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Abstract In this paper, we prove that every complete biharmonic submanifold (M, g) satisfies∫
M

|H|2f(|H|2) vg < ∞,

for some smooth strictly positive increasing real function f , in a Riemannian manifold (N,h)
with negative sectional curvature is harmonic, i.e., H = 0, where H is the mean curvature vector
field of (M, g) in (N,h).

1 Introduction

The energy functional of a smooth map φ : (M, g) −→ (N,h) between two Riemannian mani-
folds is defined by

E(φ;D) =
1
2

∫
D

|dφ|2vg, (1.1)

where D is compact domain of M , |dφ| is the Hilbert-Schmidt norm of the differential dφ, and vg

is the volume element on (M, g). A map φ is called harmonic if it is a critical point of the energy
functional (1.1). The Euler Lagrange equation associated to (1.1) is given by (see [2, 5, 11])

τ(φ) = Trg ∇dφ =
m∑
i=1

[
∇φ

eidφ(ei)− dφ(∇M
ei ei)

]
= 0, (1.2)

where {ei}mi=1 is a local orthonormal frame field on (M, g), ∇M is the Levi-Civita connection of
(M, g), ∇φ denote the pull-back connection on φ−1TN , and m is the dimension of M . A natural
generalization of harmonic maps is given by integrating the square of the norm of the tension
field. More precisely, the bienergy functional of a map φ ∈ C∞(M,N) is defined by

E2(φ;D) =
1
2

∫
D

|τ(φ)|2vg. (1.3)

A map φ ∈ C∞(M,N) is called biharmonic if it is a critical point of the bienergy functional,
that is, if it is a solution of the Euler Lagrange equation associated to (1.3)

τ2(φ) = −Trg RN (τ(φ), dφ)dφ− Trg(∇φ)2τ(φ)

= −
m∑
i=1

RN (τ(φ), dφ(ei))dφ(ei)−
m∑
i=1

[
∇φ

ei∇
φ
eiτ(φ)

−∇φ
∇M

ei
ei
τ(φ)

]
= 0, (1.4)
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where RN is the curvature tensor of (N,h) defined by

RN (X,Y )Z = ∇N
X∇N

Y Z −∇N
Y ∇N

XZ −∇N
[X,Y ]Z,

where ∇N is the Levi-Civita connection of (N,h), and X,Y, Z ∈ Γ(TN) (see [6, 11]).
Let M be a submanifold in (N,h) of dimension m, i : M ↪→ (N,h) the canonical inclusion, and
let {ei}mi=1 be a local orthonormal frame field with respect to induced Riemannian metric g on
M by h. We denote by ∇N (resp. ∇M ) the Levi-Civita connection of (N,h) (resp. of (M, g)),
by B the second fundamental form of the submanifold (M, g), by H the mean curvature vector
field of (M, g) in (N,h) (see [2], [10]). The tension field is given by τ(i) = mH . (M, g) is
called a harmonic (resp. biharmonic) submanifold in (N,h) if τ(i) = 0 (resp. τ2(i) = 0).

In [8] and [9], N. Nakauchi and H. Urakawa proved that, if (M, g) is a complete biharmonic
submanifold in (N,h) with non-positive sectional curvature, and if∫

M

|H|2 vg < ∞,

then (M, g) it is harmonic. In this paper, we shall extend the previous result as follows.

Theorem 1.1. Let (M, g) be a complete biharmonic submanifold in (N,h) with negative sec-
tional curvature. We assume that there exists a smooth function f : R −→ (0,∞) increasing
such that ∫

M

|H|2f(|H|2) vg < ∞. (1.5)

Then (M, g) is harmonic.

2 Proof of Main Theorem

Let H the mean curvature vector field of (M, g) in (N,h), ρ a smooth positive function with
compact support on M . We set

ξ = ρ2f(|H|2) grad |H|2, (2.1)

where f is a real positive smooth function with f(|H|2) = f ◦ |H|2. Let {Xi}mi=1 be a geodesic
frame field at x ∈ M . We have

div ξ =
m∑
i=1

Xi

(
ρ2f(|H|2)Xi(|H|2)

)
. (2.2)

By using X
(
f(|H|2)

)
= f ′(|H|2)X(|H|2) for all X ∈ Γ(TM), where f ′ is the derivative

function of f , we get

div ξ =
m∑
i=1

[
2ρXi(ρ)f(|H|2)Xi(|H|2) + ρ2f ′(|H|2)Xi(|H|2)Xi(|H|2)

+ρ2f(|H|2)Xi

(
Xi(|H|2)

) ]
, (2.3)

it is equivalent to the following equation

div ξ = 2ρf(|H|2)g(grad ρ, grad |H|2) + ρ2f ′(|H|2)| grad |H|2|2

+ρ2f(|H|2)∆|H|2. (2.4)

From the Young’s inequality, we obtain

−2ρf(|H|2)g(grad ρ, grad |H|2) ≤ λρ2f(|H|2)2| grad |H|2|2 + 1
λ
| grad ρ|2, (2.5)
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for all continuous function λ > 0 on M . By using the biharmonicity condition of (M, g), and
since the sectional curvature of (N,h) is negative, we conclude that

∆|H|2 ≥ 2m|H|4 + 2|∇⊥H|2, (2.6)

where ∇⊥ is the normal connection of (M, g) (see [1, 7]). So, from equation (2.4), and inequal-
ity (2.5), we deduce

ρ2
[
f ′(|H|2)− λf(|H|2)2

]
| grad |H|2|2 + 2mρ2|H|4f(|H|2)

+2ρ2f(|H|2)|∇⊥H|2 − div ξ ≤ 1
λ
| grad ρ|2. (2.7)

Take M+ = {x ∈ M , |H|x > 0}. We assume that M+ ̸= ∅. By using the divergence Theorem
(see [2]), and the inequality (2.7), we have∫

M+

ρ2{f ′(|H|2)− λf(|H|2)2}| grad |H|2|2 vg + 2m
∫
M+

ρ2|H|4f(|H|2) vg

+2
∫
M+

ρ2f(|H|2)|∇⊥H|2 vg ≤
∫
M+

1
λ
| grad ρ|2 vg, (2.8)

A direct calculation shows that

| grad |H|2|2 ≤ 4|H|2|∇⊥H|2, (2.9)

on M+. According to inequalities (2.8) and (2.9) with

λ =
1

2|H|2f(|H|2)
,

on M+, we obtain the following∫
M+

ρ2f ′(|H|2)| grad |H|2|2 vg + 2m
∫
M+

ρ2|H|4f(|H|2) vg

≤ 2
∫
M+

|H|2f(|H|2)| grad ρ|2 vg. (2.10)

Let ρ : M −→ [0, 1] be a smooth cut-off function with ρ = 1 on BR(x), ρ = 0 off B2R(x) and
| grad ρ| ≤ 2

R . We suppose that the derivative function f ′ ≥ 0. From inequality (2.10), we find
that

m

∫
BR(x)∩M+

|H|4f(|H|2) vg ≤ 4
R2

∫
B2R(x)∩M+

|H|2f(|H|2) vg. (2.11)

Since
∫
M

|H|2f(|H|2) vg < ∞, when R → ∞, we obtain∫
M+

|H|4f(|H|2) vg = 0. (2.12)

This contradicts our assumption. Hence M+ = ∅. Therefore, (M, g) is harmonic.

2

Theorem 1.1 it is considered as an affirmative answer under the condition (1.5) to the gener-
alized of global version of Chen’s biharmonic conjecture (see [1, 3, 4, 9]).
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