Inclusion and convolution properties of a q-generalized class of convex functions

S. Verma, R. Kumar, M. M. Gour and P. Goswami

Communicated by Harikrishnan Panackal

MSC 2010 Classifications: Primary 30C45; Secondary 30C55.

Keywords and phrases: Analytic functions, convex functions, q-convex functions, q-derivative operator, convolution.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Corresponding Author: R. Kumar

Abstract We define and study geometric properties of functions in the class \mathcal{KK}_q which is a subclass of K_q , the class of q-convex functions. We prove that the well-known class K of convex univalent functions is properly contained in \mathcal{KK}_q . We obtain necessary and sufficient conditions for the functions to be in the class \mathcal{KK}_q . We also prove that the class \mathcal{KK}_q is closed under convolution with convex functions.

1 Introduction

In the last few decades, the q-calculus based upon the Jackson's q-derivative, D_q , have attracted the attention of a number of researchers due to its versatile applications in the field of Mathematical and Physical Sciences. In the recent years, researchers have also shown significance of the q-calculus in the field of Machine Learning and Artificial Intelligence. In 2020, Nielsen and Sun $[10]$ proposed new artificial neurons called q–neurons as stochastic neurons with its activation function relying on q-derivative. Recall that for a real function f Jackson ([\[5,](#page-6-2) [4\]](#page-6-3)) defined the q -derivative of f as follows:

$$
D_q f(x) = \begin{cases} \frac{f(x) - f(qx)}{(1-q)x}, & x \neq 0 \\ f'(0), & x = 0 \end{cases}
$$

where $0 < q < 1$. Note that $\lim_{q \to 1^{-}} D_q f(x) = f'(x)$. The main advantage of q-calculus is that it eliminates the need to calculate limits of ordinary derivatives. In 1990, Ismail et al. [\[3\]](#page-6-4) made use of the q -calculus in geometric function theory and presented a q -extension of a subclass of analytic univalent functions. To further explain the advancement of q -calculus in geometric function theory we need to introduce few standard notations.

Let A denote the class of analytic functions f defined in the open unit disk $\mathbb{E} = \{z \in \mathbb{C} :$ $|z|$ < 1} and normalized by $f(0) = f'(0) - 1 = 0$, thus functions in the class A has the form

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n.
$$
 (1.1)

Let S be the subclass of A whose functions are univalent in E. A function $f \in A$ is said to be starlike or convex if f maps E conformally onto a domain which is starlike or convex, respectively. The subclasses of S containing starlike (with respect to origin) and convex functions are denoted by S^* and K, respectively. For $0 \le \alpha \le 1$, the analytic characterizations of generalization of these classes are as follows:

$$
\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{S} \; : \; \text{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ z \in \mathbb{E} \right\}
$$

and

$$
\mathcal{K}(\alpha) = \left\{ f \in \mathcal{S} \, : \, \text{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathbb{E} \right\}.
$$

For $\alpha = 0$, $S^*(0) = S^*$ and $\mathcal{K}(0) = \mathcal{K}$. It is well-known that $f \in \mathcal{K} \iff zf' \in S^*$ and $\mathcal{K}\subsetneq\mathcal{S}^*\left(\frac{1}{2}\right)$ 2 $\big).$

Using q -derivative operator, Ismail et al. [\[3\]](#page-6-4) introduced and studied geometric properties of the class PS_q which is a q-generalized class of S^* . A function $f \in S$ belongs to class PS_q if

$$
\left|\frac{z}{f(z)}(D_qf)(z)-\frac{1}{1-q}\right|\leq \frac{1}{1-q}, \quad z\in\mathbb{E}.
$$

Note that as $q \to 1^-$, the closed disk $|w - (1 - q)^{-1}| \leq (1 - q)^{-1}$ transforms into right-half plane and the class PS_q becomes S^* . Since the induction of this paper, many researchers defined and studied various geometric properties of analytic univalent functions using q-derivative. For some recent investigations we refer the reader to $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ $[6, 7, 9, 11, 12, 15, 16, 13, 20, 21]$ and the references cited therein. A firm footing of the usage of the q -calculus in the context of geometric function theory is provided in the book [\[18\]](#page-6-15). In particular, Seoudy and Aouf [\[17\]](#page-6-16) introduced and studied the subclasses $\mathcal{S}_q^*(\alpha)$ and $\mathcal{K}_q(\alpha)$ as follows:

$$
\mathcal{S}_q^*(\alpha) := \left\{ f \in \mathcal{S} : \text{Re}\left(\frac{zD_q f(z)}{f(z)}\right) > \alpha, \ z \in \mathbb{E} \right\}
$$

$$
\mathcal{K}_q(\alpha) := \left\{ f \in \mathcal{S} : \text{Re}\left(\frac{D_q(zD_q f(z))}{D_q f(z)}\right) > \alpha, \ z \in \mathbb{E} \right\}.
$$

For $\alpha = 0$, $S_q^*(0) = S_q^*$ is called the class of q-starlike functions and $\mathcal{K}_q(0) = \mathcal{K}_q$ is called the class of q-convex functions. It is well-known that $f \in \mathcal{K}_q \iff zD_q f \in \mathcal{S}_q^*$. For two normalized analytic functions $f(z) = z + \sum_{n=1}^{\infty}$ $\sum_{n=2}^{\infty} a_n z^n$ and $F(z) = z + \sum_{n=2}^{\infty}$ $\sum_{n=2} A_n z^n$, their convolution, $f * F$, is given by

$$
(f * F)(z) = f(z) * F(z) = z + \sum_{n=2}^{\infty} a_n A_n z^n.
$$

Many researchers have studied convolution properties of subclasses of analytic functions and obtained several remarkable results. In particular, Ruscheweyh and Sheil-Small [\[14\]](#page-6-17) proved that the classes S^* and K are closed under convolution with convex functions. Although extensive work has been done in geometric function theory using q -calculus but some basic questions have not been answered yet. For example:

- (i) What is the inclusion relation between \mathcal{K}_q and \mathcal{S}_q^* ?
- (ii) How the functions in \mathcal{K}_q behave under convolution with functions in \mathcal{S}_q^* and \mathcal{K}_q ?

In an attempt to answer such questions, we define and study inclusion and convolution properties of a subclass, \mathcal{KK}_q , of \mathcal{K}_q .

Definition 1.1. For each q ($0 < q < 1$), a function $f \in S$ is said to belong to the class \mathcal{KK}_q if

$$
\operatorname{Re}\left(1+\frac{z\left(D_qf(z)\right)'}{D_qf(z)}\right)>0,\ z\in\mathbb{E}.\tag{1.2}
$$

Remark 1.2. One can see that $f \in \mathcal{KK}_q$ if and only if $zD_q f \in \mathcal{S}^*$.

We prove that the well-known class K of convex univalent functions is properly contained in \mathcal{KK}_q and the class \mathcal{KK}_q is properly contained in \mathcal{K}_q , the class of q-convex functions. We obtain necessary and sufficient conditions for the functions to be in the class \mathcal{KK}_q . We also prove that the class \mathcal{KK}_q is closed under convolution with convex univalent functions.

2 Main Results

For any $f \in A$ with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, the q-derivative D_q of f can be written as:

$$
zD_q f(z) = \frac{f(z) - f(qz)}{1 - q} = \sum_{n=1}^{\infty} \frac{1 - q^n}{1 - q} a_n z^n = \sum_{n=1}^{\infty} [n]_q a_n z^n = f(z) * L_q(z),
$$

where

$$
[n]_q = \frac{1 - q^n}{1 - q} = 1 + q + q^2 + \dots + q^{n-1}
$$

is the q-integer number and

$$
L_q(z) = \frac{z}{(1-z)(1-qz)}.
$$

Note that as $q \to 1^-$, $[n]_q \to n$ and $L_q(z) \to k(z) = z/(1-z)^2$.

The proof of our first main result relies on the following lemma developed by Ruscheweyh and Sheil-Small [\[14\]](#page-6-17).

Lemma 2.1. Let F and G be analytic in \mathbb{E} with $F(0) = G(0) = 0$. If F is convex and G is *starlike, then for each analytic function* f *satisfying* $Re f(z) > 0$ *in* E *, we have*

$$
Re\left(\frac{(F * Gf)(z)}{(F * G)(z)}\right) > 0, \quad z \in \mathbb{E}.
$$

We are now in position to state and prove our first main result.

Theorem 2.2. $K \subsetneq KK_q$.

Proof. Using the fact that $zf'(z) = f(z) * k(z)$ and $zD_qf(z) = f(z) * L_q(z)$, we have

$$
\begin{aligned}\n\text{Re}\left(1 + \frac{z(D_q f(z))'}{D_q f(z)}\right) &= \text{Re}\left(\frac{(zD_q f(z))'}{D_q f(z)}\right) \\
&= \text{Re}\left(\frac{z(zD_q f(z))'}{zD_q f(z)}\right) \\
&= \text{Re}\left(\frac{f(z) * L_q(z) * k(z)}{f(z) * L_q(z)}\right) \\
&= \text{Re}\left(\frac{f(z) * L_q(z) \left(\frac{L_q(z) * k(z)}{L_q(z)}\right)}{f(z) * L_q(z)}\right)\n\end{aligned} \tag{2.1}
$$

Since L_q is a starlike function of order $(1 - q)/2(1 + q)$ (see [\[11\]](#page-6-8)), thus

$$
\operatorname{Re}\left(\frac{L_q(z) * k(z)}{L_q(z)}\right) = \operatorname{Re}\left(\frac{zL_q'(z)}{L_q(z)}\right) > \frac{1-q}{2(1+q)} > 0, \ z \in \mathbb{E}.\tag{2.2}
$$

If $f \in \mathcal{K}$ then using Lemma [2.1](#page-2-0) in conjunction with conditions [\(2.1\)](#page-2-1) and [\(2.2\)](#page-2-2) we have

$$
\operatorname{Re}\left(1+\frac{z\left(D_qf(z)\right)'}{D_qf(z)}\right)>0,\ z\in\mathbb{E},
$$

i.e., $f \in \mathcal{KK}_q$ and thus $\mathcal{K} \subseteq \mathcal{KK}_q$. In order to prove that $\mathcal{K} \subsetneq \mathcal{KK}_q$ we present a function which is in the class \mathcal{KK}_q but not in the class \mathcal{K} . Let $f_0(z) = z + \frac{1}{2z}$ $\frac{1}{2[2]_q} z^2 \in \mathcal{KK}_q$. One can easily verify that

$$
\operatorname{Re}\left(1+\frac{z(D_qf_0(z))'}{D_qf_0(z)}\right)=\operatorname{Re}\left(\frac{1+z}{1+\frac{1}{2}z}\right)>0, \quad z\in\mathbb{E}.
$$

Further, using the fact that for all $0 < q < 1$, $\frac{1}{2[2]_q} = \frac{1}{2(1-q)}$ $\frac{1}{2(1+q)} > \frac{1}{4}$ $\frac{1}{4}$, in conjunction with the condition that $z + az^2 \in \mathcal{K}$ iff $|a| \leq \frac{1}{4}$, one can conclude that $f_0 \notin \mathcal{K}$. Hence, $\mathcal{K} \subsetneq \mathcal{KK}_q$. \Box Remark 2.3. Keeping in mind condition [\(2.2\)](#page-2-2), we can state Theorem 2.2 in a generalized form as follows:

$$
\mathcal{K} \subsetneq \mathcal{K}\mathcal{K}_q \left(\frac{1-q}{2(1+q)} \right). \tag{2.3}
$$

Further, note that if $q \to 0^+$ then $D_q f(z) \to \frac{f(z)}{z}$ $\frac{\sqrt{2}}{z}$ and consequently condition [\(2.3\)](#page-3-0) reduces to

 $\mathcal{K}\subsetneq\mathcal{S}^*\left(\frac{1}{2}\right)$

Our next result is an immediate consequence of the geometric interpretation of starlike functions provided in [\[19\]](#page-6-18). For the sake of completeness, we include the detailed proof here.

2 $\big).$

Theorem 2.4. $S^* \subset S^*_q$

Proof. Let $f \in S^*$. Then, for any fixed $\theta \in \mathbb{R}$ and $z = re^{i\theta}$ in \mathbb{E} , the condition

$$
\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0,
$$

can be rewritten as

$$
\operatorname{Re}\left\{\frac{r}{f(re^{i\theta})}\frac{\partial f(re^{i\theta})}{\partial r}\right\} \ge 0, \quad 0 \le r < 1.
$$

Further, if $f = u + iv$, then the above condition is equivalent to

$$
u\frac{\partial u}{\partial r} + v\frac{\partial v}{\partial r} \ge 0, \quad 0 \le r < 1,
$$

which implies that the function $|f(re^{i\theta})| = \sqrt{\frac{e^{i\theta}}{n}}$ $u^2 + v^2$ is strictly increasing with $r, 0 \le r < 1$. Thus,

$$
|f(qz)| \le |f(z)| \text{ for } 0 < q < 1,
$$

and

$$
\operatorname{Re}\left(\frac{zD_qf(z)}{f(z)}\right) = \operatorname{Re}\left(\frac{z}{f(z)}\frac{f(z)-f(qz)}{z-qz}\right) = \frac{1}{1-q}\operatorname{Re}\left(1-\frac{f(qz)}{f(z)}\right) \ge 0.
$$

Hence, $f \in S_q^*$. This completes the proof.

Corollary 2.5. $\mathcal{KK}_q \subseteq \mathcal{K}_q$.

Proof. Let $f \in \mathcal{KK}_q$. Then, $zD_q f(z) \in \mathcal{S}^*$ and consequently, $zD_q f(z) \in \mathcal{S}_q^*$, which implies that $f \in \mathcal{K}_q$. Moreover, one can easily verify that $f_1(z) = z + \frac{1}{|z|}$ $z^2 \in \mathcal{K}_q$ but $f_1 \notin \mathcal{KK}_q$. Hence, $[2]_q^2$ $\mathcal{K}\mathcal{K}_q \subsetneq \mathcal{K}_q$. \Box

Remark 2.6. $K \subsetneq \mathcal{KK}_q \subsetneq \mathcal{K}_q$.

In the next result, we will obtain a necessary and sufficient condition for functions $f \in S$ to be in the class \mathcal{KK}_q .

Theorem 2.7. $f \in \mathcal{KK}_q$ if and only if

$$
f(z) * \frac{z}{(1-z)(1-qz)} * \left[\frac{z\left(1+\frac{\xi-1}{2}z\right)}{(1-z)^2} \right] \neq 0, \quad |\xi| = 1, \ 0 < |z| < 1. \tag{2.4}
$$

Proof. A necessary and sufficient condition for a function $f \in S$ to be in the class \mathcal{KK}_q is that

$$
\operatorname{Re}\left(1+\frac{z(D_qf(z))'}{D_qf(z)}\right)>0, \ z\in\mathbb{E}.
$$

$$
\Box
$$

Since $1 + \frac{z(D_q f(z))'}{D_g f(z)}$ $\frac{\partial^2 u}{\partial q}$ $\frac{\partial^2 u}{\partial q}$ = 1 at $z = 0$, therefore, the above condition is equivalent to

$$
1+\frac{z\left(D_qf(z)\right)'}{D_qf(z)}\neq \frac{\xi-1}{\xi+1},\quad |\xi|=1,\ \xi\neq -1,\ 0<|z|<1.
$$

By simple algebraic calculation, we obtain the required condition, i.e.,

$$
0 \neq \frac{1}{2} \left\{ (\xi + 1) z (zD_q f(z))' - (\xi - 1) zD_q f(z) \right\}
$$

=
$$
\frac{1}{2} \left\{ f(z) * \frac{z}{(1 - z)(1 - qz)} * \left[(\xi + 1) \frac{z}{(1 - z)^2} - (\xi - 1) \frac{z}{1 - z} \right] \right\}
$$

=
$$
f(z) * \frac{z}{(1 - z)(1 - qz)} * \left[\frac{z \left(1 + \frac{\xi - 1}{2} z\right)}{(1 - z)^2} \right].
$$

In the next result, we obtain another sufficient condition for the functions to be in the class \mathcal{KK}_q .

Theorem 2.8. Let
$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in S
$$
. If

$$
\sum_{n=2}^{\infty} n[n]_q |a_n| \le 1,
$$
 (2.5)

then, $f \in \mathcal{KK}_q$ *.*

Proof. Substituting $f(z) = z + \sum_{n=1}^{\infty}$ $n=2$ $a_n z^n$ in the left hand side of [\(2.4\)](#page-3-1), we get

$$
\begin{split}\n\left| f(z) * \frac{z}{(1-z)(1-qz)} * \left[\frac{z\left(1+\frac{\xi-1}{2}z\right)}{(1-z)^2} \right] \right| \\
&= \left| \left(z + \sum_{n=2}^{\infty} [n]_q a_n z^n \right) * \left[\frac{z\left(1+\frac{\xi-1}{2}z\right)}{(1-z)^2} \right] \right| \\
&= \left| \left(z + \sum_{n=2}^{\infty} [n]_q a_n z^n \right) * \left[z + \sum_{n=2}^{\infty} \left(\frac{\xi+1}{2}n - \frac{\xi-1}{2} \right) z^n \right] \right| \\
&= \left| z + \sum_{n=2}^{\infty} [n]_q \left(\frac{\xi+1}{2}n - \frac{\xi-1}{2} \right) a_n z^n \right| \\
&\geq |z| \left(1 - \sum_{n=2}^{\infty} [n]_q \left| \frac{\xi+1}{2}n - \frac{\xi-1}{2} \right| |a_n||z|^{n-1} \right) \\
&\geq |z| \left(1 - \sum_{n=2}^{\infty} [n]_q \left(\frac{|\xi|}{2} (n-1) + \frac{1}{2} (n+1) \right) |a_n| \right) \\
&= |z| \left(1 - \sum_{n=2}^{\infty} n [n]_q |a_n| \right).\n\end{split}
$$

This last expression is nonnegative under given hypothesis [\(2.5\)](#page-4-0) and so in view of Theorem [2.7,](#page-3-2) $f \in \mathcal{KK}_q$. \Box

 \Box

In this last part of the paper, we explore convolution properties of functions in the class \mathcal{KK}_q . We prove that the class \mathcal{KK}_q is closed under convolution with the functions in class \mathcal{K} .

Theorem 2.9. *If* $f \in \mathcal{K}$ *and* $g \in \mathcal{KK}_q$ *, then* $f * g \in \mathcal{KK}_q$ *.*

Proof. Setting $h(z) = f(z) * g(z)$, we have $zD_qh(z) = f(z) * zD_qg(z)$. Since $zD_qg(z) \in S^*$ and $f \in \mathcal{K}$, thererfore $f(z) * zD_q g(z) \in \mathcal{S}^*$, that is, $zD_q h(z) \in \mathcal{S}^*$ and consequently, $h = f * g \in$ \mathcal{KK}_a .

For $0 < q < 1$, define

$$
F_q(z) = \frac{1}{1-q} \log \left(\frac{1-qz}{1-z} \right) = z + \sum_{n=2}^{\infty} \frac{[n]_q}{n} z^n, \quad z \in \mathbb{E}.
$$

Since $F_q \in \mathcal{K}$ (see [\[1\]](#page-6-19)), therefore, by setting $f = F_q$ in Theorem [2.9,](#page-5-0) we obtain the following corollory.

Corollary 2.10. If
$$
g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{KK}_q
$$
, then $(F_q * g)(z) = z + \sum_{n=2}^{\infty} \frac{[n]_q}{n} b_n z^n \in \mathcal{KK}_q$.

For $f \in S$ and Re $c > 0$, Bernardi [\[2\]](#page-6-20) defined an integral operator $\mathfrak{L}_c[f]$, as

$$
\mathfrak{L}_c[f](z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt, \quad z \in \mathbb{E}.
$$

One can see that the Bernardi integral operator $\mathfrak{L}_c[f](z) = (\mathcal{F}_c * f)(z)$ where $\mathcal{F}_c(z) = z +$ \sum^{∞} $n=2$ $1+c$ $\frac{1+e}{n+e}z^n \in \mathcal{K}$ (see [\[8\]](#page-6-21)). Thus, by setting $f = \mathcal{F}_c$ in Theorem [2.9,](#page-5-0) we obtain the following corollory.

Corollary 2.11. *If* $g \in \mathcal{KK}_q$, then for $Re\ c > 0$, $\mathfrak{L}_c[g] \in \mathcal{KK}_q$.

By using above results, one can obtain a number of functions in the class \mathcal{KK}_q . We close this paper by presenting two such functions.

(i) If $g_1(z) = z + \frac{z^3}{2!}$ $\frac{z^3}{[3]_q} + \frac{z^5}{[5]}$ $\frac{z^5}{[5]_q} + \cdots$, then, $zD_qg_1(z) = z + z^3 + z^5 + \cdots = \frac{z}{1-z}$ $\frac{z}{1-z^2} \in \mathcal{S}^*$. Therefore, by making use of Corollary 2.10 , we get that the function

$$
(g_1 * F_q)(z) = z + \frac{z^3}{3} + \frac{z^5}{5} + \dots \in \mathcal{KK}_q.
$$

(ii) If $g_2(z) = z + \sum_{n=1}^{\infty}$ $n=2$ n $\frac{n}{[n]_q} z^n$, then, $zD_q g_2(z) = \frac{z}{(1-z)^2} \in \mathcal{S}^*$. Therefore, by making use of Corollary [2.10,](#page-5-1) we get that the function

$$
(g_2 * F_q)(z) = z + z^2 + z^3 + \dots = \frac{z}{1 - z} \in \mathcal{KK}_q.
$$

3 Concolusion

In this paper, we defined an analytic subclass KK_q using q-derivatives that necessarily contains the class of convex functions. We investigated various geometric properties of functions in the class \mathcal{KK}_q using the technique of convolution.

References

- [1] R. W. Bernard, and C. Kellogg, Application of convolution operators to problems in univalent function theory, *Michigan Math. J.* 27 (1980), 81–94.
- [2] S. D. Bernardi, Convex and starlike univalent functions, *Trans. Amer. Math. Soc.* 135 (1969), 429–446. MR0232920
- [3] M. E. H. Ismail, E. Merkes, and D. Styer, A generalization of starlike functions, *Complex Variables* (1990) 14, 77–84.
- [4] F. H. Jackson, On q-functions and a certain differential operator, *Trans. Royal Soc. Edinburgh* (1909) 46, 253–281.
- [5] F. H. Jackson, On q-definite integrals, *The Quarterly J. Pure Appl. Math.* (1910) 41, 193–203.
- [6] B. Khan, H. M. Srivastava, N. Khan, M. Darus, Q. Z. Ahmad and M. Tahir, Some general families of q-starlike functions associated with the Janowski functions, *Filomat* (2019) 33, no. 9, 2613–2626.
- [7] A. O. Lasode and T. O. Opoola, Some new results on a certain subclass of analytic functions associated with q-differential operator and subordination, *Palest. J. Math* (2023) 12 (3), 115–127.
- [8] S. S. Miller and P. T. Mocanu, *Differential subordinations*, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000. MR1760285
- [9] Sh. Najafzadeh, Some inequalities relative to convex and close-to-convex functions involving q -derivative, *Palest. J. Math* (2021) 10 (2), 700–703.
- [10] F. Nielsen and K. Sun, q-neurons: neuron activations based on stochastic Jackson's derivative operators, *IEEE Trans Neural Netw Learn Syst* (2020) 32 (6), 2782–2789.
- [11] K. Piejko and J. Sokół, On convolution and q-calculus, *Bol. Soc. Mat. Mex.* (2020) 26, 349–359.
- [12] K. Piejko, J. Sokół and K. Trabka-Wiecław, On q-Calculus and Starlike Functions, *Iran. J. Sci. Technol. Trans. A Sci.* (2019) 43, 2879–2883.
- [13] K. Raghavendar and A. Swaminathan, Close-to-convexity of basic hypergeometric functions using their Taylor coefficients, *J. Math. Appl.* (2012) 35, 111–125.
- [14] S. Ruscheweyh and T. Sheil-Small, *Hadamard products of Schlicht fucntions and the Pólya-Schoenberg conjecture*, Comment. Math. Helv. 48 (1973), 119–135.
- [15] K. A. Selvakumaran, J. Choi and S. D. Purohit, Certain subclasses of analytic functions defined by fractional q-calculus operators, *Appl. Math. E-Notes* (2021) 21, 72–80.
- [16] T. M. Seoudy, Certain subclasses of multivalent functions associated with q-analogue of Mittag Leffler functions, *Palest. J. Math* (2022) 11 (2), 187–194.
- [17] T. M. Seoudy, and M. K. Aouf, Cofficient estimates of new classes of q-starlike and q-convex functions of complex order α, *J. Math. Inequal.* (2016) 10, 135–145.
- [18] H. M. Srivastava and S. Owa, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in *Univalent functions, fractional calculus, and their applications (Kōriyama, 1988)*, 329–354, Ellis Horwood Ser. Math. Appl, Horwood, Chichester.
- [19] T. Sheil-Small, Starlike univalent functions, *Proc. Lond. Math. Soc.* (1970) 21 (3), 577–613.
- [20] S. Verma, R. Kumar and J. Sokół, A conjecture on Marx-Strohhacker type inclusion relation between q-convex and q-starlike functions, *Bull. Sci. Math.* (2022) 174, 103088.
- [21] H. E. O. Uçar, Coefficient inequality for q-starlike functions, *Appl. Math. Comput.* 276 (2016), 122–126.

Author information

S. Verma, Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Karnataka-576104, India.

E-mail: sarika.16984@gmail.com, sarika.verma@manipal.edu

R. Kumar, Department of Mathematics, DAV University, Jalandhar-144012, India. E-mail: rajgarg2012@yahoo.co.in

M. M. Gour, Department of Mathematics, Vivekanada Global University, Jaipur-303012, India. E-mail: murlimanohar.gaur@vgu.ac.in

P. Goswami, Department of Mathematics, Dr B. R. Ambedkar University Delhi, Delhi-110006, India, India. E-mail: pranaygoswami83@gmail.com, pranay@aud.ac.in

Received: 2023-04-14 Accepted: 2024-01-19