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Abstract This paper deals with Hermite-Hadamard inequality for harmonic convex function
using g.,-integral is given. In the end, the estimation of the lower and upper bound of g, -integral
using obtained results is given.

1 Introduction

g-calculus is often known as Quantum calculus as it studies calculus without boundaries. Eu-
ler was the first to introduce the notion of q in his work Introductio in Analysin Infinitorum[1].
After Euler Jackson introduce the g-Jackson integral. It was the methodical beginning point for
g-calculus. We can analyse the set of non-differentiable functions with the help of g-derivative by
substituting difference operator in the classical derivative.The study of g-calculus has seen sig-
nificant growth as it is helpful in physics, mechanics and mathematics. Also g-calculus has appli-
cation the Mock theta functions, theory of finite differences, hypergeometric functions, Sobolev
spaces, Bernoulli and Euler polynomials, umbral calculus, operator theory, gamma function the-
ory, quantum mechanics, multiple hypergeometric functions, combinatorics, analytic number
theory multiple hypergeometric functions.

In mathematics, an inequality is a difference between two values that is used to represent the
relationship between two things. Simply said, a “inequality" occurs when two quantities are not
equal. With the advent of calculus in the nineteenth century, the notion of inequalities and its
role grew highly significant. The H-H inequality (Hermite-Hadamard inequality) is crucial to
understanding convex function theory. In order for a function to be convex in an open interval of
real numbers, it gives a necessary and sufficient condition [21]. Jensen’s inequality, another es-
sential inequality in the research of convex functions, is interpolated by the Hermite-Hadamard
inequality as well [10].The H-H inequality has had a significant impact on integral inequalities,
numerical analysis, special means theory, approximation theory, information theory, optimiza-
tion theory [10]. H-H inequality for convex function is given by :
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Convex functions have been generalized, refined and extended to different classes, such as
: m-convex function[8], s-convex function[6], P-function[5], exponential convex function[10],
etc. The H-H inequality has been extended and generalised for many classes of functions by a
number of mathematicians[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

The paper is organized as follows. Section 1.1 contains the basic definitions and preliminary
results which are useful for further discussion. In section 2, H-H inequality for harmonic convex
function using ¢.|-integral and related inequalities are discussed. The application of the obtained
results is given in the section 3. The conclusion and the list of references are given at the end.

1.1 Preliminaries
Definition 1.1. A set J is harmonic convex, if
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Iscan et al. [9] defined the harmonic convex functions.

Definition 1.2. Harmonic convex function is a function f : J C (0, +00) — R, if

C]d1
Haritgs) <=0+ @), vaded ceotl a2

Let us introduced the following notation,

o == =1+a+a+-+¢"" e (01).

The following expression,

f(Q) — f(a€)
D =r o2 0. 1.3
llf(C) (l _ q)c ’ C 7é ( )
is called the g-derivative of f at ¢ € [c1, d].
The definite q-Jackson integral is defined as
di o0
[ 1(Qdi¢= (1 -g)d > q"f(dig), (1.4)
n=0
provided the sum converges absolutely,
and
d, d, cy
FOd= [ 7Od~ [ 1O (15)
c 0 0

Definition 1.3. For a continous function f : [¢;,d;] — R, the g.,-derivative is of f at ¢ € [c1,d]

is defined as ) - flat + (1 Jer)
—J\q —q)a
oDl = T e

The function f is said to be ¢, -differntiable on [¢;, d;] if ., D, f(¢) exists for all ¢ € [¢;,d4].

C#cr (1.6)

Definition 1.4. For a continuous function f : [c¢1,d;] — R, the g.,-definite integral (Reimann
type g-integral) on ¢ € [c1, d,] is defined as

C (&

d, d,
fQ)dli¢ = f(€) e1dyC
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In [13], Alp et al. established the H-H inequality for convex function using g, -definite inte-
gral

Theorem 1.5. For convex differentiable function f : [c1,di] — R and 0 < q < 1, the following
inequality holds:

d 1 4 d
(58 < ot [ H©ad < A (7
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Bermudo et al. [17] derived the H-H the inequality for convex function using ¢%'-definite
integral.

Theorem 1.6. For convex differentiable function f : [c1,di] — R and 0 < q < 1, the following
inequality holds:

c1 + qd 1 & d fler) +qf(dr)
1) S [ 0t = HEER 9

Using Theorem 1.5 and Theorem 1.6, next corollary can be derived easily.

Corollary 1.7. For convex differntiable function f : [c1,d;] = Rand 0 < q < 1, the following
inequalities holds:

d, d
f(qc‘+dl)+f(cl+qdl)< ! { F(0) edo + f(C)d‘qu}
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2 Main Results

This section begins with lemma stating the relation between convex function and harmonic con-
vex function. H-H inequality for harmonic convex function using ¢, -integral is given.

Lemma 2.1.[15] If [e1,di] C J C (0,00) and if we consider the function g : [1-, =] = R,

defined by ¢(¢) = f(%), then g is convex in the classical sense on [dil, c%] if and only if f is
harmonic convex function on [cy, d1].

Lemma 2.2. [16] Let f, g : [c1,d1] C (0,00) = R be so that g(¢) = Cf({) for ¢ € [c1,d1]. Then
[ is harmonic convex function on [cy, d;| iff g is convex function on [cy, d;].

In the next theorem, the Hermite-Hadamard inequality for harmonically convex function is
provided.

Theorem 2.3. Let f : [c1,d1] — R be harmonic convex differentiable function on (ci,d;) and
0<qg< 1. Then

ger +dy cld1<q+1>> ( (cld1<q+1>>2> ,<c1d1<q+1>)
1+4+¢ f< ger +dy +{ad gcr +di ! qcy + di
d
: (craf(cr) +dif(dr))
N i CF(Q) e1dgC < p :

2.1)

Proof. Since f : [c¢1,d;] — R is harmonically convex function on [cy, d;], the function g(¢) :
[e1,di] = R, g(¢) = ¢f(¢) is convex on [c1, d;]. Also g is differntiable function on (¢, d; ), the

tangent line at the point c‘qdc‘]g;rl‘” € [e1,dy] can be expressed as a function
Cld1(q+1)) ,<C1d1(q+1))< cldl(l—i-q))
YY) =gl ————= | + - . 2.2
©) g< qe1 +dy I\ ger+ di ¢ qe1 +di (22)

Also g is a convex function on [y, d;], then the following inequality is satisfied,

W) = g(cldl(q“)) +g'<cld1(q+”) (c - C‘dl(”q)) <g0) @3

qcy + dy qcy + dy qcr + dy
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forall ¢ € [c1,dy].
¢, -integrating the inequality (2.3) on [c1, dy],

d;
| 9@ adi
cy
i cldl(q—i—l) f cldl(q-i-l) Cldl(q+1)
= afqigr ) AT ) (¢ - 22T g
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X {(1 —q)(di — m)iqng(q”dl +(1- q")a) - M(dn - cl)}

o qc1 + di
C|d1(q+l)) ,(cldl(q+l)>[ qc1 + di
= (dy — + dy —
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qci + d;
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= (dy — +
(d Cl){ qcr + dy ( qci + di qc1 + dy qc + dy
+f<61d1 qg+1) ger +di adi(l+q)
qcl-i-dl 1+q q01+d1
qc1 + di adi(g+1 )) < (Cldl(q+l))2> /(Cldl(q+l)):|
= (d — + d| —
(di 01){ 1 +gq f( 01+ di cidy 7+ dy f pr——
d;
< Cf(C)e doC. 2.4
c
Thus
ger + d, cld1(q+1)> ( (Cldl(q+1)>2> /<Cld1(Q+l)>
dy — (&g 1) adaig+ 1)
1+gq f( ger + di tlaa gcr +di / gcr +di
dy
< c . .
< [ @3)

ci

which proves the first inequality.

For the second inequality, use the fact that f : [c;,d;] — R is harmonically convex function
on [cy, d;], the function g(¢) : [e1,d1] — R, g(¢) = ¢f(¢) is convex on [cy,d;]. It implies that
g(¢) < r(¢), where () is the secant that joins the points (¢, g(c)) and (dy, g(dy)), given as

r(¢) = g(dr) + S =9 -y

d1 —C
=dif(dy) + dlf(dclll) : zllf(CI) (C—di)
c1dy (f(er) = f(dy)) dif(d1) —e1f(cr)
- dy —ci * ( di—c )C

_adi(f(e) ~ f(d) | (dlf(dl) - le(cl)><, 2.6)

di —c1 dy —ci
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qc,-integrating inequality (2.6),

d
Cf(C) edyC <

erd(f(er) — F(d) / et

o di —c
d
+ (dlf(dji) - le(c])) CerdyC
1—C1 o
= cldl(f(cl) — f(dl)) + (dlf(dl) - le(cl)qf;:_ldl
_ (argf(er) +dif(di))(di — 1)
B q+1 '
Thus,
1 d (c1gf(e1) +dif(di))
e ) FOadi < p . @.7)
which gives the second inequality. O

Theorem 24. Let f : [c1,d1] — R be harmonically convex differentiable function on (cy,d;)
and 0 < g < 1. Then

ger +di (01d1(q+1)> n (cldl(q01+d1) B <C1d1(q+1))2) /<01d1(q+1)>

1+g¢ c1 + qd; c1 + qd; c1 + qd; c1 + qd;
1 4 c1qf(c1) +di f(dy)
< e dgC < . (2.8
<i=al Cf(€)erdyC . (2.8)

Proof. Since f : [c1,di] — R is harmonically convex function on [c1, d;], the function g(¢) :
[e1,di] = R, g(¢) = ¢f(¢) is convex on [c1, d;]. Also g is differntiable function on (¢y, d; ), the

tangent line at the point C‘cﬂ;:lrl’” € [e1, d1] can be expressed as a function
Cldl(q+1)> /(Cldl(qu]))( Cldl(q+1)>
¥ =g| —————= | + — . 29
10 g( ¢ + qd; g c1 + qd; ¢ c1 + qd; 2:9)

Also g is a convex function on [c1, d], then the following inequality is satisfied,

(0 =g AOUED) g (et D (ot D) o). @ao)

c1 +qd; c1 +qd; c1 +qd;

forall ¢ € [c1,dy].

qc, -integrating the inequality (2.10) on [c1, d1], we have



Quantum Hermite-Hadamard inequality for harmonic convex function 193

d;

¥ (C) cl qu

<1

d,
:/ [g(cldl(q+ 1)) +g,<01d1(q+ l)) (( crdi(q + 1))} Ly
. c1 + qdy c1 + qdy c1 + qdy

" _CI)g(cldl(q—i- 1)> +g/(cld1(q+ 1)> /d <<_ crdi (g + 1)> o

¢ + qd; c1 + qd; ¢ + qd;
Cldl(q+1)> /(Cldl(q+1)>
— (dy — aagr?) aagrl
(d CI)g( ¢+ qdy t9 c1 + qdy
> Cldl(q—l—l) :|
1 q)(di — mgrdy + (1= q)ey ) = Q9T D g
X [( q)(di Cl)gq (q 1+ (1—¢ )Cl> P (dy —e1)
cidi(q + 1)) ,(C1d1(q+ 1)) [qc‘l +d;
— (ds — amtgrl) di —
( ! CI)g( c1 + qd; t9 c1 + qd; q+1 ( ! CI)
cidi(g+1) }
_ae\aT e
c1 + qd; (di =)
_ (d . ){Cldl(q+ 1) (Cldl(q+ 1)) n |:Cld1(q+ 1) ,(Cldl(q+ 1))
e c1 + qd; ¢ +qd; c1 + qdy c1 + qdy
+f<01d1(q+1)>} y [qm +di Cld](1+q):|}
c1 + qd; 1+¢ c1 + qd;
qcl—i-dl cldl(q+1)>
= d —
(d Cl){ 14+g¢ f( c1 + qd;

. (clqucl +di) <c1d1<q+ 1>>2)f,(c1d1<q+ 1))}
c1 + qd; c1 + qd; c1 +qd;
d

< | CF(QedoC

C1

Thus
qcy + d; (Cldl(q+ 1)) I (cldl(qcl +d1) B (Cldl(q—l- 1))2> /<Cld1(q—|— 1))
l+g¢ c1 +qd c1 +qd c1+qd c1 +qd
dy
< e dgC. 2.11
< g | Qe @11)
which proves the first inequality. The second inequality follows similarly as Theorem 2.3. O

Theorem 2.5. Let f : [c1,d;] — R be harmonically convex differentiable function on (cy,d,)
and 0 < q < 1. Then

qcl+d1f c1 +d; n (Cl+d1)(q01+d1)_ c1 +d; 2 f/ c+dp
1+¢ 2 2(1+q) 2 2

d
: (crqf(er) +dif(dr))
d] _ Cl o Cf(g)cldqc S q + 1 *

<

Proof. Since f : [c1,d1] — R is harmonically convex function on [c1, d;], the function g(¢) :
[e1,di] = R, g(¢) = ¢f(¢) is convex on [c1,d;]. Also g is differntiable function on (¢, d; ), the
tangent line at the point # € [c1,dy] can be expressed as a function

le(C)—g<01;dl)+g’<01;d1)<<—01;d1). (2.12)
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Also g is a convex function on [c;, d1], then the following inequality is satisfied,

a0 = a5+ (A5 (- 5N ) <o forance ol @13

¢, -integrating the inequality (2.13) on [c;, d],

d;

¥, (C) cl qu

C1

P332
(355 (355 [ - 232)
(235 (239
y {(1 - cl)iqng(qndl . q")q) _atd, _cl)]

n=0

c+d c+d c+d c+d
:(dl—c1)g(121> +g’( ! 5 1>(q;+11(d1—c1)—121(d1—61)>

(5 {25 (255 (254

ga+di  c+di)
14+g¢ 2

ol (o) (i (238 (25

d;
< Cf(C)e dgl. (2.14)
ci
Thus
q61+d1f ¢ +di n (C|+d1)(q61+d1)_ a +di\’ 7 c +di
l+¢q 2 21+4q) 2 2
1 @

S 5 Cf(€)erdq. (2.15)
which proves the first inequality. The second inequality follows similarly as Theorem 2.3. O

Summing up the results in Theorem 2.3, Theorem 2.4 and Theorem 2.5 yields the next corol-
lary.

Corollary 2.6. Let f : [c1,d1] — R be harmonic convex differentiable function on (c1,d;) and
0<qg< 1. Then

4 c1qf(er) +dif(dy)
" 161ty < 0l LI

(2.16)

1
max{H, Hy, H3} < p—
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Where
2
d d 1 d 1 d 1
H = ger + 1f<61 (g + )) n <cld] B <01 1(g + )> )f,(cl 1(g + )>
1+gq qcy + dy qcy + d; qcy + di

i, = 1 +d1f<cld1(fJ+1)) N <cld1(q01 +d) (cldl(q—i- 1))2>f,<cmzl@+1))

1+q c1 + qd, ¢ + qd; c1 + qd; c1 + qd;
2
_qa + d; ¢ +d; (Cl + dl)(qcl + dl) c1 +d; ,(c1+di
0= f( 2 )+[ 20 +4) 2 \=—=—) @

3 Application

Oftenly, it is not possible to find the closed form for all infinte series. So it is difficult to find
qc,-integral for some function as q.,-integral contains infinite series. This can be illustrated by
the following example.

3.1 Example
To find the ., -integral of f(¢) = Ce® in interval [1,2],

2 2 -
/1 F(OndgC = /1 Ceqldqg =1-q)2- 1)an(qn + 1)eq"+1.
n=0

For particular ¢ = 1,

/Ce \d C—i i G.1)

22n
n=0

Difficulty arises to simplify the infinte series of the right hand side of the expression (3.1). How-
ever, with the results obtainted in the Theorem 2.3, it enables us to determine the lower and upper

bound of || 12 Ce®1d,C. By lemma 2.2, €S is harmonic convex function on [1,2] as Ce¢ is convex
function on [1,2]. By theorem 2.3,

4¢2
§ngr—eS </ Ce 1d(<e+ <

3 3

7.3705 < / ¢ebydy¢ < 10.7581.
1
Thus lower and upper bound of the integral | 12 CeS1d,C is 7.3705 and 10.7581 respectively.

4 Conclusion

The harmonic convexity of a function, as shown in this research study, provides the foundation
for numerous mathematical inequalities. Harmonic convexity gives an analytic technique for

di 1 di 1
estimating a number of ¢, -integral like f CeSe,dyC, fll zedqC, fl <2Clal ¢ andf ! ZerdeC
using the result obtained in the section 2.
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