∫

Ω

|∇v|p dx





p−1

∆pv = g(u, v) + ρ2(x) in Ω,

∂u

∂η
=

∂u

∂η
= 0 on ∂Ω.

Wu in [19] obtained five new critical point theorems on the product space and three existence

theorems for a sequence of high energy solutions for the following system of Kirchhoff-type:























−

(

a+ b

∫

RN

|∇u|2 dx

)

∆u+ V (x)u =Fu(x, u) in R
N ,

−

(

a+ b

∫

RN

|∇v|2 dx

)

∆u+ V (x)v =Fv(x, u) in R
N ,

u(x) → 0, v(x) → 0 as |x| → ∞.

(1.3)

The purpose of this paper is to study the existence and multiplicity results for a coupled system

of Kirchhoff type equations in RN under some natural assumptions. We will get the existence

and multiplicity results of nontrivial solutions by exploiting the Nehari manifold method and the

mountain-pass theorem, Ekeland’s variational principle.

To state our main theorems, let us introduce the following hypotheses.

We assue that M(t) = tk, k > 0, t ≥ 0 and V is a continuous santiying

(H1) there exist b0 > 0 such that V (x) ≥ b0 in RN . Morever V (x) → +∞ as |x| → +∞.

(H2) Let F (u, v) ∈ C1(R2) be positively homogeneous of degree r ∈ (p, p∗), that is, F (tu, tv) =
trF (u, v), (t > 0) for any (u, v) ∈ R2. Also, assume F (u, 0) = F (0, v) = Fu(u, 0) = Fv(0, v) =
0 and F (u, v) > 0 for any (u, v) ∈ R2\ {(0, 0)} . Furthermore, there exists a consatant k1 > 0

such that

0 ≤ F (u, v) ≤ k1 (|u|
r + |v|r) , ∀(u, v) ∈ R

2, (1.4)

and for all (u, v) ∈ R2,

|Fu(u, v)| ≤ k1

(

|u|r−1 + |v|r−1
)

, (1.5)

|Fv(u, v)| ≤ k1

(

|u|r−1 + |v|r−1
)

,

with p(k+ 1) < r < p∗.

By hypothesis (H2) , we have the so-called Euler identity

Fu(u, v)u+ Fv(u, v)v = rF (u, v), ∀(u, v) ∈ R
2. (1.6)

Clearly, the function F (u, v) = |u|α |v|β with α+ β = r and F (u, v) = (u2 + v2)r/2 satisfy

(H3) .

This work is organized as follows: in section 2 we present some preliminary results and in

sectin 3 and 4, we prove the main results.
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Theorem 1.1. Let g, h ∈ Lp′

(RN ) and g, h 6= 0 in RN . Assume that (H1) , (H2) holds and

1 < p < q < p(k+ 1) < r < p∗.

Then there exist C0, C1 > 0 such that the problem (1.1) has at least two nontrivial weaks

solutions provided
(

|λ|m/m−q + |µ|m/m−q
)

< C0, and ‖g‖
m/m−1
p′ +‖h‖

m/m−1
p′ < C1

(

|λ|m/m−q + |µ|m/m−q
)

m−q

r−q

where 1
p + 1

p′
= 1 and m = p(k+ 1).

Theorem 1.2. Assume (H1), (H2) and 1 < p(k+ 1) ≤ q < r < p∗ hold. Then for any λ, µ ∈ R,
the system (1.1) with g = h = 0 admits at least one a pair of solution.

2 Preliminaries

We introduce some Sobolev space X =W 1,p(RN) endowed with the norm,

‖u‖pX =

∫

RN

(|∇u|p + |u|p)dx , 1 ≤ p <∞

The norm in Lp(Ω) will be denoted by,

‖u‖pp =

∫

RN

|u|p dx.

We now consider the following subspace

E =

{

u ∈ X |

∫

RN

(|∇u|p + V (x) |u|p)dx <∞

}

. (2.1)

E is a Banch space with the norme

‖u‖pE =

∫

RN

(|∇u|p + V (x) |u|p)dx. (2.2)

Obviously, we have

‖u‖X ≤ ‖u‖E , ∀u ∈ X.

The continous embeddings

E →֒ X →֒ Lq(RN ) and ‖u‖q ≤ Sq ‖u‖X ≤ Sq ‖u‖E ∀u ∈ X (2.3)

where p ≤ q ≤ p∗ and Sq > 0, see [21, 22]

The following Sobolev inequality [21] is well known. There is a constant S > 0 such that for

every u ∈ C∞
0 (RN ),

S

(
∫

RN

|u|p
∗

dx

)p/p∗

≤

∫

RN

|∇u|p dx.

Lemma 2.1. Let (H1) hold true. Then embedding E →֒ Lp(RN ) is compact.

The proof for Lemma 2.1 in [20]

For the product space Y = E × E, the norme of (u, v) ∈ Y , is defined by

‖(u, v)‖
p
= ‖u‖pE + ‖v‖pE .

Lemma 2.2. Under assuption (H1), the embedding Y →֒ Lr(RN ) × Lr(RN) is continuous for

p ≤ r ≤ p∗ and Y →֒ Lr
loc(R

N )× Lr
loc(R

N) is compact for p ≤ r < p∗.
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Proof. By [23], we know under the assuption (H1) the embeding E →֒ Lr(RN ) is continuous

for r ∈ [p, p∗] ,and E →֒ Lr
loc(R

N ) is compact for r ∈ [p, p∗) ,that is, there exist constante

Sr > 0 such that ‖u‖r ≤ Sr ‖u‖E , ∀u ∈ E and for any bounded sequence {un} ⊂ E, there

exists a subsequence of {un} such that un ⇀ u0 in E ans un → u0 in Lr
loc(R

N ), r ∈ [p, p∗) .
Then for any (u, v) ∈ Y , there exist C > 0 such that

‖(u, v)‖
r
r ≤ Sr

r (‖u‖
r
E + ‖v‖rE) ≤ Sr

r ‖(u, v)‖
r
, (2.4)

that is, ‖(u, v)‖
r
r ≤ Sr

r ‖(u, v)‖
r
, that is Y →֒ Lr(RN ) × Lr(RN) is continuous for r ∈

[p, p∗] .On the other hand, suppose {(un, vn)} ⊂ Y are bouneded, that is, {un} and {vn} are

bounded in E, then there exist {un} and {vn} such that

un ⇀ u0, vn ⇀ v0 in Lr
loc(R

N), r ∈ [p, p∗) .

Therefor,

‖(un, vn)− (u0, v0)‖
r
r ≤ Sr

r (‖un − u0‖
r
r + ‖vn − v0‖

r
r) → 0, as n→ ∞,

that is

(un, vn) → (u0, v0), in Lr
loc(R

N )× Lr
loc(R

N ), r ∈ [p, p∗) ,

that is, Y →֒ Lr
loc(R

N )× Lr
loc(R

N ) is compact for p ≤ r < p∗. The proof is completed.

Definition 2.3. We say that (u, v) is a weak solution to (1.1) if

for all (ϕ1, ϕ2) ∈ Y, we have

‖u‖pkE

∫

RN

(|∇u|p−2 ∇u∇ϕ1 + V |u|p−2
uϕ1)dx

+ ‖v‖pkE

∫

RN

(|∇v|p−2 ∇v∇ϕ2 + V |v|p−2 vϕ2)dx

−
1

r

∫

RN

(Fu(u, v)ϕ1 + Fv(u, v)ϕ2) dx

−

∫

RN

(

λ |u|q−2 uϕ1 + µ |v|q−2 ϕ2

)

dx

−

∫

RN

(gϕ1 + hϕ2) dx

= 0.

We see that weak solutions of system (1.1) are critical points of the functional I : Y → R

given by,

I(u, v) =
1

m
(‖u‖mE + ‖v‖mE )−

1

r

∫

RN

F (u, v)dx

−
1

q

∫

RN

(λ |u|q + µ |v|q) dx−

∫

RN

(gu+ hv) dx.

Definition 2.4. Let c ∈ R, X be a Banach space and I ∈ C1(X,R)

(i) {zn} is a (PS)c−sequence in X for I if I(zn) = c + o(1) and I ′(zn) = o(1) strongly in

X−1 as n→ ∞.

(ii) We say that I satisfies the (PS) condition if any (PS)c-sequence {zn} in X for I has a

convergent subsequence.
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Lemma 2.5. [14](Mountain Pass Theorem)

Suppose X is a Banach space, I ∈ C1(X,R) with I(0) = 0. If I satisfies (PS) condition and

(A1) there are ρ, α0 > 0, such that I(u) ≥ α0 when ‖u‖X = ρ
(A2) there is e ∈ X, ‖e‖X > ρ such that I(e) < 0.
Define

Γ =
{

γ ∈ C1([0, 1] , X, ) : γ(0) = o, γ(1) = e
}

.

Then

c = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) ≥ α0

is a critical value of I .

3 Proof of Theorem 1.1

Lemma 3.1. Assume (H1) , (H2) and (H3) holds.Then there exist C0 > 0 such that I(u, v)
satisfies the assuptions (A1)− (A2) in lemma 2.5 provided

(

|λ|m/m−q + |µ|m/m−q
)

< C0, and ‖g‖
m/m−1
p′ +‖h‖

m/m−1
p′ < C1

(

|λ|m/m−q + |µ|m/m−q
)

m−q

r−q

where 1
p + 1

p′
= 1 and m = p(k+ 1).

Proof. In fact, it follows from (H3) and (2.4), we have

I(u, v) ≥
1

2km
((‖u‖pE + ‖v‖pE))

k+1
−

1

r

∫

RN

F (u, v)dx (3.1)

−
1

q

∫

RN

(λ |u|q + µ |v|q) dx−

∫

RN

(gu+ hv) dx,

I(u, v) ≥
1

2km
‖(u, v)‖

m
−
k1

r

∫

RN

(|u|r + |v|r) dx (3.2)

−
1

q

∫

RN

(λ |u|q + µ |v|q) dx− ‖g‖p′ ‖u‖E − ‖h‖p′ ‖v‖E .

Using Young inequality, we get

‖g‖p′ ‖u‖E ≤
εm0
m

‖u‖mE + C2 ‖g‖
m/m−1
E , (3.3)

where C2 = C2(m, ε0) = (m− 1)εm/m−1

0 /m and ε0 ∈ (0, e−(k+1) ln 2/m).

I(u, v) ≥
1

2km
‖(u, v)‖

m
−
k1

r
Sr
r ‖(u, v)‖

r

−
Sq
q

q
(|λ|θ + |µ|θ)1/θ ‖(u, v)‖

q
−

2εm0
m

‖(u, v)‖
m

− C2

(

‖g‖
m/m−1
p′ + ‖h‖

m/m−1
p′

)

with θ = m
m−q .

I(u, v) ≥ (
1 − 2k+1εm0

2km
) ‖(u, v)‖

m

−
k1

r
Sr
r ‖(u, v)‖

r
(3.4)

−
Sq
q

q
(|λ|θ + |µ|θ)1/θ ‖(u, v)‖

q

− C2

(

‖g‖
m/m−1
p′ + ‖h‖

m/m−1
p′

)

.
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Let α(t) = tm (a1 − β(t)) , with β(t) = a2t
r−m + a3t

q−m for t ≥ 0,
where

a1 =
1 − 2k+1εm0

2km
, a2 = k1S

r
r and a3 =

Sq
q

q
(|λ|θ + |µ|θ)1/θ

Note that β(t) → +∞ as t→ +∞.The function β has a minimum at:

tmin =

(

(m− q) a3

(r −m) a2

)1/r−q

> 0.

Moveover β(t) < a1 implies that

a4(|λ|
m/m−q + |µ|m/m−q)

(m−q)(r−m)
m(r−q) < a1

with a4 = a2

(

(m−q)Sq
q

q(r−m)a2

)1/r−q

+ 1
qS

q
q

and consequently there existe some C0 > 0 such that

(|λ|m/m−q + |µ|m/m−q) < C0

To verify (A1) in Lemma 2.5 it suffice to show that

α(tmin)− C2

(

‖g‖
m/m−1
p′ + ‖h‖

m/m−1
p′

)

> 0 (3.5)

We deduce that for some constant C1 > 0

‖g‖
m/m−1
p′ + ‖h‖

m/m−1
p′ < C1

(

|λ|m/m−q + |µ|m/m−q
)m−q/r−q

. (3.6)

Then from (3.4) and (3.6), that there exist C0, C1 and α0 > 0 such that

I(u, v) ≥ α0 with ‖g‖
m/m−1
p′ + ‖h‖

m/m−1
p′ < C0 and

‖g‖
m/m−1
p′ + ‖h‖

m/m−1
p′ < C1

(

|λ|m/m−q + |µ|m/m−q
)m−q/r−q

.

Thus (A1) in Lemma 2.5 is true.

We now verify (A2) in Lemma 2.5.

Choose (ϕ1, ϕ2) ∈ C∞
0 (RN)× C∞

0 (RN ) such that F (ϕ1, ϕ2) > 0. Then

I(tϕ1, tϕ2) =
tm

m
(‖ϕ1‖

m
E + ‖ϕ2‖

m
E )−

tr

r

∫

RN

F (ϕ1, ϕ2)dx

−
tq

q

∫

RN

(λ |ϕ1|
q + µ |ϕ2|

q) dx− t

∫

RN

(gϕ1 + hϕ2) dx.

and I(tϕ1, tϕ2) → −∞ as t→ +∞ sincem < r. Therefore, there there exists t large enough,

such that I(tϕ1, tϕ2) < 0. Then , we take e = (tϕ1, tϕ2) ∈ Y and I(e) < 0 and (A2) in Lemma

2.5 is true. This completes the proof of Lemma 3.1.

Lemma 3.2. Let c ∈ R. Then each (PS)c sequence for I is bounded in Y.

Proof. Let {(un, vn)} be an arbitrary (PS)c sequence of I in Y, that is

I(un, vn) → c, I ′(u, v) → 0 in Y −1 (3.7)
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c+ 1 + ‖(un, vn)‖ ≥ I(un, vn)−
1

r
〈I(un, vn), (un, vn)〉

= (m−1 − r−1) (‖u‖mE + ‖u‖mE )

− r−1

∫

RN

(rF (un, vn)− Fu(un, vn)un − Fv(un, vn)vn) dx

− (q−1 − r−1)

∫

RN

(λ |u|q + µ |v|q) dx+ (r−1 − 1)

∫

RN

(gun + hvn) dx

≥ 2−k(m−1 − r−1) ‖(u, v)‖
m
− Sq

q (q
−1 − r−1)(|λ|θ + |µ|θ)1/θ ‖(u, v)‖

m

+ (r−1 − 1)max(‖g‖p′ , ‖h‖p′) ‖(un, vn)‖ .

Since 1 < p < q < m, we conclude that {(un, vn)} is bounded in Y .

Lemma 3.3. The functional I satisfies (PS) condition on Y.

Proof. Let {(un, vn)} be an arbitrary (PS)c sequence of I in Y
By Lemma 3.2 {(un, vn)} is bounded in Y. Then there exist subsequence (still denote by

{(un, vn)}) and (u, v) ∈ X such that ‖(un, vn)‖ → t0 ≥ 0.
If t0 = 0, then the proof is finished. In the following, we assume t0 > 0. Then for n

sufficiently large, ‖(un, vn)‖ ≥ 1
2
t0 > 0.

We now show that {(un, vn)} has convergent subsequence in Y.

un ⇀ u, vn ⇀ v weakly in E. (3.8)

un ⇀ u, vn ⇀ v a.e in R
N , (3.9)

and by Lemma 2.1

un → u, vn → v strongly in Lp(RN ), (3.10)

we assume ‖(un, vn)‖ ≤M for some constant M > 0, and all n ∈ N.
Let

Pn = 〈I ′(un, vn), (un − u, vn − v)〉

= ‖un‖
pk
E

∫

RN

|∇un|
p−2 ∇un∇ (un − u) + V |un|

p−2
un(un − u)dx

+ ‖vn‖
pk
E

∫

RN

|∇vn|
p−2 ∇vn∇ (vn − v) + V |vn|

p−2
vn(vn − v)dx (3.11)

−
1

r

∫

RN

(Fu(un, vn) (un − u) + Fv(un, vn) (vn − v)) dx

−

∫

RN

λ |un|
q−2

un(un − u)dx−

∫

RN

µ |vn|
q−2

vn(vn − v)dx

−

∫

RN

g (un − u) dx−

∫

RN

h (vn − v) dx. (3.12)

The fact I ′(un, vn) → 0 in Y ∗ implies that Pn → 0 as n → ∞. Similarly, the fact un ⇀ u,
vn ⇀ v in Y implies that Qn → 0 as n→ ∞, where

Qn = ‖un‖
pk
E

∫

RN

|∇u|p−2 ∇u∇ (un − u) + V |u|p−2
u(un − u)dx (3.13)

+ ‖vn‖
pk
E

∫

RN

|∇v|p−2 ∇v∇ (vn − v) + V |v|p−2
v(vn − v)dx.
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We define,

Rn =

∫

RN

Fu(un, vn) (un − u) dx (3.14)

Sn =

∫

RN

Fv(un, vn) (vn − v) dx (3.15)

Tn =

∫

RN

g (un − u) dx (3.16)

Kn =

∫

RN

h (vn − v) dx (3.17)

Dn =

∫

RN

λ |un|
q−2

un(un − u)dx (3.18)

Ln =

∫

RN

µ |vn|
q−2

vn(vn − v)dx (3.19)

We now prove Rn → 0, Sn → 0, Tn → 0 and kn → 0 as n→ ∞.
It follows from the assuption (H3) and by Hleder’s ineqaulity, we have

|Rn| ≤

∫

RN

Fu(un, vn) (un − u) dx (3.20)

≤ k1

∫

(

|u|r−1 + |v|r−1
)

|un − un| dx

≤ k1

(

‖u‖r−1
r + ‖u‖r−1

r

)

‖un − un‖r

≤ k1Sr

(

‖u‖r−1
E + ‖u‖r−1

E

)

‖un − un‖r

≤ 2k1SrM
r−1 ‖un − u‖r .

By interpolation inequality we have

‖un − u‖r ≤ ‖un − u‖θp ‖un − u‖1−θ
p∗ , (3.21)

withe θ ∈ (0, 1) and 1
r = θ

p + 1−θ
p∗

Since {un} bounded inE, then {un} is bounded in Lp∗

(RN ).Morover, il follows from (3.21)
that ‖un − un‖r → 0, as n→ ∞ and thus, Rn → 0 as.n→ ∞

Similarly, we have

|Sn| ≤ 2k1SrM
r−1 ‖vn − v‖r .

And Sn → 0 as n→ ∞,
we have

|Tn| ≤

∫

RN

|g| |un − u| dx (3.22)

≤ ‖g‖p′ ‖un − u‖p → 0 as n→ ∞

We prove ‖(un − u, vn − v)‖ → 0 in Y .

Notice that

Pn −Qn = ‖un‖
pk
E Un + ‖vn‖

pk
E Vn −Rn − Sn − Tn −Kn. (3.23)

Where
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Un =

∫

RN

((

|∇un|
p−2 ∇un − |∇u|p−2 ∇u

)

∇ (un − u)
)

dx (3.24)

+

∫

RN

(

V
(

|un|
p−2

un − |u|p−2
u
)

(un − u)
)

dx,

and

Vn =

∫

RN

((

|∇vn|
p−2 ∇vn − |∇v|p−2 ∇v

)

∇ (vn − v)
)

(3.25)

+

∫

RN

(

V
(

|vn|
p−2

vn − |v|p−2
v
)

(vn − v)
)

dx.

Using the standard inequality in R
N .

For any x, y ∈ RN

〈

|x|p−2 x− |y|p−2 y, x− y
〉

≥ Cp |x− y|p , p ≥ 2, (3.26)

and

〈

|x|p−2
x− |y|p−2

y, x− y
〉

≥
Cp |x− y|2

(|x|+ |y|)
2−p

, 1 < p < 2. (3.27)

Then, Pn −Qn → 0 as n→ ∞, that Un → 0, Vn → 0 as n→ ∞.
We obtain ‖(un − u, vn − v)‖ → 0 in Y. Thus I(u, v) satisfies (PS) on Y and we finish the

proof of Lemma 3.3.

By Lemma 3.1 and Lemma 3.3 I satisfies all assumptions in Lemma 2.5. Then there exists

(u1, v1) ∈ Y such that (u1, v1) is a solution of problem (1.1) Furthermore I(u1, v1) ≥ α0 > 0.

We now seek a solution (u2, v2) of problem (1.1).

Choose (ϕ1, ϕ2) ∈ C∞
0 (RN)× C∞

0 (RN ) such that
∫

RN (gϕ1dx+ hϕ2) dx > 0 and

I(tϕ1, tϕ2) =
tm

m
(‖ϕ1‖

m
E + ‖ϕ2‖

m
E )−

tr

r

∫

RN

F (ϕ1, ϕ2)dx (3.28)

− t

∫

RN

(gu+ hv) dx.

Since r > m, we have from (3.28) that I(tϕ1, tϕ2) < 0 for t > 0 samll. Thus

−∞ < cρ = inf
Bρ

I(u, v) < 0 and inf
∂Bρ

I(u, v) > 0, (3.29)

where ρ given in Lemma 2.5 and Bρ is open ball in Y centered at the origin with radius ρ
Let εn → 0 such that

cρ < εn < inf
Bρ

I(u, v)− inf
∂Bρ

I(u, v) (3.30)

Then, by Ekeland’s variational principle in [15]

cρ ≤ I(un, vn) < cρ + εn (3.31)

and

I(un, vn) < I(u, v) + εn ‖(un − u, vn − v)‖ (3.32)

Then it follows from (3.29) and (3.31) that
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I(un, vn) < cρ + εn ≤ inf
Bρ

I(u, v) + εn < inf
∂Bρ

I(u, v) (3.33)

so that (un, vn) ∈ Bρ.
We now consider the functional F : Bρ → R given by

F (u, v) = Iλ,µ(un, vn) + εn ‖(un − u, vn − v)‖ (3.34)

Then (3.32)shows that F (un, vn) < F (u, v) for (u, v) ∈ Bρ, (un, vn) 6= (u, v)

and thus (u, v) is a strict local minimum of F.
Moreover

t−1 (F (un + tϕ1, vn + tϕ2)− F (un, vn)) ≥ 0 (3.35)

for small t > 0 and ‖(ϕ1, ϕ2)‖ ≤ 1. Hence

t−1 (I(un + tϕ1, vn + tϕ2)− I(un, vn)) + εn ‖(ϕ1, ϕ2)‖ ≥ 0. (3.36)

Let t → 0+

〈I ′(un, vn), (ϕ1, ϕ2)〉+ εn ‖(ϕ1, ϕ2)‖ ≥ 0, ∀(ϕ1, ϕ2) ∈ B1 (3.37)

Replacing (ϕ1, ϕ2) in (3.37) by (−ϕ1,−ϕ2), we get

−〈I ′(un, vn), (ϕ1, ϕ2)〉+ εn ‖(ϕ1, ϕ2)‖ ≥ 0, ∀(ϕ1, ϕ2) ∈ B1. (3.38)

So that

‖I ′(un, vn)‖ ≤ ε. (3.39)

Therfore, there is a sequence {(un, vn)} ⊂ Bρ such that I ′λ,µ(un, vn) → cρ < 0 and

I ′λ,µ(un, vn) → 0 in Y −1as n→ ∞.

By Lemma 3.3 {(un, vn)} has a convergent subsequence in X , still denoted by {(un, vn)} ,
such that (un, vn) → (u2, v2) in X.

Thus (u2, v2) is a solution of (1.1) with I ′(u2, v2) < 0. Then the proof of theorem 1.1 is

complete.

4 Proof of Theorem 1.2

To prove of solution for the system (1.1), we introduce the Nehari manifold.

N = {(u, v) ∈ Y \ (0, 0) : I ′(u, v)(u, v) = 0} (4.1)

that is, (u, v) ∈ N if and only if (u, v) 6= 0 and

‖u‖mE + ‖v‖mE =

∫

RN

(F (u, v) + λ |u|q + µ |v|q) dx. (4.2)

Furthermore, we define the fibering maps φ(t) = I(u, v) for t > 0. Clearly, (u, v) ∈ N if

and only if φ′(1) = 0 and, more generally, (tu, tv) ∈ N if and only if φ′(t) = 0, that is, elements

in N correspond to stationary points of fibring maps φ(t). By definition, we have

φ(t) =
tm

m
(‖u‖mE + ‖v‖mE )−

tr

r

∫

RN

F (u, v)dx

−
tq

q

∫

RN

(λ |u|q + µ |v|q) dx,

and
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φ′(t) = tm−1 (‖u‖mE + ‖v‖mE )− tr−1

∫

RN

F (u, v)dx

− tq−1

∫

RN

(λ |u|q + µ |v|q) dx.

Notice that, if (u, v) ∈ N , then

I(u, v) = (
1

m
−

1

q
) (‖u‖mE + ‖v‖mE ) + (

1

q
−

1

r
)

∫

RN

F (u, v)dx (4.3)

= (
1

m
−

1

r
) (‖u‖mE + ‖v‖mE ) + (

1

r
−

1

q
)

∫

RN

(λ |u|q + µ |v|q) dx.

In the following, we derive some properties for the Nehari manifold N .

Lemma 4.1. Let p < q < r and (H2). then the Nehari manifold N 6= ∅.

Proof. Let (u, v) ∈ Y, (u, v) 6= 0. consider the following function for t > 0,
γ(t) = I ′(tu, tv)(tu, tv) = tm (‖u‖mE + ‖v‖mE )−tr

∫

RN F (u, v)dx−tq
∫

RN (λ |u|q + µ |v|q) dx.
Since p < q < r, it follows that γ(t) > 0 for small t > 0, and γ(t) → −∞ as t→ +∞.
Then there exists t1 > 0 such that γ(t1) = 0. Obviously, (t1u, t1v) 6= (0, 0).
We conclude that (t1u, t1v) ∈ N and N 6= ∅.

Lemma 4.2. Let the conditions in theorem 1.2 hold. then, the functional I is coercive and

bounded from below on N . Moreover

d = inf
(u,v)∈N

I(u, v).

Proof. Let (u, v) ∈ N . Then it follows from (2.3) and (4.2) that

‖u‖mE + ‖v‖mE =

∫

RN

(F (u, v) + λ |u|q + µ |v|q) dx

≤ C0 (‖u‖
r
E + ‖v‖rE + ‖u‖qE + ‖v‖qE) (4.4)

where C0 = max {Srk1, Sq,max(|λ| , |µ|)}
Inequality (4.4) implies

2−k ≤ C0(‖(u, v)‖
r−m

+ ‖(u, v)‖
q−m

). (4.5)

If ‖(u, v)‖ ≤ 1, (4.5) gives 2−k ≤ 2C0 ‖(u, v)‖
q−m

.
So we have

‖(u, v)‖ ≥ min

{

1,
(

2k+1C0

)

1
q−m

}

:= C1, ∀(u, v) ∈ N . (4.6)

Therfore, if (u, v) ∈ N , we have from (4.3) that

I(u, v) ≥ (
1

m
−

1

q
) (‖u‖mE + ‖v‖mE ) ≥ C2

where C2 = 2−k( 1
m − 1

q )C
p
1 > 0.

Thus, the proof of Lemma 4.2 is finished.

Lemma 4.3. Let all conditions in Theorem 1.2 hold. Then, there exists a nonnegative function

(u0, v0) ∈ N such that d = inf(u,v)∈N I(u, v) = I(u0, v0).
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Proof. Let {(un, vn)} be a minimizing sequence for d in N . The fact I(un, vn) = I(|un| , |vn|)
implies that {(|un| , |vn|)} is also a minimizing sequence, so that you can assume from beginning

un, vn > 0 a.e in RN . Since I is coercive and bounded from below on N , the sequence {(un, vn)}
is bounded in Y . We can assume that, up to subsequence, (un, vn)⇀ (u0, v0) in Y.By Lemma??,

we have

un → u0, vn → v0 in Lr(RN ) ∩ Lq(RN )

and

un(x) → u0(x), vn(x) → v0(x) a.e. in R
N .

We now prove that (u0, v0) ∈ N and d = I(u0, v0).
Since (un, vn) ∈ N , then

‖un‖
m
E + ‖vn‖

m
E =

∫

RN

(F (un, vn) + λ |un|
q + µ |vn|

q) dx. (4.7)

By the weakly lower semi-continuity of norms, we have from (4.7).

‖u0‖
m
E + ‖v0‖

m
E ≤ lim inf

n→∞
(‖un‖

m
E + ‖vn‖

m
E ) (4.8)

≤

∫

RN

(F (u0, v0) + λ |u0|
q + µ |v0|

q) dx.

If the equality in (4.8) holds, then (u0, v0) ∈ N .

So, arguing by contradiction, we assume that

‖u0‖
m
E + ‖v0‖

m
E <

∫

RN

(F (u0, v0) + λ |u0|
q + µ |v0|

q) dx.

Let φ(t) = I ′(tu0, tv0)(tu0, tv0). Clearly, φ(t) > 0 for small t > 0 and φ(1) < 0. So that

there exists t ∈ (0, 1) such that φ(t) = 0 and (u0, v0) ∈ N . Then we have

d ≤ I(tu0, tv0) = tm(
1

m
−

1

q
) (‖u0‖

m
E + ‖v0‖

m
E ) + tr(

1

q
−

1

r
)

∫

RN

F (u0, v0)dx

< (
1

m
−

1

q
) (‖u0‖

m
E + ‖v0‖

m
E ) + (

1

q
−

1

r
)

∫

RN

F (u0, v0)dx

≤ lim inf
n→∞

(

(
1

m
−

1

q
) (‖un‖

m
E + ‖vn‖

m
E ) + (

1

q
−

1

r
)

∫

RN

F (un, vn)dx

)

≤ lim inf
n→∞

I(un, vn).

This contradiction prove that the equality in (4.8) holds and then (u0, v0) ∈ N and the proof

of Lemma (4.3) is completed.

Clearly, it is enough to prove that (u0, v0) is a critical point for I in Y, that is, I ′(u0, v0)(ϕ, ψ) =
0 for all (ϕ, ψ) ∈ Y and I ′(u0, v0) = 0 in Y ∗, where (u0, v0) is in the position of Lemma (4.3)

For every (ϕ, ψ) ∈ Y, we choose ε > 0 such that (u0 + sϕ, v0 + sψ) 6= 0 for all s ∈ (−ε, ε).
Define a function

w(s, t) = I ′(t (u0 + sϕ) , t (v0 + sψ))(t (u0 + sϕ) , t (v0 + sψ))

= ‖t (u0 + sϕ)‖
m
E + ‖t (v0 + sψ)‖

m
E − tr

∫

RN

F (u0 + sϕ, v0 + sψ)dx (4.9)

tq
(

λ ‖u0 + sϕ‖qq + µ ‖v0 + sψ‖qq

)

.

Then
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w(0, 1) = ‖u0‖
m
E + ‖v0‖

m
E −

∫

RN

F (u0, v0)dx (4.10)

−
(

λ ‖u0‖
q
q + µ ‖v0‖

q
q

)

and

∂w

∂t
= m (‖u0‖

m
E + ‖v0‖

m
E )− r

∫

RN

F (u0, v0)dx

− q
(

λ ‖u0‖
q
q + µ ‖v0‖

q
q

)

(4.11)

= (m− q) (‖u0‖
m
E + ‖v0‖

m
E ) + (q − r)

∫

RN

F (u0, v0)dx < 0.

So, by the implicit function Theorem, there exists a C1 function t(s) such that t(0) = 1 and

w(s, t(s)) = 0 for every s ∈ (−ε0, ε0) ⊂ (−ε, ε).
This also shows that t(s) 6= 0, at least for ε0 small enough.

Therfore, t(s)(u0 + sϕ, v0 + sψ) ∈ N . Denote t = t(s) and

χ(s) = I(t (u0 + sϕ) , t (v0 + sψ))

tm

m
(‖t (u0 + sϕ)‖

m
E + ‖t (v0 + sψ)‖

m
E ) (4.12)

−
tr

r

∫

RN

F (u0 + sϕ, v0 + sψ)dx

−
tq

q

(

λ ‖u0 + sϕ‖qq + µ ‖v0 + sψ‖qq

)

.

We see that the function χ(s) is differentiable and has a minimum point at s = 0. Therefore,

0 = χ′(s) = t′(0)w(0, 1) + I ′(u0, v0)(ϕ, ψ).

Since (u0, v0) ∈ N , it follows from (4.10) that I ′(u0, v0)(ϕ, ψ) = 0 for all (ϕ, ψ) ∈ Y and

thus I ′(u0, v0) = 0 in Y ∗. So, (u0, v0) is a critical point for I and then (u0, v0) is a weak solution

of the problem (1.1). Thus the proof of Theorem1.2 is completed.
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