Construction of continuous K-g-Frames in Hilbert C*-Modules

A. Karara, M. Rossafi, M. Klilou and S. Kabbaj

Communicated by Harikrishnan Panackal

MSC 2010 Classifications: Primary 42C15; Secondary 47A05.

Keywords and phrases: Continuous frames, Continuous K-g-frames, C*-algebras, Hilbert C*-modules.

Acknowledgement: The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Corresponding Author: M. Rossafi

Abstract In this work, we provide some constructions and the sum of new continuous K-gframes in Hilbert C^* -Modules. We provide certaines necessary and sufficient conditions for some adjointable operators on H, under which new continuous K-g-frames can be retrieved from those that already exist. Additionally, we discuss the sum of continuous K-g-frames, discover some of their characterizations, and offer some adjointable operators to construct new continuous K-gframes from the previous ones.

1 Introduction and preliminaries

Frame theory is an active topic of mathematical research in fields such as signal processing, computer science, and more. Frames for Hilbert spaces were first introduced in **1952** by Duffin and Schaefer [7] for the study of nonharmonic Fourier series. Daubechies, Grossmann, and Meyer [6] later revised and developed them in **1986**, and they have been popularized since then.

Recently, many mathematicians have generalized frame theory from Hilbert spaces to Hilbert C^* - modules. For detailed information on frames, we refer to [9, 10, 13, 14, 16, 17, 18, 19]. Currently, the study of continuous K-g-frames has yielded many results, which were introduced by Alizadeh, Rahimi, Osgooei, and Rahmani [1]. The study of some of their properties has been further explored in [4].

Throughout this paper (Ω, ν) be a measure space, let \mathcal{H} and \mathcal{K} be two Hilbert C^* -modules, $\{\mathcal{K}_{\xi} : \xi \in \Omega\}$ is a sequence of subspaces of \mathcal{K} , we also reserve the notation $\operatorname{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K}_{\xi})$ for the collection of all adjointable \mathcal{A} -linear maps from \mathcal{H} to \mathcal{K}_{ξ} and $\operatorname{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{H})$ is denoted by $\operatorname{End}_{\mathcal{A}}^*(\mathcal{H})$. We will use $\mathcal{N}(\Theta)$ and $\mathcal{R}(\Theta)$ for the null and range space of an operator $\Theta \in$ $\operatorname{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K})$, respectively. We also denote

$$\bigoplus_{\xi\in\Omega}\mathcal{K}_{\xi} = \{\alpha = \{\alpha_{\xi}\} : \alpha_{\xi}\in\mathcal{K}_{\xi} \text{ and } \left\|\int_{\Omega} |\alpha_{\xi}|^2 \mathrm{d}\nu(\xi)\right\| < \infty \}.$$

Let $f = \{f_{\xi}\}_{\xi \in \Omega}$ and $g = \{g_{\xi}\}_{\xi \in \Omega}$, the inner product is defined by $\langle f, g \rangle = \int_{\Omega} \langle f_{\xi}, g_{\xi} \rangle d\nu(\xi)$, we have $\bigoplus_{\xi \in \Omega} \mathcal{K}_{\xi}$ is a Hilbert A-module.

Definition 1.1. [5]. Let \mathcal{A} be a Banach algebra, an involution is a map $x \to x^*$ of \mathcal{A} into itself, such that, for all x and y in \mathcal{A} and all scalars α the following conditions hold:

- (i) $(x^*)^* = x$.
- (ii) $(xy)^* = y^*x^*$.
- (iii) $(\alpha x + y)^* = \bar{\alpha}x^* + y^*$.

Definition 1.2. [5]. A C^* -algebra A is a Banach algebra with involution, such that :

$$||x^*x|| = ||x||^2,$$

for every x in \mathcal{A} .

Definition 1.3. [11]. Let \mathcal{A} be a unital C^* -algebra and \mathcal{H} be a left \mathcal{A} -module, such that the linear structures of \mathcal{A} and \mathcal{H} are compatibles. \mathcal{H} is a pre-Hilbert \mathcal{A} -module if \mathcal{H} is equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$, such that is sesquilinear, positive definite and respects the module action. In the other words,

- (i) $\langle x, x \rangle \ge 0$ for all $x \in \mathcal{H}$ and $\langle x, x \rangle = 0$ if and only if x = 0.
- (ii) $\langle ax + y, z \rangle = a \langle x, z \rangle + \langle y, z \rangle$ for all $a \in \mathcal{A}$ and $x, y, z \in \mathcal{H}$.
- (iii) $\langle x, y \rangle = \langle y, x \rangle^*$ for all $x, y \in \mathcal{H}$.

For $x \in \mathcal{H}$, we define $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. Where ||.|| is a norm on \mathcal{H} and if \mathcal{H} is complete, this norm we will call it a Hilbert \mathcal{A} -module or a Hilbert C^* -module over \mathcal{A} . For every a in C^* -algebra \mathcal{A} , we have $|a| = (a^*a)^{\frac{1}{2}}$.

Lemma 1.4. [15]. Let \mathcal{H} be Hilbert \mathcal{A} -module. If $\mathcal{T} \in End^*_{\mathcal{A}}(\mathcal{H})$, then

 $\langle \mathcal{T}x, \mathcal{T}x \rangle \leq \|\mathcal{T}\|^2 \langle x, x \rangle, \forall x \in \mathcal{H}.$

Lemma 1.5. [3]. Let \mathcal{H} and \mathcal{K} two Hilbert \mathcal{A} -modules and $\mathcal{T} \in End^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K})$. Then the following statements are equivalent:

- (i) \mathcal{T} is surjective.
- (ii) \mathcal{T}^* is bounded below with respect to norm, i.e., there is m > 0 such that $||\mathcal{T}^*x|| \ge m||x||$ for all $x \in \mathcal{K}$.
- (iii) \mathcal{T}^* is bounded below with respect to the inner product, i.e., there is m' > 0 such that $\langle \mathcal{T}^*x, \mathcal{T}^*x \rangle \ge m' \langle x, x \rangle$ for all $x \in \mathcal{K}$.

Definition 1.6. [12] Let $\mathcal{T} \in \text{End}^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K})$. The **Moore-Penrose inverse** of \mathcal{T} (if it exists) is an element $\mathcal{T}^{\dagger} \in \text{End}^*_{\mathcal{A}}(\mathcal{H}, \mathcal{K})$ satisfying

- $\mathcal{T}\mathcal{T}^{\dagger}\mathcal{T} = \mathcal{T},$
- $\mathcal{T}^{\dagger}\mathcal{T}\mathcal{T}^{\dagger} = \mathcal{T}^{\dagger},$
- $(\mathcal{T}\mathcal{T}^{\dagger})^* = \mathcal{T}\mathcal{T}^{\dagger},$

•
$$(\mathcal{T}^{\dagger}\mathcal{T})^* = \mathcal{T}^{\dagger}\mathcal{T}.$$

Lemma 1.7. [8, 12] Let $\Theta \in \text{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K})$. Then the following holds :

- 1. $\mathcal{R}(\Theta)$ is closed in \mathcal{K} if and only if $\mathcal{R}(\Theta^*)$ is closed in \mathcal{H} .
- 2. $(\Theta^*)^{\dagger} = (\Theta^{\dagger})^*$.
- *3.* The orthogonal projection of \mathcal{K} onto $\mathcal{R}(\Theta)$ is given by $\Theta\Theta^{\dagger}$.
- 4. The orthogonal projection of \mathcal{H} onto $\mathcal{R}(\Theta^{\dagger})$ is given by $\Theta^{\dagger}\Theta$.

Lemma 1.8. [8] Let \mathcal{H}_1 and \mathcal{H}_2 two Hilbert \mathcal{A} -Modules and $\mathcal{T} \in \operatorname{End}^*_{\mathcal{A}}(\mathcal{H}_1, \mathcal{H}), \mathcal{T}' \in \operatorname{End}^*_{\mathcal{A}}(\mathcal{H}_2, \mathcal{H})$ with $\overline{\mathcal{R}(\mathcal{T}^*)}$ is orthogonally complemented. Then the following assertions are equivalent:

- (i) $\mathcal{T}'(\mathcal{T}')^* \leq \lambda \mathcal{T} \mathcal{T}^*$ for some $\lambda > 0$.
- (ii) There exist $\mu > 0$ such that, $\|(\mathcal{T}')^* x\| \le \mu \|\mathcal{T}^* x\|$ for all $x \in F$.
- (iii) There exists $Q \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}_{2},\mathcal{H}_{1})$ such that $\mathcal{T}' = \mathcal{T}Q$, that is, the equation $\mathcal{T}X = \mathcal{T}'$ has a solution.
- (iv) $\mathcal{R}(\mathcal{T}') \subseteq \mathcal{R}(\mathcal{T}).$

Theorem 1.9. [4] Let $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ be a c-g-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$ with bound A. Then the bounded and linear operator $\mathcal{T}_{\Upsilon}: \bigoplus_{\xi\in\Omega} \mathcal{K}_{\xi} \longrightarrow \mathcal{H}$ weakly defined by

$$\langle \mathcal{T}_{\mathbf{Y}}F,g
angle = \int_{\Omega} \left\langle \Upsilon_{\xi}^{*}F(\xi),g
ight
angle \mathrm{d}
u(\xi), \quad F\in \bigoplus_{\xi\in\Omega}\mathcal{K}_{\xi},g\in\mathcal{H},$$

with $\|\mathcal{T}_{\Upsilon}\| \leq \sqrt{A}$. Moreover, for every $g \in \mathcal{H}$ and $\xi \in \Omega$,

$$\mathcal{T}^*_{\Upsilon}(g)(\xi) = \Upsilon_{\xi} g.$$

The operators \mathcal{T}_{Υ} and \mathcal{T}_{Υ}^* are called the synthesis and the analysis operator of $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ respectively.

Definition 1.10. Let $K \in \text{End}_{\mathcal{A}}^{*}(\mathcal{H})$. A sequence $\{\Upsilon_{\xi} \in \text{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{K}_{\xi}) : \xi \in \Omega\}$ is called a continuous K - g-frame for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi \in \Omega}$ if :

- a) For every $h \in \mathcal{H}$, the function $\chi : \Omega \to \mathcal{K}_{\xi}$ defined by $\chi(\xi) = \Upsilon_{\xi} h$ is measurable,
- b) There exist constants $0 < A \le B < \infty$ such that,

$$A \langle K^*h, K^*h \rangle \leq \int_{\Omega} \langle \Upsilon_{\xi}h, \Upsilon_{\xi}h \rangle \, \mathrm{d}\nu(\xi) \leq B \langle h, h \rangle$$

The numbers A and B are called the lower and upper c-K-g-frame bounds of $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{K}_{\xi})\}_{\xi \in \Omega}$, respectively. If $A = B = \delta$, the c - K - g-frame is called δ -tight and if A = B = 1, it is called a Parseval c - K - g-frame. If for each $h \in \mathcal{H}$,

$$\int_{\Omega} \left\langle \Upsilon_{\xi} h, \Upsilon_{\xi} h
ight
angle \, \mathrm{d}
u(\xi) \leq B \left\langle h, h
ight
angle \, .$$

The sequence $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is called a c-K-g-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_{\xi}\}_{\xi\in\Omega}$.

We suppose that $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is a c-K-g-frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$ with frame bounds C, D. The c-K-g-frame operator $S_{\Upsilon} : \mathcal{H} \longrightarrow \mathcal{H}$ is weakly defined by

$$\langle S_{\Upsilon}f,g\rangle = \int_{\Omega} \langle \Upsilon_{\xi}^{*}\Upsilon_{\xi}f,g\rangle \,\mathrm{d}\nu(\xi), \quad f,g\in\mathcal{H}.$$

Furthermore,

$$CKK^* \leq S_{\Upsilon} \leq DI_{\mathcal{H}}.$$

Example 1.11. Let $\mathcal{A} = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{C} \right\}$, and $\mathcal{H} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \end{pmatrix} : a, b \in \mathbb{C} \right\}$ which is a C^* -algebra. We define the inner product:

$$\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$$

 $(M, N) \longmapsto M(\bar{N})^t$

Let $\Omega = [0, 1]$ endowed with the Lebesgue measure. Moreover, for $\xi \in \Omega$, we define the operator $\Upsilon_{\xi} : \mathcal{H} \to \mathcal{H}$ by

$$\Upsilon_{\xi}(M) = \left(\begin{array}{ccc} \frac{\xi}{2}a & 0 & 0\\ 0 & 0 & \xi b \end{array}\right).$$

 Υ_{ξ} is linear, bounded, and selfadjoint. In addition, for $M \in \mathcal{H}$, we have

$$\begin{split} &\int_{\Omega} \langle \Upsilon_{\xi} M, \Upsilon_{\xi} M \rangle_{\alpha} \, d\mu(\xi) \\ &= \int_{\Omega} \left(\begin{array}{cc} \frac{1}{4} \xi^{2} |a|^{2} & 0 \\ 0 & \xi^{2} |b|^{2} \end{array} \right) d\mu(\xi) \\ &= \left(\begin{array}{cc} \int_{\Omega} \frac{1}{4} \xi^{2} d\mu(\xi) |a|^{2} & 0 \\ 0 & \int_{\Omega} \xi^{2} d\mu(\xi) |b|^{2} \end{array} \right) \\ &= \left(\begin{array}{cc} \frac{1}{12} |a|^{2} & 0 \\ 0 & \frac{1}{3} |b|^{2} \end{array} \right), \end{split}$$

which show that

$$\frac{1}{12} \langle A, A \rangle \leq \int_{\Omega} \left< \Upsilon_{\xi} M, \Upsilon_{\xi} M \right>_{\alpha} d\mu(\xi) \leq \frac{1}{3} \left< A, A \right>.$$

Now, we define an operator $K : \mathcal{H} \to \mathcal{H}$ by

$$K(M) = \left(\begin{array}{rrr} a & 0 & 0 \\ 0 & 0 & b \end{array}\right)$$

We have

$$\begin{split} \frac{1}{12} \langle K^*M, K^*M \rangle &\leq \int_{\Omega} \langle \Upsilon_{\xi}M, \Upsilon_{\xi}M \rangle \, d\mu(\xi) \\ &\leq \frac{1}{3} \langle M, M \rangle. \end{split}$$

Hence, $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is a continuous K - g -frame for \mathcal{H} .

Definition 1.12. [2] A sequence $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ is c-K-g-frame for \mathcal{H} . If for every $g, h \in \mathcal{H}$,

$$\langle Kg,h\rangle = \int_{\Omega} \left\langle \Upsilon_{\xi}^{*} \Phi_{\xi}g,h \right\rangle \mathrm{d}\nu(\xi).$$

The c-g Bassel sequence $\{\Phi_{\xi}\}_{\xi\in\Omega}$ is called a dual c-K-g-Bessel sequence of $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$.

2 Some new constructing of c-K-g-frames in Hilbert C*-modules

Theorem 2.1. Let $K \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$ and $\Theta \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$, Θ has a closed range such that $\Theta K = K\Theta$, suppose that $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi})\}_{\xi \in \Omega}$ is a *c*-*K*-*g*-frame for \mathcal{H} , with bounds *A* and *B*. If $\mathcal{R}(K^{*}) \cap \mathcal{N}(\Theta^{*}) = \{0\}$, then for every $f \in \mathcal{H}$,

$$A\left\|\left(\Theta^{*}\right)^{\dagger}\right\|^{-2}\left\langle K^{*}f,K^{*}f\right\rangle \leq \int_{\Omega}\left\langle\Upsilon_{\xi}\Theta^{*}f,\Upsilon_{\xi}\Theta^{*}f\right\rangle\mathrm{d}\nu(\xi)\leq B\|\Theta^{*}\|^{2}\left\langle f,f\right\rangle$$

Proof. Suppose that $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is a c- K-g-frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$, with bounds A and B, we have for $f \in \mathcal{H}$

$$\int_{\Omega} \langle \Upsilon_{\xi} \Theta^* f, \Upsilon_{\xi} \Theta^* f \rangle \, \mathrm{d}\nu(\xi) \le B \, \langle \Theta^* f, \Theta^* f \rangle \le B \|\Theta^*\|^2 \, \langle f, f \rangle \, .$$

On the other hand, since $\Theta K = K\Theta$, we have $K^*\Theta^* = \Theta^*K^*$. We assume that $\mathcal{R}(K^*) \cap \mathcal{N}(\Theta^*) = \{0\}$ and Θ has closed range, using Lemma 1.7 for every $f \in \mathcal{H}$,

$$\begin{split} \langle K^*f, K^*f \rangle &= \left\langle \Theta \Theta^{\dagger} K^*f, \Theta \Theta^{\dagger} K^*f \right\rangle \\ &= \left\langle \left(\Theta^{\dagger} \right)^* \Theta^* K^*f, \left(\Theta^{\dagger} \right)^* \Theta^* K^*f \right\rangle \\ &= \left\langle \left(\Theta^* \right)^{\dagger} K^* \Theta^*f, \left(\Theta^* \right)^{\dagger} K^* \Theta^*f \right\rangle \\ &\leq \left\| \left(\Theta^* \right)^{\dagger} \right\|^2 \left\langle K^* \Theta^*f, K^* \Theta^*f \right\rangle. \end{split}$$

Hence for each $f \in \mathcal{H}$,

$$\int_{\Omega} \left\langle \Upsilon_{\xi} \Theta^* f, \Upsilon_{\xi} \Theta^* f \right\rangle \mathrm{d}\nu(\xi) \ge A \left\langle K^* \Theta^* f, K^* \Theta^* f \right\rangle \ge A \left\| \left(\Theta^* \right)^{\dagger} \right\|^{-2} \left\langle K^* f, K^* f \right\rangle.$$

Corollary 2.2. Let $K \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$ such that $\overline{\mathcal{R}(K)} = \mathcal{H}$, $\Theta \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$ has closed range, and $\Theta K = K\Theta$. If $\{\Upsilon_{\xi}\Theta\}_{\xi\in\Omega}$ and $\{\Upsilon_{\xi}\Theta^{*}\}_{\xi\in\Omega}$ are both c - K-g-frames for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$, then $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is a c - K-g-frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$.

Proof. As such, $\overline{\mathcal{R}(K)} = \mathcal{H}$, thus $\mathcal{N}(K^*) = \{0\}$ and $\mathcal{N}(K^*)^{\perp} = \mathcal{H}$. For every $f \in \mathcal{H}$, we have

$$A \left\langle K^* f, K^* f \right\rangle \leq \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta^* f, \Upsilon_{\xi} \Theta^* f \right\rangle \mathrm{d}\nu(\xi).$$

Hence $\mathcal{N}(K^*) \supseteq \mathcal{N}(\Theta^*)$, so

$$\mathcal{H} = \mathcal{N}(K^*)^{\perp} \subseteq \mathcal{N}(\Theta^*)^{\perp} = \mathcal{R}(\Theta).$$

Consequently, Θ is surjective. Also, for every $f \in \mathcal{H}$,

$$A \left\langle K^* f, K^* f \right\rangle \leq \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta f, \Upsilon_{\xi} \Theta f \right\rangle \mathrm{d}\nu(\xi)$$

thus $\mathcal{N}(\Theta) \subseteq \mathcal{N}(K^*) = \{0\}$. Therefore, Θ is invertible. Since $\Theta K = K\Theta$, we have $\Theta^{-1}K = K\Theta^{-1}$, $\mathcal{R}(K^*) \cap \mathcal{N}\left(\left(\Theta^{-1}\right)^*\right) = \{0\}$, and

$$\{\Upsilon_{\xi}:\xi\in\Omega\}=\left\{\Upsilon_{\xi}\left(\Theta^{-1}\Theta\right)^{*}:\xi\in\Omega\right\}=\left\{\left(\Upsilon_{\xi}\Theta^{*}\right)\left(\Theta^{-1}\right)^{*}:\xi\in\Omega\right\}.$$

Hence, according to Theorem 2.1, we conclude that $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is a c-K-g-frame for \mathcal{H} .

Theorem 2.3. Let $\Theta, K \in \text{End}_{\mathcal{A}}^*(\mathcal{H})$ and $\{\Upsilon_{\xi} \in \text{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ be a δ -tight c- K gframe for \mathcal{H} . If $\Theta K = K\Theta$ and K^* is bounded below. Then the following assertions are equivalent:

- (i) Θ is surjective.
- (*ii*) $\{\Upsilon_{\xi}\Theta^*\}_{\xi\in\Omega}$ is a c-K-g-frame for \mathcal{H} .

Example 2.4. Let $\mathcal{A} = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{C} \right\}$, and $\mathcal{H} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{C} \right\}$ which is a C^* -algebra. We define the inner product :

$$\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$$

 $(M, N) \longmapsto \det(MN)$

Let $\Omega = [0, 1]$ endowed with the Lebesgue measure. Moreover, for $\xi \in \Omega$, we define the operator $\Upsilon_{\xi} : \mathcal{H} \to \mathcal{H}$ by

$$\Upsilon_{\xi}(M) = \left(\begin{array}{cc} \xi a & 0\\ 0 & b \end{array}\right).$$

 Υ_{ξ} is linear, bounded, and selfadjoint. We define also the identity operator $\Theta : \mathcal{H} \to \mathcal{H}$ by $\Theta(M) = M$.

It's clear that, Θ is surjective. We define an operator K by :

$$K(M) = \left(\begin{array}{cc} a & 0\\ 0 & \frac{1}{2}b \end{array}\right).$$

In addition, we have $\Theta K = K\Theta$, $\Theta^* = \Theta$ and it's clear that, $K = K^*$. Moreover, we have:

$$\begin{split} \int_{\Omega} \langle \Upsilon_{\xi} \Theta^* M, \Upsilon_{\xi} \Theta^* M \rangle_{\alpha} \, d\mu(\xi) &= \int_{\Omega} \langle \Upsilon_{\xi} M, \Upsilon_{\xi} M \rangle_{\alpha} \, d\mu(\xi) \\ &= \int_{\Omega} \det \left(\begin{pmatrix} \xi^2 |a|^2 & 0 \\ 0 & |b|^2 \end{pmatrix} \right) d\mu(\xi) \\ &= \int_{\Omega} \xi^2 |a|^2 |b|^2 d\mu(\xi) \\ &= \frac{1}{3} |a|^2 |b|^2 \\ &= \frac{1}{3} \langle M, M \rangle \,. \end{split}$$

On the other hand, we have

$$\langle K^* \Theta^* M, K^* \Theta^* M \rangle = \langle K(M), K(M) \rangle = \det \left(\begin{pmatrix} |a|^2 & 0 \\ 0 & \frac{1}{4} |b|^2 \end{pmatrix} \right) = \frac{1}{4} |a|^2 |b|^2 \le \frac{1}{3} |a|^2 |b|^2.$$

Hence,

$$\left\langle K^* \Theta^* M, K^* \Theta^* M \right\rangle \leq \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta^* M, \Upsilon_{\xi} \Theta^* M \right\rangle_{\alpha} d\mu(\xi) \leq 2 \left\langle \Theta^* M, \Theta^* M \right\rangle.$$

This show that $\{\Upsilon_{\xi}\Theta^*\}_{\xi\in\Omega}$ is a c-K-g-frame for \mathcal{H} .

Proof. $(i) \Rightarrow (ii)$ The first part of proof is implied by Theorem 2.1. $(ii) \Rightarrow (i)$ Suppose that for all $f \in \mathcal{H}$,

$$A\left\langle K^{*}f,K^{*}f
ight
angle \leq\int_{\Omega}\left\langle \Upsilon_{\xi}\Theta^{*}f,\Upsilon_{\xi}\Theta^{*}f
ight
angle \,\mathrm{d}
u(\xi)\leq B\left\langle f,f
ight
angle .$$

Moreover, for every $h \in \mathcal{H}$,

$$\delta \left\langle K^*h, K^*h \right\rangle = \int_{\Omega} \left\langle \Upsilon_{\xi}h, \Upsilon_{\xi}h \right\rangle \mathrm{d}\nu(\xi).$$

Since $\Theta^* K^* = K^* \Theta^*$, we obtain

$$\delta \left\langle \Theta^* K^* f, \Theta^* K^* f \right\rangle = \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta^* f, \Upsilon_{\xi} \Theta^* f \right\rangle \mathrm{d}\nu(\xi), \quad f \in \mathcal{H}.$$

Hence

$$\left\langle \Theta^* K^* f, \Theta^* K^* f \right\rangle = \delta^{-1} \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta^* f, \Upsilon_{\xi} \Theta^* f \right\rangle \mathrm{d}\nu(\xi) \geq \delta^{-1} A \left\langle K^* f, K^* f \right\rangle.$$

Since K^* is bounded below, by Lemma 1.5 there exist $\alpha > 0$ such that

$$\langle K^*f, K^*f \rangle \ge \alpha \langle f, f \rangle.$$

So, we conclude that for every $f \in \mathcal{H}$,

$$\langle \Theta^* K^* f, \Theta^* K^* f \rangle \ge \delta^{-1} \alpha A \langle f, f \rangle$$

Consequently $(K\Theta)^* = \Theta^* K^*$ is bounded below, so by Lemma 1.5, $K\Theta$ is surjective, and since K and Θ commute, implies that Θ is surjective.

Assume that operators $\mathcal{T}, \Theta \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{H})$ and \mathcal{T}^* conserve a *c*-*K*-*g*-frame for $\mathcal{R}(\mathcal{T})$. We establish some requirements on K, Θ and \mathcal{T} in the preceding theorem such that Θ^* can also conserve the same *c*-*K*-*g*-frame for $\mathcal{R}(\Theta)$.

Theorem 2.5. Let $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ be a c-K-g-frame for \mathcal{H} . Assume that $\Theta, \mathcal{T} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$ have close ranges, and $\mathcal{N}(\Theta) = \mathcal{N}(\mathcal{T})$ with $\mathcal{R}(K^{*}) \cap \mathcal{N}(\Theta^{*}) = \{0\}$ and $K\Theta\mathcal{T}^{\dagger} = \Theta\mathcal{T}^{\dagger}K$. If $\{\Upsilon_{\xi}\mathcal{T}^{*}\}_{\xi\in\Omega}$ is a c-K-g-frame for $\mathcal{R}(\mathcal{T})$, then $\{\Upsilon_{\xi}\Theta^{*}\}_{\xi\in\Omega}$ is a c-K-g-frame for $\mathcal{R}(\Theta)$.

Proof. Assume that $K\Theta \mathcal{T}^{\dagger} = \Theta \mathcal{T}^{\dagger} K$. We define

$$P: \mathcal{R}(\mathcal{T}) \longrightarrow \mathcal{R}(\Theta),$$

by $Pf = \Theta \mathcal{T}^{\dagger} f$, for all $f \in \mathcal{R}(\mathcal{T})$. Since $\mathcal{N}(\mathcal{T}) = \mathcal{N}(\Theta)$, we have $\mathcal{R}(\mathcal{T}^{\dagger}) = \mathcal{R}(\Theta^{\dagger})$. Consequently, by Lemma 1.7, $\mathcal{N}(P) = \mathcal{N}(\Theta \mathcal{T}^{\dagger}) = \mathcal{N}(\mathcal{T}\mathcal{T}^{\dagger}) = (\mathcal{R}(\mathcal{T}))^{\perp}$, that implies

$$\mathcal{N}(P) = \mathcal{N}\left(\Theta \mathcal{T}^{\dagger}\right) \cap \mathcal{R}(\mathcal{T}) = (\mathcal{R}(\mathcal{T}))^{\perp} \cap \mathcal{R}(\mathcal{T}) = \{0\}.$$

Hence, P is invertible on $\mathcal{R}(\mathcal{T})$. By Lemma 1.7,

$$\mathcal{T}^{\dagger}\mathcal{T} = P_{\mathcal{R}(\mathcal{T}^{\dagger})} = P_{\mathcal{R}(\Theta^{\dagger})} = \Theta^{\dagger}\Theta.$$

Furthermore,

$$P\mathcal{T} = \Theta \mathcal{T}^{\dagger} \mathcal{T} = \Theta \Theta^{\dagger} \Theta = \Theta.$$
(2.1)

Let C, be the lawer frame bound of $\{\Upsilon_{\xi}\mathcal{T}^*\}_{\xi\in\Omega}$, then for every $f\in\mathcal{R}(\Theta)$, by (2.1), we obtain

$$\int_{\Omega} \langle \Upsilon_{\xi} \Theta^* f, \Upsilon_{\xi} \Theta^* f \rangle \, \mathrm{d}\nu(\xi) = \int_{\Omega} \langle \Upsilon_{\xi} \mathcal{T}^* P^* f, \Upsilon_{\xi} \mathcal{T}^* P^* f \rangle \, \mathrm{d}\nu(\xi)$$

$$\geq C \, \langle K^* P^* f, K^* P^* f \rangle$$

$$\geq C \left\| (P^*)^{-1} \right\|^{-2} \, \langle K^* f, K^* f \rangle \, .$$

On the other hand, for every $f \in \mathcal{R}(\Theta)$,

$$\int_{\Omega} \langle \Upsilon_{\xi} \Theta^* f, \Upsilon_{\xi} \Theta^* f \rangle \, \mathrm{d}\nu(\xi) = \int_{\Omega} \langle \Upsilon_{\xi} \mathcal{T}^* P^* f, \Upsilon_{\xi} \mathcal{T}^* P^* f \rangle \, \mathrm{d}\nu(\xi) \le B \, \langle P^* f, P^* f \rangle = B \|P^*\|^2 \, \langle f, f \rangle \, .$$

Which implies that $\{\Upsilon_{\xi}\Theta^*\}_{\xi\in\Omega}$ is a c-K-g-frame for $\mathcal{R}(\Theta)$.

Theorem 2.6. Let $K \in \text{End}_{\mathcal{A}}^{*}(\mathcal{H})$ and $\{\Upsilon_{\xi} \in \text{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ be a *c*-*g*-Bessel sequence for \mathcal{H} , and \mathcal{T}_{Υ} be the synthesis operator of $\{\Upsilon_{\xi}\}_{\xi \in \Omega}$ with $\overline{\mathcal{R}(K^{*})}$ is orthogonally complemented. Then the following assertions are equivalent:

(1)
$$\mathcal{R}(K) = \mathcal{R}(\mathcal{T}_{\Upsilon})$$

(2) There exist two constants $\lambda_1, \lambda_2 > 0$, such that for each $f \in \mathcal{H}$,

$$\frac{1}{\lambda_1} \langle K^* f, K^* f \rangle \le \int_{\Omega} \langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \rangle \, \mathrm{d}\nu(\xi) \le \lambda_2 \langle K^* f, K^* f \rangle \,. \tag{2.2}$$

(3) $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is a c-K-g-frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$ and there exists a c-g-Bessel sequence $\{\Phi_{\xi}\}_{\xi\in\Omega}$ for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$ such that $\Upsilon_{\xi} = \Phi_{\xi}K^*$ for each $\xi\in\Omega$.

Proof. (1) Applying Lemma 1.8,

$$KK^* \leq \lambda_1 \mathcal{T}_{\Gamma} \mathcal{T}_{\Gamma}^*, \quad and \quad \mathcal{T}_{\Gamma} \mathcal{T}_{\Gamma}^* \leq \lambda_2 KK^* \quad for \ some \ \lambda_1, \lambda_2 > 0.$$

Which implies that

$$\frac{1}{\lambda_1}KK^* \leq \mathcal{T}_{\Gamma}\mathcal{T}_{\Gamma}^* \leq \lambda_2 KK^*.$$

Hence, for every $f \in \mathcal{H}$,

$$\frac{1}{\lambda_1} \langle K^* f, K^* f \rangle \leq \langle \mathcal{T}^*_{\Upsilon} f, \mathcal{T}^*_{\Upsilon} f \rangle = \int_{\Omega} \langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \rangle \, \mathrm{d}\nu(\xi) \leq \lambda_2 \, \langle K^* f, K^* f \rangle \, .$$

(2) \Rightarrow (3) According to the assumed hypothesis, we have $\mathcal{T}_{\Gamma}\mathcal{T}_{\Gamma}^* \leq \lambda_2 K K^*$. Applying Lemma **1.8**, there exists an operator $\mathcal{Q} \in \operatorname{End}_{\mathcal{A}}^* \left(\bigoplus_{\xi \in \Omega} \mathcal{K}_{\xi}, \mathcal{H} \right)$ such that $\mathcal{T}_{\Gamma} = K\mathcal{Q}$, which implies that $\mathcal{T}_{\Gamma}^* = \mathcal{Q}^* K^*$. Now for any $h \in \mathcal{H}$ and for almost all $\xi \in \Omega$, we define:

$$\Phi_{\xi}h = \left(\mathcal{Q}^*h\right)(\xi)$$

Consequently,

$$\left\{\Upsilon_{\xi}(h)\right\}_{\xi\in\Omega} = \left\{\mathcal{T}_{\Upsilon}^{*}h\right\}_{\xi\in\Omega} = \left\{\left(\mathcal{Q}^{*}\left(K^{*}h\right)\left(\xi\right)\right\}_{\xi\in\Omega} = \left\{\Phi_{\xi}\left(K^{*}h\right)\right\}_{\xi\in\Omega}.$$

Hence $\Upsilon_{\xi} = \Phi_{\xi} K^*$ for almost all $\xi \in \Omega$. Hence for every $h \in \mathcal{H}$, we achieve the intended result by:

$$\int_{\Omega} \left\langle \Phi_{\xi} h, \Phi_{\xi} h \right\rangle \mathrm{d}\nu(\xi) = \int_{\Omega} \left\langle \left(\mathcal{Q}^* h \right)(\xi), \left(\mathcal{Q}^* h \right)(\xi) \right\rangle \mathrm{d}\nu(\xi) \le \|\mathcal{Q}^*\|_2^2 \left\langle h, h \right\rangle.$$

(3) \Rightarrow (1) For every $f \in \mathcal{H}$,

$$\frac{1}{\lambda_1} \left\langle K^* f, K^* f \right\rangle \leq \int_{\Omega} \left\langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \right\rangle d\nu \left(\xi \right) = \int_{\Omega} \left\langle \Phi_{\xi} K^* f, \Phi_{\xi} K^* f \right\rangle d\nu(\xi) \leq \lambda_{\Phi} \left\langle K^* f, K^* f \right\rangle.$$

Where λ_{Φ} the upper bound of $\{\Phi_{\xi}\}_{\xi \in \Omega}$. Hence

$$\frac{1}{\lambda_1}KK^* \leq \mathcal{T}_{\Gamma}\mathcal{T}_{\Gamma}^* \leq \lambda_{\Phi}KK^*.$$

 $\mathcal{R}(K) = \mathcal{R}\left(\mathcal{T}_{\Upsilon}\right).$

Hence

Given certain adjointable operators and some c-K-g-frames, the following theorem is used to construct c-K-g-frames in Hilbert C^* -modules.

Theorem 2.7. Let $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ be a $c - K_{1} - g$ -frame for \mathcal{H} and $K_{1}, K_{2} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H})$ with $\overline{\mathcal{R}(K_{1}^{*})}$ is orthogonally complemented.

- (1) If $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ is a $c K_{2} g$ -frame for \mathcal{H} , then it is a $c (K_{1} + K_{2}) g$ -frame for \mathcal{H} .
- (2) If, in addition, $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ is δ -tight $c K_{1} g$ -frame, then it is a c- $K_{2} g$ -frame for \mathcal{H} if and only if $\mathcal{R}(K_{2}) \subseteq \mathcal{R}(K_{1})$.

Proof. (1) Assume that $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ is a c - K_1 - g-frame and also $c - K_2$ - g-frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$, then there exist $A_1, A_2, B_1, B_2 > 0$ constants such that for every $f \in \mathcal{H}$,

$$A_1 \langle K_1^* f, K_1^* f \rangle \leq \int_{\Omega} \langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \rangle \, \mathrm{d}
u(\xi) \leq B_1 \langle f, f
angle \, .$$

And

$$\mathbb{A}_2 \left\langle K_2^* f, K_2^* f
ight
angle \leq \int_\Omega \left\langle \Upsilon_\xi f, \Upsilon_\xi f
ight
angle \, \mathrm{d}
u(\xi) \leq B_2 \left\langle f, f
ight
angle \, \mathrm{d}
u(\xi)$$

It follow that

$$\left(\frac{A_1}{2}\left\langle K_1^*f, K_1^*f\right\rangle + \frac{A_1}{2}\left\langle K_2^*f, K_2^*f\right\rangle\right) \le \int_{\Omega}\left\langle \Upsilon_{\xi}f, \Upsilon_{\xi}f\right\rangle \mathrm{d}\nu(\xi) \le \left(\frac{B_1}{2}\left\langle f, f\right\rangle + \frac{B_2}{2}\left\langle f, f\right\rangle\right).$$

We pose $\lambda_1 = \min\left\{\frac{A_1}{2}, \frac{A_2}{2}\right\}$ and $\lambda_2 = \max\left\{\frac{B_1}{2}, \frac{B_2}{2}\right\}$, since

$$\|K_1^*f\|^2 = \|K_1^*f\|^2 = \|(K_1^* + K_2^*)f - K_2^*f\|^2 = \|(K_1 + K_2)^*f - K_2^*f\|^2$$

$$\geq \|(K_1 + K_2)^*f\|^2 - \|K_2^*f\|^2.$$

We have

$$\left\| \left(K_1 + K_2 \right)^* f \right\|^2 \le \left\| K_1^* f \right\|^2 + \left\| K_2^* f \right\|^2$$

Hence

$$\lambda_1 \left\langle \left(K_1 + K_2\right)^* f, \left(K_1 + K_2\right)^* f \right\rangle \le \int_{\Omega} \left\langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \right\rangle \mathrm{d}\nu(\xi) \le \lambda_2 \left\langle f, f \right\rangle.$$

(2) For every $f \in \mathcal{H}$,

$$\delta \langle K_1^* f, K_1^* f \rangle = \int_{\Omega} \langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \rangle \, \mathrm{d}\nu(\xi).$$
(2.3)

On the other hand, we have $\{\Upsilon_{\xi} \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{H}, \mathcal{H}_{\xi}) : \xi \in \Omega\}$ is $c - K_{2} - g$ -frame, then there exists a A > 0, such that

$$\int_{\Omega} \langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \rangle \, \mathrm{d}\nu(\xi) \ge A \, \langle K_2^* f, K_2^* f \rangle \,. \tag{2.4}$$

Hence, from (2.3) and (2.4),

$$K_2 K_2^* \le \frac{\delta}{A} K_1 K_1^*.$$

Applying Lemma **1.8**, we get $\mathcal{R}(K_2) \subseteq \mathcal{R}(K_1)$.

Now to show the opposite inclusion, simply use the lemma **1.8**, there exists $\gamma > 0$, such that $K_2K_2^* \leq \gamma K_1K_1^*$. Hence for each $f \in \mathcal{H}$, we have

$$\langle K_2^*f, K_2^*f \rangle \leq \gamma \langle K_1^*f, K_1^*f \rangle = \frac{\gamma}{\delta} \int_{\Omega} \langle \Upsilon_{\xi}f, \Upsilon_{\xi}f \rangle \,\mathrm{d}\nu(\xi).$$

Therefore,

$$rac{\delta}{\gamma}\left\langle K_{2}^{*}f,K_{2}^{*}f
ight
angle \leq\int_{\Omega}\left\langle \Upsilon_{\xi}f,\Upsilon_{\xi}f
ight
angle \mathrm{d}
u(\xi).$$

This completes the proof.

3 Sum of c-K-g-frames in Hilbert C^{*}-modules

In this part, we investigate the sum of these frames under the assumption that $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ and $\{\Phi_{\xi}\}_{\xi\in\Omega}$ are arbitrary.

Theorem 3.1. Let $K_1, K_2 \in \text{End}_{\mathcal{A}}^*(\mathcal{H})$ have closed ranges, $\{\Upsilon_{\xi}\}_{\xi \in \Omega}$ and $\{\Phi_{\xi}\}_{\xi \in \Omega}$ are $c - K_1 - g$ frame and c - g Bessel sequence for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi \in \Omega}$, respectively.

- (i) If $K_1 \ge 0$ and $\{\Phi_{\xi}\}_{\xi \in \Omega}$ is a $c K_1 g$ dual for $\{\Upsilon_{\xi}\}_{\xi \in \Omega}$, then the sequence $\{\Upsilon_{\xi} + \Phi_{\xi}\}_{\xi \in \Omega}$ is a c- $K_1 g$ -frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi \in \Omega}$.
- (ii) If $\{\Phi_{\xi}\}_{\xi\in\Omega}$ is $c \cdot (K_1 + K_2) g$ -frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$ and $\mathcal{T}_{\Upsilon}\mathcal{T}_{\Phi}^* = 0$, then $\{\Upsilon_{\xi} + \Phi_{\xi}\}_{\xi\in\Omega}$ is a $c \cdot (K_1 + K_2) g$ -frame for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$.

Proof. (i) For every $f \in \mathcal{H}$, we have

$$\langle K_1^*f,h\rangle = \langle f,K_1h\rangle$$

= $\overline{\langle K_1h,f\rangle}$.

Since $\{\Phi_{\xi}\}_{\xi\in\Omega}$ is a $c - K_1 - g$ -dual of $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$

$$\overline{\langle K_1 h, f \rangle} = \overline{\int_{\Omega} \left\langle \Upsilon_{\xi}^* \Phi_{\xi} h, f \right\rangle d\nu(\xi)} \\= \int_{\Omega} \left\langle \Phi_{\xi}^* \Upsilon_{\xi} f, h \right\rangle d\nu(\xi).$$

We denote by $S_{\Upsilon+\Phi}$, the c-g frame operator of $\{\Upsilon_{\xi} + \Phi_{\xi}\}_{\xi \in \Omega}$. Consequently for every $f, h \in \mathcal{H}$,

$$\begin{split} \langle S_{\Upsilon+\Phi}f,h\rangle &= \int_{\Omega} \left\langle f, \left(\Upsilon_{\xi}+\Phi_{\xi}\right)^{*} \left(\Upsilon_{\xi}+\Phi_{\xi}\right)h\right\rangle \mathrm{d}\nu(\xi) \\ &= \int_{\Omega} \left\langle \left(\Upsilon_{\xi}+\Phi_{\xi}\right)^{*} \left(\Upsilon_{\xi}+\Phi_{\xi}\right)f,h\right\rangle \mathrm{d}\nu(\xi) \\ &= \int_{\Omega} \left\langle \Upsilon_{\xi}^{*}\Upsilon_{\xi}f,h\right\rangle \mathrm{d}\nu(\xi) + \int_{\Omega} \left\langle \Phi_{\xi}^{*}\Phi_{\xi}f,h\right\rangle \mathrm{d}\nu(\xi) \\ &+ \int_{\Omega} \left\langle \Upsilon_{\xi}^{*}\Phi_{\xi}f,h\right\rangle \mathrm{d}\nu(\xi) + \int_{\Omega} \left\langle \Phi_{\xi}^{*}\Upsilon_{\xi}f,h\right\rangle \mathrm{d}\nu(\xi) \\ &= \left\langle S_{\Upsilon}f,h\right\rangle + \left\langle S_{\Phi}f,h\right\rangle + \left\langle K_{1}f,h\right\rangle + \left\langle K_{1}^{*}f,h\right\rangle. \end{split}$$

Therefore

$$\begin{split} \langle S_{\Upsilon+\Phi}f,f\rangle &= \int_{\Omega} \left\langle \left(\Upsilon_{\xi} + \Phi_{\xi}\right)^{*} \left(\Upsilon_{\xi} + \Phi_{\xi}\right)f,f\right\rangle \mathrm{d}\nu(\xi) \\ &\geq \left\langle S_{\Upsilon}f,f\right\rangle \\ &= \int_{\Omega} \left\langle \Upsilon_{\xi}f,\Upsilon_{\xi}f\right\rangle \mathrm{d}\nu(\xi) \\ &\geq C_{\Upsilon} \left\langle K_{1}^{*}f,K_{1}^{*}f\right\rangle. \end{split}$$

This proves that $\{\Upsilon_{\xi} + \Phi_{\xi}\}_{\xi \in \Omega}$ has the lower frame bound. Now, we prove $\{\Upsilon_{\xi} + \Phi_{\xi}\}_{\xi \in \Omega}$ is a *c*-g-Bessel sequence. For every $f \in \mathcal{H}$,

$$\begin{split} \int_{\Omega} \left\langle \left(\Upsilon_{\xi} + \Phi_{\xi}\right) f, \left(\Upsilon_{\xi} + \Phi_{\xi}\right) f \right\rangle \mathrm{d}\nu(\xi) &\leq \int_{\Omega} \left\langle\Upsilon_{\xi} f, \Upsilon_{\xi} f \right\rangle \mathrm{d}\nu(\xi) + \int_{\Omega} \left\langle\Phi_{\xi} f, \Phi_{\xi} f \right\rangle \mathrm{d}\nu(\xi) \\ &\leq B_1 \left\langle f, f \right\rangle + B_2 \left\langle f, f \right\rangle = \left(B_1 + B_2\right) \left\langle f, f \right\rangle. \end{split}$$

(ii) For every $f \in \mathcal{H}$, since $\mathcal{T}_{\Upsilon}\mathcal{T}_{\Phi}^* = 0$, we have $\int_{\Omega} \left\langle \Lambda_{\xi}^* \Phi_{\xi} f, f \right\rangle d\nu(\xi) = 0$ and

$$\begin{split} \int_{\Omega} \left\langle \left(\Upsilon_{\xi} + \Phi_{\xi}\right) f, \left(\Upsilon_{\xi} + \Phi_{\xi}\right) f \right\rangle \mathrm{d}\nu(\xi) &= \int_{\Omega} \left\langle \Upsilon_{\xi} f, \Upsilon_{\xi} f \right\rangle \mathrm{d}\nu(\xi) + \int_{\Omega} \left\langle \Phi_{\xi} f, \Phi_{\xi} f \right\rangle \mathrm{d}\nu(\xi) \\ &\geq A_1 \left\langle K_1^* f, K_1^* f \right\rangle + A_2 \left\langle K_2^* f, K_2^* f \right\rangle \\ &\geq \lambda \left\langle \left(K_1 + K_2\right)^* f, \left(K_1 + K_2\right)^* f \right\rangle, \end{split}$$

where $\lambda = \min \{A_1, A_2\}.$

Theorem 3.2. Let $K_1 \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{H}), K_2 \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{K})$ and $\Upsilon = {\Upsilon_{\xi}}_{\xi \in \Omega}$ is a c-K K_1 -g-frame and ${\{\Phi_{\xi}\}}_{\xi \in \Omega}$ is a c-g-Bessel sequence for \mathcal{H} . Assume that $\Theta_1, \Theta_2 \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K})$ and $\Theta_1\mathcal{T}_{\Gamma}\mathcal{T}_{\Phi}^*\Theta_2^* + \Theta_2\mathcal{T}_{\Phi}\mathcal{T}_{\Upsilon}^*\Theta_1^* + \Theta_2S_{\Phi}\Theta_2^* \geq 0$. If Θ_1 has closed range with $\Theta_1K_1 = K_2\Theta_1$ and $\mathcal{R}(K_2^*) \cap \mathcal{N}(\Theta_1^*) = {\{0\}}$, then ${\{\Upsilon_{\xi}\Theta_1^* + \Phi_{\xi}\Theta_2^*\}}_{\xi \in \Omega}$ is a c-K₂-g-frame for \mathcal{K} with respect to ${\{\mathcal{H}_{\xi}\}}_{\xi \in \Omega}$.

Proof. Assume that $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$, $\{\Phi_{\xi}\}_{\xi\in\Omega}$ be a $c - K_1 - g$ -frame and c - g Bessel sequence for \mathcal{H} with bounds α_1, β_1 and β_2 , respectively. For every $g \in \mathcal{K}$,

$$\begin{split} \int_{\Omega} \left\langle \left(\Upsilon_{\xi} \Theta_{1}^{*} + \Phi_{\xi} \Theta_{2}^{*}\right) g, \left(\Upsilon_{\xi} \Theta_{1}^{*} + \Phi_{\xi} \Theta_{2}^{*}\right) g\right\rangle \mathrm{d}\nu(\xi) &= \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta_{1}^{*} g, \Upsilon_{\xi} \Theta_{1}^{*} g\right\rangle \mathrm{d}\nu(\xi) + \left\langle \Theta_{2} \mathcal{T}_{\Phi} \mathcal{T}_{\Gamma}^{*} \Theta_{1}^{*} g, g\right\rangle \\ &+ \left\langle \Theta_{1} \mathcal{T}_{\Gamma} \mathcal{T}_{\Phi}^{*} \Theta_{2}^{*} g, g\right\rangle + \left\langle \Theta_{2} \mathcal{T}_{\Phi} \mathcal{T}_{\Phi}^{*} \Theta_{2}^{*} g, g\right\rangle \\ &= \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta_{1}^{*} g, \Upsilon_{\xi} \Theta_{1}^{*} g\right\rangle \mathrm{d}\nu(\xi) + \left\langle \left(\Theta_{1} \mathcal{T}_{\Gamma} \mathcal{T}_{\Phi}^{*} \Theta_{2}^{*} \right) + \left(\Theta_{2} \mathcal{T}_{\Phi} \mathcal{T}_{\Gamma}^{*} \Theta_{1}^{*} + \Theta_{2} \mathcal{S}_{\Phi} \Theta_{2}^{*}\right) g, g\right\rangle. \end{split}$$

According to the hypotheses, for every $g \in \mathcal{H}$ we get

$$\begin{split} \int_{\Omega} \left\langle \left(\Upsilon_{\xi} \Theta_{1}^{*} + \Phi_{\xi} \Theta_{2}^{*}\right) g, \left(\Upsilon_{\xi} \Theta_{1}^{*} + \Phi_{\xi} \Theta_{2}^{*}\right) g \right\rangle \mathrm{d}\nu(\xi) &\geq \int_{\Omega} \left\langle \Upsilon_{\xi} \Theta_{1}^{*} g, \Upsilon_{\xi} \Theta_{1}^{*} g \right\rangle \mathrm{d}\nu(\xi) \\ &\geq \alpha_{1} \left\langle K_{1}^{*} \Theta_{1}^{*} g, K_{1}^{*} \Theta_{1}^{*} g \right\rangle \\ &= \alpha_{1} \left\langle \Theta_{1}^{*} K_{2}^{*} g, \Theta_{1}^{*} K_{2}^{*} g \right\rangle \\ &\geq \alpha_{1} \left\| \Theta_{1}^{\dagger} \right\|^{-2} \left\langle K_{2}^{*} g, K_{2}^{*} g \right\rangle. \end{split}$$

Hence, for every $g \in \mathcal{K}$,

$$\begin{split} \alpha_1 \left\| \boldsymbol{\Theta}_1^{\dagger} \right\|^{-2} \left\langle K_2^* g, K_2^* g \right\rangle &\leq \int_{\Omega} \left\langle \left(\boldsymbol{\Upsilon}_{\xi} \boldsymbol{\Theta}_1^* + \boldsymbol{\Phi}_{\xi} \boldsymbol{\Theta}_2^* \right) g, \left(\boldsymbol{\Upsilon}_{\xi} \boldsymbol{\Theta}_1^* + \boldsymbol{\Phi}_{\xi} \boldsymbol{\Theta}_2^* \right) g \right\rangle \mathrm{d}\nu(\xi) \\ &\leq \left(\beta_1 \left\| \boldsymbol{\Theta}_1^* \right\|^2 + \beta_2 \left\| \boldsymbol{\Theta}_2^* \right\|^2 \right) \left\langle g, g \right\rangle. \end{split}$$

207

Theorem 3.3. Let $K_1 \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{H})$ be closed range, $\{\Upsilon_{\xi}\}_{\xi\in\Omega}$ and $\{\Phi_{\xi}\}_{\xi\in\Omega}$ be c-K $K_1 - g$ -frames for \mathcal{H} with respect to $\{\mathcal{H}_{\xi}\}_{\xi\in\Omega}$. Assume that $K_2 \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{K}), \Theta_1, \Theta_2 \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{H}, \mathcal{K})$ and $\Theta_1 \mathcal{T}_{\Gamma} \mathcal{T}_{\Phi}^* \Theta_2^* + \Theta_2 \mathcal{T}_{\Phi} \mathcal{T}_{\Gamma}^* \Theta_1^* \geq 0$.

- (i) $P = \alpha_1 \Theta_1 + \alpha_2 \Theta_2$, $\mathcal{R}(K_2) \subseteq \mathcal{R}(P), \mathcal{R}(P^*) \subseteq \mathcal{R}(K_1)$.
- (ii) $Q = \alpha_1 \Theta_1 \alpha_2 \Theta_2$, $\mathcal{R}(Q^*) \subseteq \mathcal{R}(K_1), \mathcal{R}(K_2) \subseteq \mathcal{R}(Q)$ with $\overline{\mathcal{R}(Q^*)}$ is orthogonally complemented.

Let $\alpha_1, \alpha_2 > 0$, if one of (i), (ii) holds then, $\{\alpha_1 \Upsilon_{\xi} \Theta_1^* + \alpha_2 \Phi_{\xi} \Theta_2^*\}_{\xi \in \Omega}$ is a c- K_2 – g-frame for \mathcal{K} with respect to $\{\mathcal{H}_{\xi}\}_{\xi \in \Omega}$.

Proof. Let A_1, B_1 and A_2, B_2 be frame bounds of $\{\Upsilon_{\xi}\}_{\xi \in \Omega}$ and $\{\Phi_{\xi}\}_{\xi \in \Omega}$, respectively. It is easy to show that, for every $\alpha_1, \alpha_2 > 0$ and $g \in \mathcal{H}$,

$$\int_{\Omega} \left\langle \left(\alpha_{1} \Upsilon_{\xi} \Theta_{1}^{*} + \alpha_{2} \Phi_{\xi} \Theta_{2}^{*}\right) g, \left(\alpha_{1} \Upsilon_{\xi} \Theta_{1}^{*} + \alpha_{2} \Phi_{\xi} \Theta_{2}^{*}\right) g \right\rangle \mathrm{d}\nu(\xi) \leq \left(\alpha_{1}^{2} B_{1} \left\|\Theta_{1}^{*}\right\|^{2} + \alpha_{2}^{2} B_{2} \left\|\Theta_{2}^{*}\right\|^{2}\right) \left\langle g, g \right\rangle.$$

On the other hand,

$$\begin{split} \int_{\Omega} \left\langle \left(\alpha_{1}\Upsilon_{\xi}\Theta_{1}^{*}+\alpha_{2}\Phi_{\xi}\Theta_{2}^{*}\right)g, \left(\alpha_{1}\Upsilon_{\xi}\Theta_{1}^{*}+\alpha_{2}\Phi_{\xi}\Theta_{2}^{*}\right)g\right\rangle \mathrm{d}\nu(\xi) &= \alpha_{1}^{2}\int_{\Omega} \left\langle \Upsilon_{\xi}\Theta_{1}^{*}g, \Upsilon_{\xi}\Theta_{1}^{*}g\right\rangle \mathrm{d}\nu(\xi) \\ &+ 2\alpha_{1}\alpha_{2} \left\langle \left(\Theta_{2}\mathcal{T}_{\Phi}\mathcal{T}_{\Gamma}^{*}\Theta_{1}^{*}+\Theta_{1}\mathcal{T}_{\Gamma}\mathcal{T}_{\Phi}^{*}\Theta_{2}^{*}\right)g, g\right\rangle \\ &+ \alpha_{2}^{2}\int_{\Omega} \left\langle \Phi_{\xi}\Theta_{2}^{*}g, \Phi_{\xi}\Theta_{2}^{*}g\right\rangle \mathrm{d}\nu(\xi) \\ &\geq \alpha_{1}^{2}A_{1} \left\langle K_{1}^{*}\Theta_{1}^{*}g, \right\rangle + \alpha_{2}^{2}A_{2} \left\langle K_{1}^{*}\Theta_{2}^{*}g, K_{1}^{*}\Theta_{2}^{*}g \right\rangle \end{split}$$

Assume condition (ii) is true. we pose

$$\lambda = \min\left\{A_1, A_2\right\},\,$$

According to the parallelogram law, for every $g \in \mathcal{H}_2$,

$$\begin{split} \alpha_{1}^{2}A_{1}\left\langle K_{1}^{*}\boldsymbol{\Theta}_{1}^{*}g,K_{1}^{*}\boldsymbol{\Theta}_{1}^{*}g\right\rangle + \alpha_{2}^{2}A_{2}\left\langle K_{1}^{*}\boldsymbol{\Theta}_{2}^{*}g,K_{1}^{*}\boldsymbol{\Theta}_{2}^{*}g\right\rangle &\geq \lambda\left(\left\langle \alpha_{1}K_{1}^{*}\boldsymbol{\Theta}_{1}^{*}g,\alpha_{1}K_{1}^{*}\boldsymbol{\Theta}_{1}^{*}g\right\rangle + \left\langle \alpha_{2}K_{1}^{*}\boldsymbol{\Theta}_{2}^{*}g,\alpha_{2}K_{1}^{*}\boldsymbol{\Theta}_{2}^{*}g\right\rangle\right) \\ &= \frac{\lambda}{2}\left(\left\langle K_{1}^{*}\left(\alpha_{1}\boldsymbol{\Theta}_{1}+\alpha_{2}\boldsymbol{\Theta}_{2}\right)^{*}g,K_{1}^{*}\left(\alpha_{1}\boldsymbol{\Theta}_{1}+\alpha_{2}\boldsymbol{\Theta}_{2}\right)^{*}g\right\rangle \\ + \left\langle K_{1}^{*}\left(\alpha_{1}\boldsymbol{\Theta}_{1}-\alpha_{2}\boldsymbol{\Theta}_{2}\right)^{*}g,K_{1}^{*}\left(\alpha_{1}\boldsymbol{\Theta}_{1}-\alpha_{2}\boldsymbol{\Theta}_{2}\right)^{*}g\right\rangle\right) \\ &\geq \frac{\lambda}{2}\left\langle K_{1}^{*}\boldsymbol{\mathcal{Q}}^{*}g,K_{1}^{*}\boldsymbol{\mathcal{Q}}^{*}g\right\rangle \\ &\geq \frac{\lambda}{2}\left\| K_{1}^{\dagger}\right\|^{-2}\left\langle \boldsymbol{\mathcal{Q}}^{*}g,\boldsymbol{\mathcal{Q}}^{*}g\right\rangle. \end{split}$$

Since $\mathcal{R}(\mathcal{Q}) \supseteq \mathcal{R}(K_2)$, consequently applying Lemma **1.8**, there exists $\alpha > 0$ such that

$$K_2 K_2^* \le \alpha \mathcal{Q} \mathcal{Q}^*$$

Hence for $g \in \mathcal{K}$,

$$\langle \mathcal{Q}^* g, \mathcal{Q}^* g \rangle \ge \alpha^{-1} \langle K_2^* g, K_2^* g \rangle$$

Consequently, for every $g \in \mathcal{H}_2$,

$$\begin{split} \frac{\lambda}{2} \alpha^{-1} \left\| K_1^{\dagger} \right\|^{-2} \left\langle K_2^* g, K_2^* g \right\rangle &\leq \int_{\Omega} \left\langle \left(\alpha_1 \Upsilon_{\xi} \Theta_1^* + \alpha_2 \Phi_{\xi} \Theta_2^* \right) g, \left(\alpha_1 \Upsilon_{\xi} \Theta_1^* + \alpha_2 \Phi_{\xi} \Theta_2^* \right) g \right\rangle \mathrm{d}\nu(\xi) \\ &\leq \left(\alpha_1^2 B_1 \left\| \Theta_1^* \right\|^2 + \alpha_2^2 B_2 \left\| \Theta_2^* \right\|^2 \right) \left\langle g, g \right\rangle. \end{split}$$

References

- [1] E. Alizadeh, A. Rahimi, E. Osgooei, M. Rahmani, Continuous K-g-Frames in Hilbert Spaces, Bull. Iran. Math. Soc., 45 (4) (2019), 1091-1104.
- [2] E. Alizadeh, A. Rahimi, E. Osgooei, M. Rahmani, Some Properties of Continuous K-G-Frames in Hilbert Spaces, U. P. B. Sci. Bull, Series A., 81 (3) (2019), 43-52.
- [3] L. Arambašíc, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135 (2007), no. 2, 469–478.
- [4] J. Baradaran, J. Cheshmavar, F. Nikahd, Z. Ghorbani, Some properties of c-K-gframes in Hilbert C*-modules. Linear and Multilinear Algebra, 71(8) (2023), 1323–1337. https://doi.org/10.1080/03081087.2022.2061400
- [5] J. B. Conway, A Course in Operator Theory, Vol. 21 (American Mathematical Society, Providence, RI, 2000).
- [6] I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986).
- [7] R. J. Duffin, A. C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952) 341–366.
- [8] X. Fang, J. Yu, H. Yao, Solutions to operator equations on Hilbert C*-modules, Linear Algebra. Appl, 11 (431) (2009) 2142–2153. https://doi.org/10.1016/j.laa.2009.07.009
- [9] S. Jahan, V. Kumar, C. Shekhar, Cone associated with frames in Banach spaces, Palestine J. Math. 7 (2) (2018) 641–649.
- [10] S. Kabbaj, M. Rossafi, *-operator Frame for $End_A^*(\mathcal{H})$, Wavelet Linear Algebra, 5, (2) (2018), 1-13.
- [11] I. Kaplansky, Modules over operator algebras. Amer. J. Math. (1953), 839-858.
- [12] M. M. Karizakia, M. Hassania, M. Amyari, Moore–Penrose inverse of product operators in Hilbert C*modules, Filomat, 30(13), 3397–3402 (2016).
- [13] A. Khorsavi, B. Khorsavi, Fusion frames and g-frames in Hilbert C*-modules, Int. J. Wavelets Multiresolut. Inf. Process., 6 (2008), pp. 433-446.
- [14] K. M. Krishna, P. S. Johnson, Dilation theorem for p-approximate Schauder frames for separable Banach spaces, Palestine J. Math. 11 (2) (2022) 384–394.
- [15] W. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc., (182) (1973), 443–468.
- [16] S. Ramesan, K. T. Ravindran, Scalability and K-frames, Palestine J. Math. 12 (1) (2023) 493–500.
- [17] M. Rossafi, S. Kabbaj, *-K-operator Frame for End^{*}_A(H), Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606
- [18] M. Rossafi, H. Massit, C. Park, Weaving continuous generalized frames for operators, Montes Taurus J. Pure Appl. Math. 6 (1), 64-73, 2024; Article ID: MTJPAM-D-24-00026.
- [19] S.K. Sharma, A. Zothansanga, S.K. Kaushik, On Approximative Frames in Hilbert Spaces, Palestine J. Math. 3 (2) (2014) 148–159.

Author information

A. Karara, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco. E-mail: abdelilah.karara@uit.ac.ma

M. Rossafi, Department of Mathematics Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco.

E-mail: rossafimohamed@gmail.com

M. Klilou, Department of Mathematics Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco.

E-mail: mohammed.klilou@usmba.ac.ma

S. Kabbaj, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, Kenitra, Morocco. E-mail: samkabbaj@yahoo.fr

Received: 2023-04-24 Accepted: 2024-05-28