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Abstract This paper illustrates a simple and direct method for establishing equilibrium and
co-equilibrium theorems for set-valued maps based on fundamental fixed point and coincidence
theorems for Ky Fan or Kakutani types maps. Recall that an equilibrium for a set-valued map Φ :
E ⊇ X ⇒ E (E a vector space) is an element x̄ ∈ X such that 0E ∈ Φ(x̄); while, if E is a Hilbert
space, a co-equilibrium for Φ is a point x̄ ∈ X of normality, that is, Φ(x̄) ∩ NX(x̄) ̸= ∅ where
NX(x) is the normal cone to X at x ∈ X (understood in an appropriate sense). A co-equilibrium
for a set-valued map Φ amounts to a solution of a variational inequality constrained by Φ. Our
main results include a new simple proof of the Ky Fan-Halpern equilibrium theorem (see [F, H])
and an extension of that equilibrium result for an H∗ map (upper hemicontinuous map with non-
empty closed convex values) defined on a paracompact closed (instead of compact) convex set X
in a locally convex topological vector space E subject to a partial boundary tangency condition
on a compact subset of X . For non-convex domains, we discuss an equilibrium theorem in
[BK] for an H∗ map defined on a compact lipschitzian neighbourhood retract with non-trivial
Euler characteristic. Finally, assuming that E is a Hilbert space, we show the existence of a
co-equilibrium for a compact H∗ map Φ : E ⊇ X ⇒ E defined on a closed sleek set X ⊂ E
(which may not be convex) given that the pair (X,E) has the equilibrium property for tangential
H∗ maps.

1 Introduction

We briefly describe the matters under consideration as well as the concepts used in this work.
Set-valued maps (simply called maps) are denoted by capital Greek letters and double arrows

⇒ . The inverse of a map Φ : X ⇒ Y is Φ−1 : Y ⇒ X with x ∈ Φ−1(y) ⇔ y ∈ Φ(x).
Topological spaces and topological vector spaces are assumed to be Hausdorff. Vector spaces

are assumed to be real for simplicity. N (0E) denotes a neighborhood basis of suitable open
neighborhoods of the origin in a topological vetor space E.

Recall:

• a fixed point for a map Φ : X ⇒ Y with X ⊆ Y is an element x0 ∈ X with x0 ∈ Φ(x0).

• An equilibrium (point) for a map Φ : X ⇒ E, X being a non-empty set and E a real vector
space, is an element x0 ∈ X with 0E ∈ Φ(x0). When X ⊆ E, an equilibrium point for Φ is
a fixed point x0 ∈ {x0} − Φ(x0) for the field I − Φ (I, the identity mapping on E).

• A coincidence (point) between two maps Φ,Ψ : X ⇒ Y is an element x0 ∈ X with
Φ(x0) ∩ Ψ(x0) ̸= ∅. (A fixed point or an equilibrium point is a particular instance of a
coincidence point.)

The celebrated Brouwer’s theorem1 highlights the essential roles of the topology/geometry of
the domain and the regularity of the mapping for the existence of a fixed point. In section 2, we
describe the types of maps and domains under consideration in this work together with their fun-
damental fixed point properties. These include a Schauder-Tychonoff type theorem for so-called

1A continuous mapping f : X −→ X of a non-empty convex compact subset X in a finite dimensional Euclidean space
E has a fixed point x0 = f(x0).
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Ky Fan maps that plays a central role in the proof of the main equilibrium theorem of section
3. We also prove a general coincidence principle between so-called Ky Fan maps and Kakutani
maps defined on convex domains with a weakened compactness condition in section 2. This
principle contains the classical Ky Fan-Browder fixed point theorem as well as the Kakutani’s
fixed point theorem2.

As illustrated by the Intermediate Value Theorem (IVT) of B. Bolzano (see [B1]), the exis-
tence of a zero (an equilibrium, in the terminology of dynamical systems) 0 = f(x0) for a func-
tion f : X := [a, b] −→ R (a, b extended reals) follows from (a) the continuity of the mapping
f , and (b) the sign condition f(a)f(b) ≤ 0. From a geometric perspective, this sign condition
can be phrased as a tangency condition f(a) ∈ [0,+∞) = TX(a) and f(b) ∈ (−∞, 0] = TX(b),
where, for any x ∈ ∂X, TX(x) := cl(

⋃
t>0

1
t (X − x)) is the tangent cone (of convex analysis)

to X at the boundary point x. Such geometric hypotheses are required in order to garantee the
solvability of a nonlinear inclusion 0 ∈ Φ(x0) in the case of a multivalued map Φ : X ⇒ E
taking values in a topological vector space E of arbitrary dimension (E may be equipped with
a locally convex structure, a norm, or an inner product as appropriate). In the case of a convex
domain X, tangency is expressed in terms of the above tangent cone TX(x) of convex analysis.
For non-convex and non-smooth domains, adapted tangency conditions are required as described
in section 2.

The main equilibrium and co-equilibrium results of this work are discussed in section 3.
A simpler proof of the Ky Fan-Halpern equilibrium result (Theorem 2 in [H]) is provided in
Theorem 3.6. The first main result (Theorem 3.11) extends the Ky-Fan-Halpern equilibrium
theorem by weakening the compactness of the convex domain X to paracompactness, and the
tangency condition on the whole boundary by partial tangency over a compact subset of the
boundary. The second main result (Theorem 3.20) describes a generic way to derive the existence
of a co-equilibrium from that of an equilibrium for the class of H∗ maps. Special cases include
co-equilibrium results on convex and non-convex domains.

2 Concepts and Preparatory Results

We briefly describe now the concepts and results from set-valued and non-smooth analyses about
maps and domains required for this work.

2.1 Continuity Concepts for Set-Valued Maps

Recall that a set-valued map of topological spaces Ψ : X ⇒ Y is upper semicontinuous (usc) at
a given point x ∈ X whenever the upper inverse Ψ

−1
+ (V ) := {x′ ∈ X : Ψ(x′) ⊂ V } of any open

neighborhood V of Ψ(x) in Y , is open in X . The map Ψ is usc on X if, for any open subset V
of Y , the upper inverse Ψ

−1
+ (V ) := {x ∈ X : Ψ(x) ⊂ V } is open in X .

The lower semicontinuity (lsc) of Ψ at a point x ∈ X amounts to the openess of the lower
inverse Ψ

−1
− (V ) := {x′ ∈ X : Ψ(x′)∩V ̸= ∅} of any open subset V of Y such that Ψ(x)∩V ̸= ∅.

The map Ψ is lsc on X if for any open subset V of Y the lower inverse Ψ
−1
− (V ) := {x ∈ X :

Ψ(x) ∩ V ̸= ∅} is open in X.
It is quite clear that if Ψ(x) = f(x), x ∈ X, is a single-valued map, upper (or lower) semicon-

tinuity on X amounts to continuity. Both concepts are natural adaptations of the characterization
of continuity for single-valued mappings in terms of open sets3.

These semicontinuity concepts for maps are not to be confused with semicontinuity for real
functions as used below4.

Two remarks are in order.

Remark 2.1. (1) The graph of a usc map Ψ : X ⇒ Y with closed domain and closed values is
closed in the product X × Y. Conversely, a map Ψ : X ⇒ Y with closed graph is usc if Y is
compact (see [B1]).

2The latter being a set-valued version of the Brouwer’s fixed point theorem. Both results are fundamental in Mathematical
Economics, Game Theory and Optimization.

3However, only lower semicontinuity is the set-valued counterpart of the sequential characterization of classical continuity.
4An extended real valued function f : X −→ R ∪ {±∞} of a topological space X is upper (respectively lower)

semicontinuous if for every λ ∈ R ∪ {±∞}, the sub-level set {x ∈ X : f(x) < λ} (super-level set {x ∈ X : f(x) > λ},
respectively) is open in X.
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(2) Let X be a topological space and E a topological vector space with continuous dual E′

and let Ψ : X ⇒ E be a usc map with non-empty closed convex values. Given any p ∈ E′

and any λ ∈ R, let x0 ∈ O := {x ∈ X : σΨ(x)(p) < λ}. Then, for some λ′ ∈ R with
σΨ(x0)(p) < λ′ < λ, we have Ψ(x0) ⊂ V := {y ∈ E : ⟨p, y⟩ < λ′} an open set in E. By
upper semicontinuity, there exists an open neighborgood U of x0 in X such that Ψ(x) ⊂ V for
all x ∈ U, that is σΨ(x0)(p) ≤ λ′ < λ ⇔ U ⊂ O. We have established that for any p ∈ E′ and
any λ ∈ R the sublevel set {x ∈ X : σΨ(x)(p) < λ} is open in X. This corresponds to the upper
semicontinuity of the extended real function x 7−→ σΨ(x)(p) with p ∈ E′ fixed.

Remark 2.1 (2) motivates a more general continuity concept5 for a map Ψ : X ⇒ E on a
topological space X with non-empty closed convex values in a topological vector space E with
continuous dual E′.

Definition 2.2. Ψ is upper hemicontinuous (uhc) on X if for each p ∈ E′, the support functional
x 7→ σΨ(x)(p) = supy∈Ψ(x)⟨p, y⟩ is upper semicontinuous as an extended real-valued function on
X, i.e., ∀λ ∈ R ∪ {∞}, the set {x ∈ X : σΨ(x)(p) < λ} is open in X.

Clearly, in the right context, every usc map is uhc. For the converse, it should be noted that (i)
a uhc map with closed convex values has closed graph, and (ii) a closed graph locally compact
map is usc (see e.g., [B1] and references there).

We recall two properties of usc maps of importance in this work.

Proposition 2.3. (1) A usc map Ψ : X ⇒ Y with compact values transforms compact spaces
into compact spaces.

(2) Let Ψ : X ⇒ Y be a usc map from a paracompact subset X of a topological vector space
E into a subset Y of a topological vector space F. Then, for any pair of open neighborhoods
(U, V ) ∈ N (0E) × N (0F ), there exists a map Ψ̂ = Ψ̂U,V : X ⇒ Y whose graph is open such
that:

Ψ(x) ⊆ Ψ̂(x) ⊆ (Ψ((x+ U) ∩X) + V ) ∩ Y, ∀x ∈ X.

If in addition Ψ is convex valued and Y is convex in F , a locally convex space, then Ψ̂ is
convex valued as well.

Proof. To prove (1) assume the topological space X compact and let ν := {Vi : i ∈ I} be an
open cover of Ψ(X). For each x ∈ X, Ψ(x) is covered by a finite collection {Vi : i ∈ I(x) ⊂ I}.
By upper semicontinuity, there exists an open neighborhood Ux of x in X with Ψ(Ux) ⊂ Ox =⋃

i∈I(x) Vi. Being compact, X =
⋃n

j=1 Uxj
and hence, Ψ(X) = Ψ(

⋃n
j=1 Uxj

) ⊂
⋃n

j=1 Oxj
=⋃n

j=1
⋃

i∈I(xj)
Vi, a finite union of members of ν.

To establish (2) let (U, V ) ∈ N (0E) × N (0F ) be given. By upper semicontinuity of Ψ, for
each x ∈ X, there is an open neighborhood Ux ∈ N (0E) contained in U such that Ψ((x+Ux)∩
X) ⊂ (Ψ(x)+V )∩Y. Let {Oi}i∈I be a point-finite open refinement of the cover {x+Ux}x∈X ,
i.e., for every i ∈ I, Oi ⊂ xi + Uxi

for some xi ∈ X and the set I(x) := {i ∈ I : x ∈ Oi} is
finite for each x ∈ X . Define the map Ψ̂ = Ψ̂U,V : X ⇒ Y by putting:

Ψ̂(x) :=
⋂

i∈I(x)
(Ψ(xi) + V ) ∩ Y, x ∈ X.

Clearly, Ψ(x) ⊆ Ψ̂(x) for all x ∈ X. Moreover, for every x ∈ X and every i ∈ I(x) we
have Ψ̂(x) ⊆ Ψ(xi) + V ⊆ Ψ(x + U) + V. If x′ ∈

⋂
i∈I(x)(xi + Uxi

) then I(x) ⊆ I(x′);
consequently, Ψ̂(x) ⊆ Ψ̂(

⋂
i∈I(x)(xi+Uxi

)) ⊆ Ψ̂(x). Finally, for any given x ∈ X, the open set⋂
i∈I(x) Oi × Ψ̂(x) is an open set around {x} × Ψ̂(x) in X × Y, i.e., Ψ̂ has an open graph.

Finally, if for each x ∈ X, Ψ(x) is a a non-empty convex subset of Y, then Ψ̂(x) :=⋂
i∈I(x)(Ψ(xi) + V ) ∩ Y is a finite intersection of convex open sets in Y.

In this work, we are focused on two classes of maps that generalize the so-called Ky Fan or
Kakutani maps important in fixed point theory and its applications.

5Due, as far as we can tell, to B. Cornet [C].
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Ky Fan Maps and Their Fixed Points

The class of Φ∗ maps introduced in [BDG 2] contains the so-called Ky Fan maps important in
convex analysis.

Definition 2.4. Let X be a topological space and Y a subset of a real vector space. A map
Φ : X ⇒ Y is said to be of class Φ∗ whenever:

(i) there exists a map Φ̃ : X ⇒ Y with ∅ ≠ Φ̃(x) ⊆ Φ(x) for every x ∈ X;
(ii) for every y ∈ Y, the set Φ̃−1(y) is open in X;
(iii) for every x ∈ X, the set Φ(x) is convex in Y.
We denote by Φ∗(X,Y ) the class of Φ∗ maps from X into Y.
The class of maps whose inverses are Φ∗ is denoted by Φ(Y,X) := {Φ : Y ⇒ X : Φ−1 ∈

Φ∗(X,Y )}. Φ∗(X,X) is denoted Φ∗(X).

Remark 2.5. (1) The map Φ̃ in Definition 2.4 above is said to be an admissible selection of Φ.
(2) In case Φ̃ = Φ, the class Φ∗ becomes the class F∗ of better known and so-called Ky

Fan maps. It has been noted that any map Φ of class Φ∗ admits an admissible selection of
class F∗ (see e.g., [B2]). The advantage for considering Φ∗ maps lies in the decoupling of the
(topological) regularity property (ii) from the (algebraic/geometric) convexity property (iii).

(3) The very stringent regularity condition (ii) in Definition 2.4 (the inverse under Φ̃ of any
subset of Y is open in X) is a strong form of lower semicontinuity for Φ̃.

Φ∗ maps are remarkable in that they admit continuous single-valued selections (of finite type)
on paracompact (respectively, compact) domains.

Proposition 2.6. [BDG2] Let Φ ∈ Φ∗(X,Y ) where X is a paracompact topological space and
Y is a convex subset of a topological vector space. Then Φ has a single-valued continuous
selection, i.e., there exists a continuous mapping s : X −→ Y with s(x) ∈ Φ(x) for all x ∈ X.

If X is compact, the continuous selection s has values in a finite dimensional convex polytope
in Y, i.e., there exists {y1, · · · , yn} ⊂ Y such that s(X) ⊂ conv{y1, · · · , yn} ⊂ Y.

Proof. For each x ∈ X, there exists y ∈ Φ̃(x), that is, x ∈ Φ̃−1(y). Hence, the collection of
open sets ω := {Φ̃−1(y) : y ∈ Y } covers X. Let O := {Oi : i ∈ I} be a locally finite open
refinement of ω and let {λi : i ∈ I} be a continuous partition of unity subordinated to O. For
each x ∈ X, the set of essential indices I(x) := {i ∈ I : λi(x) ̸= 0} is finite. Moreover,
i ∈ I(x) =⇒ x ∈ Oi ⊂ Φ̃−1(yi) for some yi ∈ Y, hence yi ∈ Φ̃(x) ⊆ Φ(x). The finite set
{yi : i ∈ I(x)} together with its convex hull is contained in Φ(x) as the latter is convex.

Define a continuous mapping s : X −→ Y by:

s(x) :=
∑
i∈I

λi(x)yi =
∑

i∈I(x)

λi(x)yi, for all x ∈ X.

Since s(x) is a convex combination of {yi : i ∈ I(x)}, it follows that s(x) ∈ Φ(x).
If X is compact, ω admits a finite subcover {Φ̃−1(yi) : i = 1, . . . , n} and s(x) =

∑n
i=1 λi(x)yi ∈

Φ(x) ∩ conv{y1, . . . , yn} ⊂ Y.

Remark 2.7. It should be noted that: (i) s(X) ⊆ conv{Φ̃(X)} ⊆ Y. (ii) For every x ∈ X,
s(x) ∈ C(x) := conv{yi : i ∈ I(x)}, a finite convex polytope. Moreover, C(x) ∩ Φ̃(x) contains
all the vertices {yi : i ∈ I(x)} of C(x). It is easily verified that the map C : X ⇒ Y is lower
semicontinuous on X and has finite convex polytope (thus, compact) values. Hence, a Φ∗ map
on a paracompact domain admits a lower semicontinuous selection with compact convex values
of finite type. This is a way to relate the selectionability of Φ∗ maps to the celebrated Michael
selection theorem6.

For the sake of completeness, the paper briefly discusses the fixed point property for Φ∗ maps
including (i) a Schauder-Tychonoff type fixed point theorem7 under the additional hypothesis of

6The Michael selection theorem states that an lsc map on a Hausdorff topological space X with closed convex values in a
Banach space admits a continuous selection if and only if X is paracompact [Mi].

7The Schauder’s fixed point theorem extends the Brouwer’s fixed point theorem to a continuous mapping f : X −→ X
where X is a convex subset in a normed space E of any dimension (finite or infinite) and by replacing the compactness of X
by that of the mapping f, that is f(X) ⊆ K compact ⊆ X; a significant improvement! Tychonoff extended this fixed point
property to any locally convex topological vector space E (see e.g., [DG]).
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a local convexity structure on the underlying topological vector space; and (ii) compactness
conditions involving both the domain and the map weaker than the compactness of the domain.

Theorem 2.8. Let Φ ∈ Φ∗(X) where X is a non-empty convex subset in a topological vector
space E. Assume that any one of the following three conditions holds:

(1) X is compact; or
(2) Φ is a compact map, that is, Φ(X) ⊆ K a compact subset of X, and E is locally convex;

or
(3) There exist a compact subset K of X and a compact convex subset C of X such that the

admissible selection Φ̃ of Φ satisfies the condition

(κ) ∀x ∈ X \K, Φ̃(x) ∩ C ̸= ∅.

Then Φ has a fixed point.

Proof. If X is compact and convex, Proposition 2.6 establishes the existence of a continuous
single-valued selection s(x) ∈ Φ(x) ∩ C, ∀x ∈ X, with values in a finite convex polyhedron
C := conv{yi : i = 1, . . . , n} contained in a finite dimensional section of X. The Brouwer’s
fixed point theorem applied to the restriction s|C : C −→ C provides the existence of the desired
fixed point x0 = s(x0) ∈ Φ(x0) under hypothesis (1).

To prove (2), let ∆n be the standard n−simplex in Rn+1 and let Kn+1 := K × · · · × K be
the (n + 1)−times cartesian product of the compact subset K of X for any given non-negative
integer n. Consider the continuous mapping φn : ∆n ×Kn+1 −→ X ⊆ E defined by the convex
combination

φn((αi)
n
i=0, (yi)

n
i=0) =

n∑
i=0

αiyi.

The set Cn := φn(∆n×Kn+1) is a compact convex subset of X by virtue of being the continuous

image of a compact set. The countable union of compact sets C :=
⋃∞

n=0 Cn is contained in X
and is precisely the convex hull of the compact set K. As the set C is a regular and σ−compact
topological space, it has the Lindelöf property8. It follows that C is paracompact (see Theorem
5.1.2 in Engelking [E]). The set X being convex, contains C. By Proposition 2.6 the restriction
of Φ to C - itself a Φ∗ map - admits a continuous selection s : C −→ C with s(C) ⊆ Φ(C) ⊆ K
compact ⊆ C. The Schauder-Tychonoff fixed point theorem (see [DG]) garantees the existence
of a fixed point x0 = s(x0) ∈ Φ(x0) ⊆ K.

Finally, assuming that (3) holds, consider a partial continuous selection s : K −→ X of
the restriction Φ|K : K ⇒ X taking values in a finite dimensional convex polytope C1 :=
conv{y1, . . . , yn} where {y1, . . . , yn} ⊆ X (provided by Proposition 2.6). Importantly, Remark
2.7 (ii) points out that the admissible selection Φ̃(x) of Φ(x) intersects C1 for all x ∈ K; (indeed
Φ̃(x) ∩ C1 contains all elements yi, i ∈ {1, . . . , n} such that x ∈ Φ̃−1(yi)). The convex hull
Ĉ := conv{C ∪ C1} is a compact convex subset of X 9. The "restriction-compression" map
Φ̂ : Ĉ ⇒ Ĉ defined by Φ̂(x) := Φ(x) ∩ Ĉ for all x ∈ Ĉ is a Φ∗ map with admissible selection
∼
Φ̂(x) = Φ̃(x) ∩ Ĉ. Indeed:

• Φ̂(x) is a convex subset of Ĉ for all x ∈ Ĉ;

• ∅ ̸= Φ̃(x) ∩ C1 ⊆ Φ̃(x) ∩ Ĉ for all x ∈ K ∩ Ĉ and ∅ ̸= Φ̃(x) ∩ C ⊆ Φ̃(x) ∩ Ĉ for all
x ∈ Ĉ \K by virtue of condition (κ);

•

∼
Φ̂

−1

(y) = Φ̃−1(y) ∩ Ĉ an open subset of Ĉ.

The map Φ̂ : Ĉ ⇒ Ĉ thus satisfies hypothesis (1) of this theorem. The fixed point of Φ̂ is a
fixed point for Φ.

8The space C is T3 and every open cover has a countable subcover.
9It is well established that the convex hull of a finite union of convex compact subsets of a topological vector space is

compact).
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Remark 2.9. (i) Under hypothesis 1, we have the generalization to Φ∗ maps of the celebrated Ky
Fan-Browder fixed point theorem for F∗ maps of a compact convex domain (see [Br, BDG1]).

(ii) Pending the non-equivocal affirmation of the Schauder’s conjecture’s resolution, dropping
the local convexity in Theorem 2.8 with hypothesis (2) remains an open problem. Interestingly,
the author has established in [B2] that the local convexity of the underlying topological linear
space E can be dropped for any compact composition Φ = Φn ◦ · · · ◦ Φ1 of of two or more Φ∗

maps, that is if n ≥ 2. The problem is open for the case of one map, n = 1.
(iii) Hypothesis (3) in Theorem 2.8 is most interesting. It can be seen as a "coercivity"

condition imposing some control on the mapping Φ outside of a compact subset of the possibly
unbounded convex domain X.

Kakutani Maps and their Fixed Points

Given a topological space X and a convex set Y in a topological vector space, the class of
Kakutani maps is defined as:

K∗(X,Y ) := {Ψ : X ⇒ Y : Ψ is usc on X and ∅ ≠ Ψ(x) is convex, ∀x ∈ X}.

The class of maps whose inverses are of class K∗ is K(Y,X) := {Ψ : Y ⇒ X : Ψ−1 ∈
K∗(X,Y )}. K∗(X,X) is denoted K∗(X). Unlike Φ∗ or Ky Fan maps, Kakutani maps do not
necessarily have single-valued continuous selections10. Rather, on a paracompact domain, a
Kakutani map admit a single-valued continuous graph approximation. This remarkable prop-
erty11 can be proven directly (using a partition of unity argument as in Proposition 2.6 above) of
be simply derived as an immediate consequence of Propositions 2.3 and 2.6 put together as we
now show.

Indeed, assume that X,Y are subsets of topological vector spaces E,F respectively. For any
given pair of open neighborhoods (U, V ) ∈ N (0E)×N (0F ) the majorant Ψ̂ = Ψ̂U,V of Ψ pro-
vided by Proposition 2.3 has open pre-images (as it has an open graph). Any of its single-valued
selections (if it exists) is a so-called (U, V )-approximative selection of Ψ. If Ψ ∈ K∗(X,Y )
is a Kakutani map, X is paracompact, and the space F is locally convex, then the majorant Ψ̂

also has convex values (indeed, the neighborhood of the origin V in F can be considered to be
convex, so that the neighborhood (Ψ(xi)+V )∩Y of the convex set Ψ(xi) remains a convex set
in Y, for every i ∈ I(x). Thus the map Ψ̂ has non-empty convex values and open pre-images,
i.e., is a Ky Fan map defined on a paracompact domain. By Proposition 2.6, Ψ̂ admits a contin-
uous selection which is a continuous (U, V )-approximative selection of Ψ, that is a continuous
function sU,V : X −→ Y verifying

sU,V (x) ∈ Ψ((x+ U) ∩X) + V ) ∩ Y,∀x ∈ X.

We have thus linked in a very simple manner the selectionability of Ky Fan maps with the
approachability of Kakutani maps as summarized in the next result.

Proposition 2.10. If Ψ ∈ K∗(X,Y ) with X a paracompact subset in a topological vector
space E and Y a convex subset in a locally convex space F , then Ψ has continuous (U, V )-
approximative selections for any pair U, V of open neighborhoods of the origins in E,F respec-
tively.

This approximation property can be used to reduce the fixed point problem for a Kakutani
compact map with closed values to the Schauder fixed point theorem for continuous approxima-
tive selections in order to ascertain the existence of a net of almost fixed points for the map in
question. The compactness of the map together with the closedness of its graph (see Remark 2.1
(1) above) and of its values would then imply the convergence of the net to a fixed point for the
map. We opt to provide here a more original proof of the Kakutani-Ky Fan-Himmelberg fixed
point theorem as an immediate consequence of the fixed point property for Φ∗ maps. To do this,
we need an argument to pass from almost fixed points to fixed points.

10The simplest Kakutani map Φ : [0, 1] ⇒ [0, 1] given by Φ(x) = {0} if 0 ≤ x < 1/2, Φ(x) = [0, 1] if x = 1/2, and
Φ(x) = {1} if 1/2 < x ≤ 1 has no continuous selection.

11This approximation property was established explicitly by A. Cellina in 1969; though the argument was contained in an
early proof by J. von Neumann of his celebrated minimax theorem. See [B1, DG].
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Definition 2.11. Given a cover ω of a topological space X, an ω−fixed point for a map Ψ : X ⇒
X is a point xω ∈ X such that there exists a member W ∈ ω with xω ∈ W and W ∩Ψ(xω) ̸= ∅.

Given a subspace K of a topological space X, denote by CovX(K) the family of all covers
of K by open sets of X.

Lemma 2.12. Given a regular topological space X and a usc map Ψ : X ⇒ X with closed
values. If Ψ has an ω−fixed point for all ω ∈ CovX(cl(Ψ(X))) then Ψ has a fixed point.

Proof. Suppose that Ψ is fixed point-free. Since X is regular, points can be separated from
closed sets by open sets, i.e., for each x ∈ X there exists open sets Ux ∋ x, Vx ⊃ Ψ(x) with
Ux ∩ Vx = ∅. Since Ψ is usc, Ux and Vx can be chosen so that Ψ(Ux) ⊂ Vx. Clearly, Ψ cannot
have an ω−fixed point for the open cover ω = {Ux : x ∈ X}. A contradiction.

Theorem 2.13. Let X be a non-empty convex subset in a locally convex topological vector space
E and let Ψ ∈ K∗(X) be a compact map with closed values. Then Ψ has a fixed point.

Proof. As in the proof of Theorem 2.8 (2), the convex hull C := conv{K} of the compact set
K = cl(Ψ(X)) ⊆ X is a convex paracompact subset of X. The "restriction-compression" map
ΨC : C ⇒ C defined by ΨC(x) = Ψ(x) ∩ C, x ∈ C, is also a Kakutani map with closed values.
By Proposition 2.3, given an arbitrary convex, symmetric and open neighborhood U of the origin
in E, there exists a map ΨC,U = C ⇒ C verifying:

• ΨC(x) ⊆ ΨC,U (x) ⊆ (ΨC((x+ U) ∩ C) + U) ∩ C,∀x ∈ C,

• ΨC,U ∈ F∗(C,C), and

• ΨC,U (C) ⊆ K ∩ C ⊆ K;

that is, ΨC,U is an F∗ compact U -approximation of ΨC . By Theorem 2.8 (2) - as the underlying
space E is locally convex - ΨC,U has a fixed point

xU ∈ ΨC,U (xU ) ⊆ (ΨC((x+ U) ∩ C) + U) ∩ C ⊆ Ψ(x′
U ) + U

for some x′
U ∈ (xU +U)∩C, i.e., xU is an ω−fixed point of Ψ for the cover ω = {(x+U)∩X :

x ∈ X}. Lemma 2.12 ends the proof.

The classical case where X is compact and convex and Ψ ∈ K∗(X) is a particular case of
Theorem 2.13. Indeed, Proposition 2.3 (1) implies that K := Ψ(X) is compact, i.e., Ψ is a
compact map with compact values.

2.2 A Coincidence Principle

We end this section with a generalization of a coincidence property between Ky Fan and Kaku-
tani maps (see, e.g., [BDG1, BDG2] for earlier results and particular cases). Recall that the class
K(X,Y ) := {Ψ : X ⇒ Y : Ψ−1 ∈ K∗(Y,X)} consists of inverses of Kakutani maps.

Theorem 2.14. ((Φ∗,K) Coincidence) Let X be a non-empty convex subset in a locally convex
topological vector spaces E, Y be a non-empty convex subset of a topological vector space F.
We are given two maps Φ ∈ Φ∗(X,Y ) and Ψ ∈ K∗(Y,X) with Ψ having closed values in X.
Assume that one of the following conditions holds:

(1) X is compact - or more generally, Ψ is a compact map; or
(2) Y is compact and Ψ has compact values; or
(3) The map Ψ has compact values and the map Φ : X ⇒ Y verifies the condition (κ),

that is, there exist a compact subset K of X and a compact convex subset C of Y such that the
admissible selection Φ̃ of Φ satisfies:

(κ) ∀x ∈ X \K, Φ̃(x) ∩ C ̸= ∅.

Then the pair (Φ,Ψ−1) has a coincidence point, that is, ∃(x0, y0) ∈ X × Y with y0 ∈ Φ(x0)
and x0 ∈ Ψ(y0).
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Proof. Suppose that Ψ : Y ⇒ X is a compact map, that is K := cl(Ψ(Y )) is a compact subset
of X (this is so if X is compact). The set C := conv{K} is a paracompact subset of X. As
Φ ∈ Φ∗(X,Y ), Proposition 2.6 implies the existence of a continuous selection s : C −→ Y of

Φ. The composition map Ψ ◦ s : C s−→ Y
Ψ

⇒ K ↪→ C is a compact K∗ map with closed values
defined on a convex subset of a locally convex space. It has a fixed point x0 ∈ Ψ(s(x0)) by
Theorem 2.13. Obviously, y0 = s(x0) ∈ Φ(x0) that is y0 ∈ Φ(x0) ∩ Ψ−1(x0) and we are done.

Assume now that (2) holds. By Proposition 2.1 (1) K := Ψ(Y ) is a compact subset of X. As
in the proof of Theorem 2.8 (2) above, the restriction of the map Φ to the paracompact subset
C := conv{K} of X has a continuous selection s : C −→ Y, s(x) ∈ Φ(x) for all x ∈ C. The

composition map Ψ ◦ s : C s−→ Y
Ψ

⇒ C is a compact K∗ map of the convex subset C of the
locally convex space E. The proof concludes as above.

Finally, assume that (3) holds with K ⊆ X compact and C ⊆ Y convex compact such
that Φ̃(x) ∩ C ̸= ∅ for all x ∈ X \ K. The restriction Φ|K : K ⇒ Y is a Φ∗ map with
compact domain. Thus, it admits a finite dimensional continuous selection s : K −→ P with P
a finite convex polytope contained in Y (Proposition 2.6). Consider the compact convex subset
Ĉ = conv{C ∪ P} of Y and the compression map Γ : X ⇒ Ĉ given by Γ(x) = Φ(x) ∩ Ĉ with
admissible selection Γ̃(x) = Φ̃(x)∩ Ĉ where Φ̃ is an admissible selection of Φ. It is readily seen
that Γ ∈ Φ∗(X, Ĉ). Indeed:

• Γ(x) is a convex subset of Ĉ for all x ∈ X.

• If x ∈ K, as per Remark 2.7 (ii), then x belongs to some member Φ̃−1(yi), yi ∈ P ⊆ Ĉ, of a
finite open cover {Φ̃−1(yi) : yi ∈ Y, i = 1, . . . , n} of K. Thus, some yi ∈ Φ̃(x)∩Ĉ = Γ̃(x).
On the other hand, if x ∈ X \ K, then ∅ ≠ Φ̃(x) ∩ C ⊆ Φ̃(x) ∩ Ĉ = Γ̃(x) by virtue of
condition (κ). All in all, Γ̃(x) ̸= ∅ for all x ∈ X.

• for any y ∈ Ĉ, Γ̃−1(y) = Φ̃−1(y) is an open set in X.

As Ĉ is compact and convex, we are thus in the context of part (1) of this theorem for the pair
of maps Ψ|Ĉ ∈ K∗(Ĉ,X) and Γ ∈ Φ∗(X, Ĉ) which must coincide at some pair (x0, y0) ∈ Ĉ×Y.
This coincidence for Ψ|Ĉ and Γ is also a coincidence for the pair Ψ and Φ.

Conjecture 2.15. The assumption that Ψ must have compact values in Theorem 2.14 can be
weakened to "Ψ has closed values" under assumptions (2) and (3). This seems to be an open
problem.

2.3 Tangency and Sleek Sets

As mentionned in the introduction, the existence of an equilibrium for a mapping requires the
mapping to satisfy a (boundary) tangency condition. It is thus helpful to briefly describe here
some tangency concepts for general domains12.

Definition 2.16. Given a non-empty set X in a real topological vector space E and an element
x ∈ X, define:

(i) the pseudo-tangent cone to X at x is:

TP
X (x) := cl(SX(x)) where SX(x) :=

⋃
t>0

1
t
(X − x).

(ii) The adjacent cone to X at x is:

TA
X (x) := lim inf

t↓0+
{1
t
(X − x)}.

(iii) The Bouligand-Severi contingent cone to X at x is:

TB
X (x) := lim sup

t↓0+
{1
t
(X − x)}.

12The limits of nets of sets in Definition 2.16 are meant in the sense of Painlevé-Kuratowski. Given a net a := {At}t∈T

of subsets in a Hausdorff topological space Z, the inner limit of a is lim inft At := {x ∈ Z : ∀U ∈ NZ(x),∃t0 ∈ T such
that ∀t0 ⪯ t, U ∩At ̸= ∅}; while the outer limit of a is lim supt At := {x ∈ Z : ∀U ∈ NZ(x), ∀t ∈ T such that ∃t ⪯ t′,
U ∩At′ ̸= ∅}.
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(iv) The Clarke’s tangent cone to X at x is:

TC
X (x) := lim inf

t↓0+,x′→Xx
{1
t
(X − x′)}.

Remark 2.17. (See [AF, B1]) One readily sees that for any subset X in a topological vector
space and any x ∈ cl(X), we have:

(1) Always, TC
X (x) ⊆ TA

X (x) ⊆ TB
X (x) ⊆ TP

X (x).
(2) If x ∈ int(X), then TC

X (x) = TA
X (x) = TB

X (x) = TP
X (x) = E.

(3) TA
X (x) is the set of all limit points of generalized sequences {xt}t>0 with xt ∈

1
t
(X−x).

TB
X (x) is the set of all cluster points of generalized sequences {xt}t>0 with xt ∈

1
t
(X − x).

(4) While always closed, the cones TA
X (x), TB

X (x) and TP
X (x) may not be convex. The cone

TC
X (x) is always closed and convex13.

(5) In the particular case where E is metrizable, we have the simpler sequential characteriza-
tions:

TP
X (x) = {v ∈ E : ∃vn → v such that ∀n, ∃tn > 0 with x+ tnvn ∈ X}.

TA
X (x) = {v ∈ E : ∀tn → 0+,∃vn → v such that ∀n, x+ tnvn ∈ X}.

TB
X (x) = {v ∈ E : ∃tn → 0+,∃vn → v such that ∀n, x+ tnvn ∈ X}

= {v ∈ E : lim inft↓0+ dX(x+ tv) = 0}.
TC
X (x) = {v ∈ E : ∀tn → 0+,∀xn →X x, ∃vn → v such that ∀n, xn + tnvn ∈ X}

= {v ∈ E : lim supt↓0+,x′→Xx dX(x′ + tv) = 0}.

(6) X is said to be differentiable at x if TA
X (x) = TB

X (x) = limt↓0+{
1
t
(X − x)}. In this case,

the contingent cone TB
X (x) consists of all one-sided derivatives x′

+(0) = limt↓0+
xt − x

t
where

xt ∈ X for all 0 < t small enough.
(7) If X is locally convex at x, that is, there exists an open neighborhood of x in E such that

X ∩ U is convex, then
TC
X (x) = TA

X (x) = TB
X (x) = TP

X (x).

Obviously, a convex subset of a locally convex space is locally convex at each of its points.
(8) Always, lim infx′→Xx T

B
X (x′) ⊆ TC

X (x) with equality holding whenever, e.g., E is a finite
dimensional space (see theorem 4.1.10 in [AF]).

Generalized normal cones are defined as negative polar cones14 to the tangent cones above.

TP
X (x)− = : NX(x) = {p ∈ E′ : ⟨p, v⟩ ≤ 0,∀v ∈ TP

X (x)}.

TB
X (x)− = : N̂X(x) = {p ∈ E′ : ⟨p, v⟩ ≤ 0,∀v ∈ TB

X (x)}.
TC
X (x)− = : NC

X (x) = {p ∈ E′ : ⟨p, v⟩ ≤ 0,∀v ∈ TC
X (x)}.

Remark 2.18. (1) The closed convex cone of outward normals NX(x) = TP
X (x)− is also de-

scribed as NX(x) = SX(x)− = (X − x)− = {p ∈ E′ : ⟨p, v⟩ ≤ 0,∀v ∈ (X − x)} = {p ∈ E′ :
⟨p, x⟩ = σX(p)} where σX(p) := maxv∈X⟨p, v⟩}.

(2) The closed convex cone N̂X(x) is known as the Hadamard normal cone (or the cone of
regular normals) to X at x. The limiting normal cone to X at x is the cone of limiting proximal
normals ÑX(x) = lim supx′→Xx N̂X(x′)15. The basic normal cone need not be convex. In

13A drawback of the convexity of the Clarke’s tangent cone TC
X (x) is that it may reduce to {0E′}; making the tangency

condition (τ) useless for equilibrium theorems.
14The negative polar cone to a subset A of a topological real vector space E is defined as A− := {p ∈ E′ : ⟨p, x⟩ ≤

0, ∀x ∈ A} (always a closed convex cone).
15In case E is metrizable, it holds N̂X (x) = {p ∈ E′ : lim supu→Xx

⟨p, u− x⟩
d(u, x)

≤ 0} and ÑX (x) = {p ∈ E′ :

∃{xn}n ⊆ X, ∃{pn ∈ N̂X (xn)}n with xn −→ x and pn −→ p}.
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fact, the Clarke’s normal cone to X at x is precisely NC
X (x) = cl(conv(ÑX(x))). Clearly,

N̂X(x) ⊆ ÑX(x) ⊆ NC
X (x).

(3) The set X is said to be (Clarke) regular at x if the Bouligand-Severi cone TB
X (x) and the

basic normal cone ÑX(x) are mutually (negative) polars (this makes them both closed convex
cones). In this case, TB

X (x) = TA
X (x) = TC

X (x) and N̂X(x) = ÑX(x) = NC
X (x). (In particular,

X is differentiable at x.)

The next concept is essential for our last main result (Theorem 3.20 below).

Definition 2.19. The set X is said to be sleek at a point x if the tangent map TB
X (.) : X ⇒ E is

lower semicontinuous at x.

If X is sleek at x then lim infx′→Xx T
B
X (x′) ⊆ TC

X (x) ⊆ TB
X (x) ⊆ lim infx′→Xx T

B
X (x′).

Hence TC
X (x) = TB

X (x) (that is, X is regular at x), TC
X (.) is lower semicontinuous at x, and

TB
X (x) is also a closed convex cone (see Theorem 4.1.8 in [AF]).

Proposition 2.20. If X is a sleek subset of a locally convex topological vector space E, then the
convex and closed-valued map NC

X : X ⇒ E′ has a closed graph.

Proof. For the sake of proof’s simplicity, assume E is a metrizable. Note first that given a
sequence of sets {Tn} in E, we always have lim infn→∞ Tn ⊆ (σ−lim supn→∞ T−

n )−16. Indeed,
if x ∈ lim infn→∞ Tn, i.e., x = limn xn, xn ∈ Tn, and p ∈ σ − lim supn→∞ T−

n , i.e. p is the
weak∗−limit σ − limnk

pnk
of a subsequence pnk

∈ T−
nk
, ⟨pnk

, xnk
⟩ ≤ 0, then ⟨p, x⟩ ≤ 0.

Let xn → x in X,Tn = TC
X (xn), T−

n = NC
X (xn). Since X is sleek, TC

X is lower semicontin-
uous, hence

TC
X (x) ⊆ lim inf

n→∞
Tn ⊆ (σ − lim sup

n→∞
NC

X (xn))
−.

Thus,

σ − lim sup
n→∞

NC
X (xn) ⊆ (σ − lim sup

n→∞
NC

X (xn))
−− ⊆ TC

X (x)− = NC
X (x),

that is, NC
X is weak∗-upper semicontinuous. By Proposition 3 (5) in [B1], it has a weakly-closed

graph Γ. Being a convex set, by Mazur’s theorem Γ is also strongly closed.

3 Main Results: Equilibria and Co-Equilibria

3.1 Equilibria in Convex Subsets of Locally Convex Spaces

In this section we provide a novel simple proof of the existence of an equilibrium for a tangential
upper hemicontinuous map with closed convex values defined on a compact convex subset of a
locally convex topological vector space based on the (Φ∗,K) coincidence principle (Theorem
2.14 above). We then extend this theorem to non-compact convex domain subject to partial
tangency conditions. To do this, some preparatory results are required starting with a useful
analytical expression of Theorem 2.14 in the form of an alternative for systems of nonlinear
inequalities.

Proposition 3.1. Let Ψ ∈ K∗(Y,X) be a closed valued map on a non-empty convex subset Y
in a topological vector space F with values in a non-empty convex subset X in a locally convex
topological vector space E into a non-empty convex subset Y of a locally convex topological
vector space F and let f, f̃ : X × Y −→ R be two functions satisfying:

(i) for every (x, y) ∈ X × Y, f̃(x, y) ≤ f(x, y).
(ii) for every fixed y ∈ Y, the partial function x 7→ f̃(x, y) is lower semicontinuous on X.
(iii) for every fixed x ∈ X, the partial function y 7→ f(x, y) is quasiconcave on Y.
Assume that one of the following conditions holds:
(1) X is compact - or more generally, Ψ is a compact map; or
(2) Y is compact and Ψ has compact values; or

16This is known as the Duality Theorem (theorem 1.1.8 in [AF]). Equality occurs, e.g., when Tn is a closed convex cone.
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(3) The map Ψ has compact values and there exist a compact subset K of X and a compact
convex subset C of Y such that:

(κ) ∀x ∈ X \K,∃y ∈ C such that f̃(x, y) > 0.

Then, the following nonlinear alternative holds:
(A) ∃(x0, y0) ∈ X × Y with x0 ∈ Ψ(y0) and f(x0, y0) > 0; or
(B) ∃x̄ ∈ X such that f̃(x̄, y) ≤ 0,∀y ∈ Y.

Proof. Consider the maps Φ, Φ̃ : X ⇒ Y defined by

Φ(x) := {y ∈ Y : f(x, y) > 0}, Φ̃(x) := {y ∈ Y : f̃(x, y) > 0},∀x ∈ X.

The maps Φ, Φ̃ satisfy the following:

• Φ̃(x) ⊆ Φ(x) for all x ∈ X by (i).

• For all y ∈ Y, Φ̃−1(y) is open in X by (ii).

• For all x ∈ X, Φ(x) is convex in Y by (iii).

If Φ̃(x) ̸= ∅ for all x ∈ X, then Φ is a Φ∗ map and the coincidence Theorem 2.14 applies
yielding conclusion (A). Otherwise, Φ̃(x̄) = ∅ for some x̄ ∈ X, amounting to alternative
(B).

Remark 3.2. There are several situations where hypothesis (iii) in Proposition 3.1 can occur.
The classical case whereby K = X is a compact set is obvious as it renders (iii) vacuously
true. Otherwise, if neither of X nor Y is compact, one may consider the case where X ⊆ E =
Rn, Y ⊆ F = Rm and f̃ : X × Y −→ R verifying:

• for each fixed x ∈ X, the function y 7→ f̃(x, y) is upper semicontinuous on Y. So that on any
convex compact subset C of Y, the lower semicontinuous function φC(x) := maxy∈C f̃(x, y)
is well-defined, say φC(x) := f̃(x, yC) for some yC ∈ C;

• for each fixed y ∈ C, some compact convex subset of Y, the function x 7→ f̃(x, y) is proper,
that is, lim∥x∥→X+∞ f̃(x, y) = −∞. So that for each compact convex subset C of Y, the
closed set XC := {x ∈ X : φC(x) ≤ 0} is unbounded.

Obviously, no compact subset K of X can be included in XC .
(The interested reader can envisage a similar situation whereby E is a reflexive Banach space

equipped with the weak topology and invoke the Eberlein-Smulian theorem.)

As an immediate consequence we have a novel simple proof of the first equilibrium theorem
for tangential K∗ maps on a compact convex domain in a locally convex topological vector space
which is essentially the Ky Fan-Halpern equilibrium theorem. Define first,

Definition 3.3. A map Φ : X ⇒ E on a non-empty closed subset X in a topological vector space
E is said to be tangential if it satisfies the so-called weak Halpern boundary condition17

(τ) ∀x ∈ ∂X, Φ(x) ∩ TX(x) ̸= ∅,

where TX(x) is a suitably chosen tangent cone concept (see above).

Remark 3.4. It must be noted that
(i) condition (τ) is trivially satisfied for x ∈ int(X) whenever TX(x) = E for interior points;

this is the case for all cones TA, TB , TC , TP discussed in section 2.3.
(ii) under tangency condition (τ), Ky Fan’s normality condition

(KF ) p ∈ NX(x) =⇒ f(x, p) = inf
y∈Φ(x)

⟨p, y⟩ ≤ 0

always holds with NX(x) being the negative polar cone to TX(x) in (τ).
17In reference to B. Halpern [H]. A comparison of noteworthy tangency conditions is undertaken in [B1].
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Definition 3.5. Let X be a non-empty closed subset in a topological vector space E with contin-
uous dual E′. Define the classes

H∗(X,E) := {Φ : X ⇒ E : Φ is uhc on X and ∅ ≠ Φ(x) is closed and convex, ∀x ∈ X}.
H∗

τ (X,E) := {Φ ∈ H∗(X,E) : Φ is tangential on X}.

Clearly, closed valued K∗ maps are in H∗. For convex compact valued maps, K∗ = H∗.
Keep in mind that for closed convex set, tangency condition (τ) is expressed in terms of

TX(x) = TP
X (x) = cl(

⋃
t>0

1
t (X − x)) the closed convex tangent cone of convex analysis. The

cone of outward normals is NX(x) = TP
X (x)− the negative polar cone to the tangent cone.

Theorem 3.6. Let X be a non-empty convex compact subset in a locally convex topological
vector space E. Then every tangential map Φ ∈ H∗

τ (X,E) has an equilibrium.

Proof. We shall apply the proposition 3.1 with Y = E′, f = f̃ : X × Y −→ R defined by
f(x, p) = infy∈Φ(x)⟨p, y⟩, and Ψ : E′ ⇒ X defined by

Ψ(p) := N−1
X (p) = {x ∈ X : ⟨p, x⟩ = max

u∈X
⟨p, u⟩} = arg max

X
σX(p).

We take notice of Remark 3.4 (ii): "tangency (τ) =⇒ normality (KF )”.
Since every K∗ map is upper hemicontinuous, that is, the numerical function x 7→ σΦ(x, p) is

upper semicontinuous, it follows that for each fixed p ∈ E′, the function x 7−→ f(x, p) is lower
semicontinuous on X. Obviously, for each fixed x ∈ X, the function p 7−→ f(x, p) is concave.

Moreover, as the graphs of inverse maps are identical, graph(Ψ) = graph(N−1
X ). As X

being a convex set is sleek, Proposition 2.20 implies that Ψ has closed graph. But Ψ also has
closed, hence compact values in X. Hence, by Remark 2.1 (1), Ψ is usc and compact valued.

Ky Fan’s normality condition (KF) opposes alternative (A) of Proposition 3.1. Hence alter-
native (B) of that proposition holds: ∃x̂ ∈ X with infy∈Φ(x̂)⟨p, y⟩ ≤ 0 for all p ∈ E′.

If 0 /∈ Φ(x̄), since Φ(x̄) is non-empty, closed and convex, by the Hahn-Banach separation
theorem, ∃p ∈ E′,∃α ∈ R with p(0) = 0 < α < p(y),∀y ∈ Φ(x̄). This implies 0 < α ≤
infy∈Φ(x̄)⟨p, y⟩ ≤ 0, a contradiction. Thus 0 ∈ Φ(x̄) and the proof is complete.

Remark 3.7. Note that Ψ(0) = X (as 0 ∈ NX(x) for all x ∈ X). Moreover, for p ∈ E′ \
{0},Ψ(p) ∩ NX(x) = ∅, that is, Ψ(p) ⊆ ∂X. Hence, in the case where X is not compact, in
order to reproduce the same proof for the existence of an equilibrium based on the preceding
proposition (under hypothesis (2) or (3)), it is essential to judiciously select a subset Y of non-
trivial linear form on E for which Ψ(p) is a compact subset of ∂X. A simple illustration is
given by the simplest case of the intermediate value theorem for a continuous real function on
an unbounded closed interval f : X = [a,+∞) −→ E = R satisfying:

• the boundary condition f(a) ≥ 0 amounts to condition (τ) : f(a) ∈ TX(a) = [0,+∞);

• the "coercivity condition" (κ) reads: there exists a compact subset K of X and a compact
convex subset C of Y := (−∞, 0) ⊂ R = E′ such that

∀x ∈ X \K,∃p ∈ C such that f(x, p) := pf(x) > 0.

K could be any interval [a, b] ⊂ X = [a,+∞) and C any interval [c, d] ⊂ Y = (−∞, 0).
Condition (κ) implies that f(x) < 0 outside of K, in particular at x = b+ 1. The classical
IVT on [a, b + 1] garantees an equilibrium f(x̄) = 0, with x̄ ∈ K ⊂ X. (Such a situation
occurs, e.g., when limx→+∞ f(x) < 0.)

To establish an equilibrium theorem for a tangential H∗ map on a convex non-compact do-
main X, we shall adopt now a different approach based on the analytical expression of the fixed
point Theorem 2.8 for Φ∗ maps.

Proposition 3.8. Let X be a non-empty convex subset in a topological vector space E and f, f̃ :
X ×X −→ R be two functions satisfying the following conditions.
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(i) For every (x, y) ∈ X ×X, f̃(x, y) ≤ f(x, y).
(ii) For every fixed y ∈ X, the partial function x 7→ f̃(x, y) is lower semicontinuous on X.
(iii) For every fixed x ∈ X, the partial function y 7→ f(x, y) is quasiconcave on X.
(iv) There exist compact subsets K and C of X with C convex, such that:

∀x ∈ X \K,∃y ∈ C such that f̃(x, y) > 0.

Then the following alternative holds:
(A) ∃x0 ∈ X with f(x0, x0) > 0; or
(B) ∃x̄ ∈ X such that f̃(x̄, y) ≤ 0 for all y ∈ X.

Proof. Consider the maps Φ : X ⇒ X, given by Φ(x) := {y ∈ X : f(x, y) > 0} and Φ̃(x) :=
{y ∈ X : f̃(x, y) > 0}, for all x ∈ X. If conclusion (B) fails, that is, Φ̃(x) ̸= ∅ for all x ∈ X
then Φ is a Φ∗ map. The weaker compactness hypothesis (iv) corresponds to the condition (κ)
of Theorem 2.8. The latter implies the existence of a fixed point x0 ∈ Φ(x0) and (A) holds.

Corollary 3.9. Let X be a convex subset of a topological vector space E, let Y be a set of
functions in {p : X −→ R : p is upper semicontinuous and quasiconcave}18 and let. s : X −→
Y be a continuous function.

Assume that the following compactness condition holds: there exist two compact subsets K
and C of X with C convex, such that, for p = s(x), we have:

∀x ∈ X \K, p(x) < max
y∈C

p(y).

Then,
∃x̄ ∈ X such that for p̄ = s(x̄) ∈ Y we have p̄(x̄) = max

y∈X
p̄(y).

Proof. Let s : X −→ Y be a continuous selection of Γ and consider the function f = f̃ :
X ×X −→ R defined as

f(x, y) = s(x)(y)− s(x)(x) for every pair (x, y) ∈ X ×X.

Clearly f(., y) is lower semicontinuous on X and f(x, .) is quasiconcave on X. We check that

hypothesis (iv) of Proposition 3.8 holds: ∀x ∈ X \K, for p = s(x) ∈ Y, let y ∈ arg maxC p (C
is compact) and write p(x) < p(y). Thus, f(x, y) = s(x)(y) − s(x)(x) > 0, satisfying (iv) of
Proposition 3.8.

Obviously, alternative (A) in the conclusion of Proposition 3.8: f(x0, x0) = s(x0)(x0) −
s(x0)(x0) = 0 > 0, for some x0 ∈ X, is impossible. Thus thesis (B) of Proposition 3.8 holds,
i.e., ∃x̄ ∈ X with f(x̄, y) = s(x̄)(y) − s(x̄)(x̄) ≤ 0,∀y ∈ X. Thus, p̄ = s(x̄) satisfies p̄(y) ≤
p̄(x̄),∀y ∈ X.

A particular instance of Corollary 3.9 corresponds to the case where s is a continuous selec-
tion of an F∗ map Γ : X ⇒ Y.

Corollary 3.10. Let X be a paracompact convex subset of a topological vector space E, let Y be
a convex subset of functions in {p : X −→ R : p is upper semicontinuous and quasiconcave},
and let f : X × Y −→ R be a function verifying the following hypotheses.

(i) for every fixed p ∈ Y, x 7→ f(x, p) is lower semicontinuous on X;
(ii) for every fixed x ∈ X, p 7−→ f(x, p) is quasiconcave on Y.
(iii) There exist two compact subsets C,K of X with C convex such that:

∀x ∈ X \K,∀p ∈ Y, we have [p(x) ≥ max
y∈C

p(y) ⇒ f(x, p) ≤ 0].

Then one of the following holds:
(A) ∃x∗ ∈ X with f(x∗, p) ≤ 0 for all p ∈ Y ; or

(B) ∃x̄ ∈ K,∃p̄ ∈ Y with

{
f(x̄, p̄) > 0
p̄(x̄) = maxy∈X p̄(y)

18Equipped with a suitable topology.
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Proof. The map Γ : X ⇒ Y defined by Γ(x) := {p ∈ Y : f(x, p) > 0} has convex values by
(i) and open pre-images by (ii). If (A) fails, then Γ(x) ̸= ∅ for all x ∈ X and Γ is therefore an
F∗−map. Having a paracompact domain X, Γ admits a continuous selection s : X −→ Y by
Proposition 2.6. Hypothesis (iii) implies the compactness hypothesis of Corollary 3.9, yielding
(B).

We are now ready to establish a generalization of Theorem 3.6 to possibly unbounded do-
mains, subject to a weaker compactness condition and partial tangency (again, as X is convex,
TX = TP

X is the tangent cone of convex analysis).

Theorem 3.11. Let X be a non-empty closed convex and paracompact subset in a locally convex
t.v.s. E with continuous dual E′, and Φ ∈ H∗(X,E). Assume that Φ satisfies the following
condition:

(τκ)


∃C,K compact subsets of X with C convex such that:
(i) Φ is tangential on K, that is: ∀x ∈ K ∩ ∂X,Φ(x) ∩ TX(x) ̸= ∅.
(ii)∀x ∈ X \K,∀p ∈ E′, we have

[⟨p, x⟩ ≥ maxy∈C⟨p, y⟩ ⇒ infy∈Φ(x)⟨p, y⟩ ≤ 0].

Then Φ has an equilibrium in X .

Proof. Let Y = {p|X : p ∈ E′} (a convex set) and define the function f : X × Y −→ R by
f(x, p) := infy∈Φ(x)⟨p, y⟩ for all (x, p) ∈ X × Y.

As in Theorem 3.6, since the support functional x 7→ σΦ(x, p) := supy∈Φ(x)⟨p, y⟩ associated
to Φ is upper semicontinuous, then x 7→ f(x, p) is lower semicontinuous on X. In addition, as
the infimum of linear forms, p 7→ f(x, p) is concave on Y.

Tangency on K (hypothesis (τκ − (i)) implies the Ky Fan normality condition:

∀x ∈ K ∩ ∂X, p ∈ NX(x) =⇒ f(x, p) ≤ 0.

This opposes alternative (B) of Corollary 3.10. Hence alternative (A) of that corollary holds:
∃x∗ ∈ X with infy∈Φ(x∗)⟨p, y⟩ ≤ 0 for all p ∈ E′.

If 0 /∈ Φ(x∗), by the Hahn-Banach separation theorem, ∃p ∈ E′,∃λ ∈ R with p(0) = 0 <
α < p(y),∀y ∈ Φ(x∗). This implies 0 < α ≤ infy∈Φ(x∗)⟨p, y⟩ ≤ 0, a contradiction. Thus
0 ∈ Φ(x∗), completing the proof.

3.2 Equilibria in Compact Retracts

In this section, we discuss a far reaching equilibrium theorem without convexity due to [BK].
The main result requires a special continuous selection/approximation property that ties together
Proposition 2.10 on the existence of continuous approximative selections to Kakutani maps and
the celebrated selection theorem of Michael19. We provide here a version of this hybrid con-
tinuous "almost" selection property in the more general context of a paracompact topological
domain equipped with a uniformity and a locally convex topological vector space as co-domain.

Let us define the class of Michael maps from a topological space X into a topological vector
space E as:

M∗(X,E) := {Ψ : X ⇒ E : Ψ is lsc and ∅ ≠ Ψ(x) convex ∀x ∈ X}.

Proposition 3.12. Assume that X is paracompact topological space with uniform structure U
and let Ψ ∈ M∗(X,E),Φ ∈ K∗(X,E) be two maps such that Φ(x)∩Ψ(x) ̸= ∅ for each x ∈ X.
Then, ∀U ∈ U ,∀V ∈ NE(0), there exists a continuous mapping s : X −→ E such that for every
x ∈ X :

(i) s(x) ∈ Ψ(x) + V, and
(ii) s(x) ∈ Φ(U [x]) + V.

19After E. Michael and his celebrated continuous selection theorem [Mi].
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Proof. For any given x ∈ X, consider the open neighborhood of x defined by

O(x) :=
1
2
U [x] ∩ {x′ ∈ X; Φ(x′) ⊂ Φ(x) +

1
2
V },

with the second set being open due to the upper semicontinuity of Φ.
Let Ω = {ω} be an open star-refinement of the open cover O = {O(x)}x∈X , i.e., for any

ω ∈ Ω there is x ∈ X with st(ω,Ω) ⊂ O(x).
For any x ∈ X, choose zx ∈ Φ(x)∩Ψ(x) and consider the open cover D = {Dω(x)}ω∈Ω,x∈ω

of X, where

Dω(x) := {x′ ∈ ω; Ψ(x′) ∩ (zx +
1
2
V ) ̸= ∅}

is open due to the lower semicontinuity of Ψ.
Let {λi}i∈I be a locally finite partition of unity subordinated to the cover D. Hence, for each

i ∈ I, there are ωi ∈ Ω, xi ∈ ωi, with λi(x′) = 0 for x′ /∈ Dωi(xi).
The map s : X −→ E defined by:

s(x) =
∑
i∈I

λi(x)zi, x ∈ X,

with zi denoting zxi , is clearly continuous. Moreover, for each x ∈ X and each index i in the
finite set of essential indices I(x) = {i ∈ I;λi(x) ̸= 0}, there exists z′i ∈ Ψ(x) such that
z′i ∈ zi +

1
2V ⇔ z′i − zi ∈ 1

2V, because x ∈ Dωi(xi). Thus, by convexity of Ψ(x) and of
V ∈ NE(0), ∑

i∈I(x) λi(x)z′i ∈ Ψ(x), and∑
i∈I(x) λi(x)z′i − s(x) =

∑
i∈I(x) λi(x)(z′i − zi) ∈ V.

In other words, s(x) ∈ Ψ(x) + V ̸= ∅ for every x ∈ X.
On the other hand, given x ∈ X, i ∈ I(x), it follows that x ∈ Oωi

(xi) ⊂ Vi where xi ∈ ωi.
Since Ω is a star-refinement of O, there is x ∈ X such that x, xi ∈ O(x). Therefore, zi ∈ Φ(xi) ⊂
Φ(x) + V and x ∈ U [x]. The set Φ(x) + V being convex, it follows that s(x) ∈ Φ(x) + V ⊆
Φ(U [x]) + V.

We shall also have to justify the passage from the existence of a net of "almost equilibria" to
that of an equilibrium for a given map Φ. This of course requires some compactness together
with the closedness of the graph of Φ. The next lemma is a mere adaptation of Lemma 2.12 to
the equilibrium problem.

Definition 3.13. Given a subset X in a topological vector space E, a map Φ : X ⇒ E and
U ∈ NE(0) an open neighborhood of the origin in E, an element xU ∈ X is said to be a
U -equilibrium for Φ if

U ∩ Φ((xU + U) ∩X) ̸= ∅.

Lemma 3.14. If a given usc compact map Φ : X ⇒ E with closed values has a U -equilibrium
in X for every U ∈ NE(0), then Φ has an equilibrium in X.

Proof. Assume that ∀x ∈ X, 0 /∈ Φ(x). A topological vector space being regular, for each x ∈ X
there exists Ox ∈ NE(0) and Vx an open neighborhood of the closed set Φ(x) in E such that
Ox ∩ Vx = ∅. Let Ux ∈ NE(0) be symmetric and such that Ux + Ux ⊂ Ox and, due to the upper
semicontinuity of Φ, Φ(x+ Ux) ⊂ Vx. As cl(Φ(X)) is compact in E, Φ(X) ⊂ V :=

⋃n
i=1 Vxi

for some finite subset {x1, . . . , xn} of X. For U :=
⋂n

i=1 Uxi
∈ NE(0) we have

U ∩ V = ∅ and, ∀x ∈ X, Φ((x+ U) ∩X) ⊆ Φ(X) ⊂ V.

That is U ∩ Φ((x+ U) ∩X) = ∅ for all x ∈ X. A contradiction.

Recall that a metrizable topological space X is an absolute neighborhood retract (ANR for
short) if and only if whenever Y is metrizable and A ⊂ Y is closed, every continuous mapping
f : A −→ X extends to a continuous mapping f ′ : U −→ X defined over an open neighborhood
U of A in Y . (If U = Y , X is said to be an absolute retract (AR).) The Arens-Eells embedding
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theorem20 asserts that any given ANR X is a neighborhood retract of some normed space E in
which X is isometrically embedded as a closed subspace, (namely, E is the Banach space of all
bounded continuous real-valued functions on X). Thus, given an ANR X , we may assume that
X is a closed subset of a normed space (E, ∥.∥) with a neighbourhood retraction r : U −→ X
with U an open subset of E containing X . (If U = E,X is simply saidm to be an absolute retract
of E.) For the sake of convenience, we shall make two crucial assumptions on the given ANR
X .

(A1) X is compact. (A2) The neighbourhood retraction r : B(X, η) −→ X satisfies the
stronger regularity property:

∃k > 0 such that ∥r(x)− x∥ ≤ kdX(x) for all x ∈ B(X, η).

Definition 3.15. An ANR satisfying (A1) and (A2) above is called a compact L−retract.

The class of L-retracts contains numerous subclasses of non-convex sets studied in non-
smooth optimization (see [BK, B1] for various examples).

Remark 3.16. Note that (A1) implies that the neighbourhood U of X can be considered to be a
uniform neighbourhood B(X, η) := {x′ ∈ E : dX(x′) < η} where dX(x′) := infx∈X∥x′ − x∥.
Moreover, the neighbourhood retraction r : B(X, η) −→ X is uniformly continuous at X , that
is,

∀ε > 0,∃0 < δ < ε such that ∀x ∈ B(X, δ),∀x′ ∈ X, we have ∥r(x)− r(x′)∥ = ∥r(x)− x′∥ < ε.

The Euler-Poincaré characteristic of a compact topological space X is denoted by χ(X)21.

Theorem 3.17. Let X be a compact L−retract in a normed space E with χ(X) ̸= 0. Every
tangential map Φ ∈ H∗(X,E) has an equilibrium.

Proof. Given any 0 < ε < η, let δ < ε
2k+1 be as in Remark 3.16, where k is the Lipschitz constant

in condition (A2). Due to the properties of d0
X mentioned earlier22, the map Ψ : X ⇒ E defined

by the formula:
Ψ(x) = {v ∈ E; d0

X(x)(v) < δ}, x ∈ X,

has convex values and open graph. Thus, it is lsc. By hypothesis, Φ(x)∩Ψ(x) ̸= ∅ for all x ∈ X .
In view of Proposition 3.12, there exists a continuous mapping s : X −→ X satisfying for all
x ∈ X:

s(x) ∈ B(Ψ(x), δ) ∩B(Φ(B(x, δ) ∩X), δ).

Being continuous, s is bounded on X, say ∥s(x)∥ ≤ M for some M > 0. Choose τ > 0
with Mτ < η and consider a sequence (tn)n∈N in (0, τ ], tn ↓ 0+. For each n ∈ N, the map
φn : X −→ X given by:

φn(x) = r(x+ tns(x)), x ∈ X,

is well-defined since, for each x ∈ X, dX(x+tns(x)) ≤ ∥x+tns(x)−x∥ = tn∥s(x)∥ ≤ τM < δ,
that is x+ tns(x) ∈ B(X, δ). For each n ∈ N, the homotopy hn : X × [0, 1] −→ X defined by:

h(x, µ) := r(x+ µtns(x)), (x, µ) ∈ X × [0, 1],

joins φn to the identity on X . Since X is compact and has a non-trivial Euler-Poincaré char-
acteristic E(X) = λ(1X) 23, it follows from the Lefschetz fixed point theorem (see [G]) that

20See [G] for the Arens-Eells theorem and for more on ARs and ANRs.
21See [B1, G, DG]. If X is a smooth submanifold of Rn, John Milnor defines χ(X) as the Brouwer degree of the Gauss

mapping GX (x) = the unit outward normal vector to X at x ∈ ∂X . For non-smooth sets, e.g., X is a compact epi-
Lipschitzian subset of Rn (a special instance of an L-retract), B. Cornet defines the Gauss mapping in terms of proximal
normal vectors: GX (x) = conv(NC

X (x)∩Sn−1) and χ(X) = deg(GX , int(X), 0), the Cellina-Lasota degree. Generally,
if X is a compact topological space, the singular cohomology {Hq(X)} is a graded linear space of finite type. Denote
dimQ(H

q(X)) = βq(X) (the qth-Betti number) and define: χ(X) :=
∑

q(−1)qβq(X). It turns out that χ(X) = λ(IdX )

the Lefschetz number of the identity mapping on X . A non-trivial Euler-Poincaré characteristic is necessary for the existence
of equilibria on ANRs.

22Recall that d0
X (x)(v) is upper semicontinuous on X × E and convex in v; the Clarke tangent cone to X at x ∈ X is

characterized as TC
X (x) = {v ∈ E; d0

X (x)(v) = 0}.
23The Lefschetz number of the identity on X .
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φn has a fixed point xn ∈ X . Since X is compact, a subsequence of (xn) (again denoted by
(xn)) converges to some x ∈ X. In view of proposition 3.12, there exists v ∈ Ψ(x) such that
∥v − s(x)∥ < δ. Note that

∥xn + tns(xn)∥ ≤ ∥xn + tnv∥+ tn∥s(xn)− s(x̄)∥+ tn∥s(x̄)− v∥
⇒

dX(xn + tns(xn)) ≤ dX(xn + tnv) + tn∥s(xn)− s(x̄)∥+ tn∥s(x̄)− v∥

Therefore,

tn∥s(xn)∥ = ∥tns(xn)∥ = ∥xn + tns(xn)− xn∥
= ∥(xn + tns(xn)− r(xn + tns(xn)∥

≤ kdX(xn + tns(xn))

≤ k[dX(xn + tnv) + tn∥s(xn)− s(x̄)∥+ tn∥s(x̄)− v∥]

Thus, for any n,

∥s(xn)∥ < k[
1
tn

dX(xn + tnv) + ∥v − s(x)∥+ ∥s(x)− s(xn)∥].

Letting n → ∞, we obtain:

∥s(x)∥ = limn→∞ ∥s(xn)∥ ≤ k(lim sup
n→∞

dX (xn+tnv)
tn

+ ∥v − s(x)∥)

≤ k(c(x, v) + ∥v − s(x)∥) < 2kδ < 2k(ε/(2k + 1)) < ε.

As s is a δ-approximation of Φ, s(x) ∈ B(Φ(B(x, δ) ∩ X), δ), that is, x is a 2ε-almost
equilibrium for Φ with ε arbitrarily chosen. Lemma 3.14 ends the proof.

3.3 From Equilibria to Co-Equilibria

We assume for the sake of convenience that E is a real Hilbert space with inner product ⟨., .⟩ as
to have the identification E′ ≃ E24. A Hilbert space pair (X,E) consists of a non-empty closed
subset X of a real Hilbert space E.

Definition 3.18. Given a Hilbert space pair (X,E), a co-equilibrium x̄ ∈ X for a map Φ : X ⇒
E is an equilibrium point 0 ∈ Φ(x̄)−NX(x̄) where NX(.) is a suitably chosen concept of normal
cone to X.

The existence of an equilibrium to the sum map Φ(.)−NX(.) would be facilitated if the map
NX : X ⇒ E′ were to be a K∗ map (usc with closed convex values). This is the case if X
is Clarke regular with NX = NC

X being the Clarke’s normal cone (see Remark 2.18 (3)). An
obvious alternate point of view is to consider a co-equilibrium x̄ ∈ X for Φ as a coincidence
point Φ(x̄) ∩NX(x̄) ̸= ∅.

In the case where NX(x̄) = TX(x̄)− is the negative polar cone of an associated suitable
tangent cone, this coincidence would imply the infsup inequality:

inf
y∈Φ(x̄)

sup
v∈TX (x̄)

⟨y, v⟩ ≤ 0.

Conversely, infy∈Φ(x̄) supv∈TX (x̄)⟨y, v⟩ ≤ 0 implies that x̄ is a co-equilibrium for Φ whenever
Φ(x̄) is weakly compact. This follows from the fact that the extended real valued function
y 7→ supv∈TX (x)⟨y, v⟩ is lower semicontinuous and convex, hence weakly lower semicontinuous.
Consequently, it achieves its infimum on the weakly compact Φ(x̄) at some ȳ verifying ⟨ȳ, v⟩ ≤
0,∀v ∈ TX(x̄), i.e. ȳ ∈ NX(x̄).

24Naturally, this identification holds not only for Hilbert spaces (Riesz-Fréchet), but also for some more general topological
vector spaces. Extending the framework is left to the reader.
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Therefore, a co-equilibrium x̄ for Φ is also a solution to the quasi-variational inequality:

∃x̄, p̄ ∈ E such that p̄ ∈ Φ(x̄) and ⟨p̄, v⟩ ≤ 0,∀v ∈ TX(x̄).

In this section, we describe a simple and generic way to derive the existence of a co-equilibrium
from that of an equilibrium.

Definition 3.19. A pair (X,E) consisting of a nonempty subset X in a (real) vector space E has
the equilibrium property for an abstract class of maps A if and only if any map in A(X,E) :=
{Φ : X ⇒ E : Φ ∈ A} has an equilibrium in X. We write (X,E) ∈ E(A).

Theorem 3.20. Let (X,E) ∈ E(H∗
τ ) be a Hilbert space pair with X sleek. Then, any compact

map Ψ ∈ H∗(X,E) has a co-equilibrium, i.e., ∃x̄ ∈ X such that 0 ∈ Ψ(x̄)−NC
X (x̄).

Proof. The image Ψ(X) of Ψ is contained in a closed disk D centered at the origin with radius
M > 0 in E. Consider the map Φ : X ⇒ E given by Φ(x) := Ψ(x) − (NC

X (x) ∩ D). By
Proposition 2.20 and since X is sleek, the Clarke’s normal cone map NC

X : X ⇒ E has closed
graph.

By Remark 2.1 (1), since the graph of NC
X is convex and the values NC

X (x) ∩D are closed,
convex, and bounded, hence weakly compact, it follows that the map x 7→ NC

X (x) ∩ D is uhc
with closed convex, and bounded values.

As a linear combination of uhc maps, Φ is also uhc. Being the sum of a compact convex set
and a closed bounded convex set, Φ(x) is closed and convex for each x ∈ X, i.e., Φ ∈ H∗(X,E).

It remains to show that Φ verifies (τ). For any given x ∈ ∂X, since the cone TC
X (x) is

closed and convex, the Moreau decomposition theorem [Mo] implies that any y ∈ Ψ(x) can
be decomposed as a sum y = yT + yN with yT = ProjTC

X (x)(y) and yN = ProjNC
X (x)(y) and

⟨yN , yT ⟩ = 0. Hence, 0 = ⟨yN , yT ⟩ = ⟨yN , y − yN ⟩ = ⟨yN , y⟩ − ∥yN∥2 and by the Cauchy-
Schwarz-Bunyakowsky’s inequality ∥yN∥ ≤ ∥y∥ ≤ M, that is yT = y−yN ∈ Ψ(x)− (NC

X (x)∩
D), i.e., Φ(x) ∩ TC

X (x) ̸= ∅. The fact that (X,E) has the equilibrium property for H∗
τ ends the

proof.

In view of the equilibrium Theorems 3.6 and 3.17, namely:

• Given any pair (X,E) consisting of a non-empty compact convex set X in a locally con-
vex topological vector space E, we have (X,E) ∈ E(H∗

τ ) where H∗
τ is the class of H∗

tangential maps (Theorem 3.6).

• Given any pair (X,E) consisting of a non-empty compact L-retract X in a normed space
E, we have (X,E) ∈ E(H∗

τ ) where H∗
τ is the class of H∗ tangential maps (Theorem 3.17).

Corollary 3.21. Let (X,E) be a Hilbert space pair. Then every compact-valued map Ψ ∈
H∗(X,E) has a co-equilibrium if any one of the following assumptions holds:

(i) X is convex compact. (ii) X is a sleek compact L−retract with χ(X) ̸= 0.
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