ON THE GENERALIZED OF GLOBAL VERSION OF CHEN'S BIHARMONIC CONJECTURE

A. Mohammed Cherif

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 58E20; Secondary 53C20, 53C43.

Keywords and phrases: Biharmonic submanifolds, Chen's biharmonic conjecture.

The author would like to thank the editor and the reviewers for their useful remarks and suggestions.

Abstract In this paper, we prove that every complete biharmonic submanifold (M, g) satisfies

$$
\int_M |H|^2 f(|H|^2) v^g < \infty,
$$

for some smooth strictly positive increasing real function f, in a Riemannian manifold (N, h) with negative sectional curvature is harmonic, i.e., $H = 0$, where H is the mean curvature vector field of (M, g) in (N, h) .

1 Introduction

The energy functional of a smooth map $\varphi : (M, g) \longrightarrow (N, h)$ between two Riemannian manifolds is defined by

$$
E(\varphi; D) = \frac{1}{2} \int_D |d\varphi|^2 v^g,
$$
\n(1.1)

where D is compact domain of M, $|d\varphi|$ is the Hilbert-Schmidt norm of the differential $d\varphi$, and v^g is the volume element on (M, g) . A map φ is called harmonic if it is a critical point of the energy functional (1.1) . The Euler Lagrange equation associated to (1.1) is given by (see [\[2,](#page-3-0) [5,](#page-3-1) [11\]](#page-3-2))

$$
\tau(\varphi) = \text{Tr}_g \, \nabla d\varphi = \sum_{i=1}^m \left[\nabla_{e_i}^{\varphi} d\varphi(e_i) - d\varphi(\nabla_{e_i}^M e_i) \right] = 0, \tag{1.2}
$$

where $\{e_i\}_{i=1}^m$ is a local orthonormal frame field on (M, g) , ∇^M is the Levi-Civita connection of (M, g) , ∇^{φ} denote the pull-back connection on $\varphi^{-1}TN$, and m is the dimension of M. A natural generalization of harmonic maps is given by integrating the square of the norm of the tension field. More precisely, the bienergy functional of a map $\varphi \in C^{\infty}(M, N)$ is defined by

$$
E_2(\varphi; D) = \frac{1}{2} \int_D |\tau(\varphi)|^2 v^g. \tag{1.3}
$$

A map $\varphi \in C^{\infty}(M, N)$ is called biharmonic if it is a critical point of the bienergy functional, that is, if it is a solution of the Euler Lagrange equation associated to (1.3)

$$
\tau_2(\varphi) = -\operatorname{Tr}_g R^N(\tau(\varphi), d\varphi) d\varphi - \operatorname{Tr}_g (\nabla^{\varphi})^2 \tau(\varphi)
$$

\n
$$
= -\sum_{i=1}^m R^N(\tau(\varphi), d\varphi(e_i)) d\varphi(e_i) - \sum_{i=1}^m \left[\nabla_{e_i}^{\varphi} \nabla_{e_i}^{\varphi} \tau(\varphi) - \nabla_{\nabla_{e_i}^{\mu} e_i}^{\varphi} \tau(\varphi) \right] = 0,
$$
\n(1.4)

where R^N is the curvature tensor of (N, h) defined by

$$
R^N(X,Y)Z=\nabla^N_X\nabla^N_YZ-\nabla^N_Y\nabla^N_XZ-\nabla^N_{[X,Y]}Z,
$$

where ∇^N is the Levi-Civita connection of (N, h) , and $X, Y, Z \in \Gamma(TN)$ (see [\[6,](#page-3-3) [11\]](#page-3-2)).

Let M be a submanifold in (N, h) of dimension $m, \mathbf{i} : M \hookrightarrow (N, h)$ the canonical inclusion, and let $\{e_i\}_{i=1}^m$ be a local orthonormal frame field with respect to induced Riemannian metric g on M by h. We denote by ∇^{N} (resp. ∇^{M}) the Levi-Civita connection of (N, h) (resp. of (M, g)), by B the second fundamental form of the submanifold (M, g) , by H the mean curvature vector field of (M, g) in (N, h) (see [\[2\]](#page-3-0), [\[10\]](#page-3-4)). The tension field is given by $\tau(i) = mH$. (M, g) is called a harmonic (resp. biharmonic) submanifold in (N, h) if $\tau(i) = 0$ (resp. $\tau_2(i) = 0$).

In [\[8\]](#page-3-5) and [\[9\]](#page-3-6), N. Nakauchi and H. Urakawa proved that, if (M, g) is a complete biharmonic submanifold in (N, h) with non-positive sectional curvature, and if

$$
\int_M |H|^2 \, v^g < \infty,
$$

then (M, g) it is harmonic. In this paper, we shall extend the previous result as follows.

Theorem 1.1. Let (M, g) be a complete biharmonic submanifold in (N, h) with negative sec*tional curvature. We assume that there exists a smooth function* $f : \mathbb{R} \longrightarrow (0, \infty)$ *increasing such that*

$$
\int_{M} |H|^{2} f(|H|^{2}) v^{g} < \infty.
$$
\n(1.5)

Then (M, g) *is harmonic.*

2 Proof of Main Theorem

Let H the mean curvature vector field of (M, g) in (N, h) , ρ a smooth positive function with compact support on M. We set

$$
\xi = \rho^2 f(|H|^2) \text{ grad } |H|^2,
$$
\n(2.1)

where f is a real positive smooth function with $f(|H|^2) = f \circ |H|^2$. Let $\{X_i\}_{i=1}^m$ be a geodesic frame field at $x \in M$. We have

$$
\operatorname{div}\xi = \sum_{i=1}^{m} X_i \left(\rho^2 f(|H|^2) X_i(|H|^2) \right). \tag{2.2}
$$

By using $X(f(|H|^2)) = f'(|H|^2)X(|H|^2)$ for all $X \in \Gamma(TM)$, where f' is the derivative function of f , we get

$$
\operatorname{div} \xi = \sum_{i=1}^{m} \left[2\rho X_i(\rho) f(|H|^2) X_i(|H|^2) + \rho^2 f'(|H|^2) X_i(|H|^2) X_i(|H|^2) + \rho^2 f(|H|^2) X_i(X_i(|H|^2)) \right],
$$
\n(2.3)

it is equivalent to the following equation

$$
\text{div}\,\xi = 2\rho f(|H|^2)g(\text{grad}\,\rho,\text{grad}\,|H|^2) + \rho^2 f'(|H|^2)|\,\text{grad}\,|H|^2|^2
$$

$$
+ \rho^2 f(|H|^2)\Delta|H|^2. \tag{2.4}
$$

From the Young's inequality, we obtain

$$
-2\rho f(|H|^2)g(\text{grad }\rho, \text{grad }|H|^2) \le \lambda \rho^2 f(|H|^2)^2 |\text{grad }|H|^2|^2 + \frac{1}{\lambda}|\text{grad }\rho|^2, \tag{2.5}
$$

for all continuous function $\lambda > 0$ on M. By using the biharmonicity condition of (M, g) , and since the sectional curvature of (N, h) is negative, we conclude that

$$
\Delta |H|^2 \ge 2m|H|^4 + 2|\nabla^{\perp} H|^2,\tag{2.6}
$$

where ∇^{\perp} is the normal connection of (M, g) (see [\[1,](#page-2-1) [7\]](#page-3-7)). So, from equation [\(2.4\)](#page-1-0), and inequality [\(2.5\)](#page-1-1), we deduce

$$
\rho^2 \left[f'(|H|^2) - \lambda f(|H|^2)^2 \right] |\operatorname{grad}|H|^2|^2 + 2m\rho^2 |H|^4 f(|H|^2)
$$

+2\rho^2 f(|H|^2)|\nabla^{\perp} H|^2 - \operatorname{div}\xi \le \frac{1}{\lambda} |\operatorname{grad}\rho|^2. (2.7)

Take $M_+ = \{x \in M, |H|_x > 0\}$. We assume that $M_+ \neq \emptyset$. By using the divergence Theorem (see $[2]$), and the inequality (2.7) , we have

$$
\int_{M_{+}} \rho^{2} \{ f'(|H|^{2}) - \lambda f(|H|^{2})^{2} \} |\operatorname{grad}|H|^{2}|^{2} v^{g} + 2m \int_{M_{+}} \rho^{2} |H|^{4} f(|H|^{2}) v^{g}
$$

+2
$$
\int_{M_{+}} \rho^{2} f(|H|^{2}) |\nabla^{+} H|^{2} v^{g} \le \int_{M_{+}} \frac{1}{\lambda} |\operatorname{grad} \rho|^{2} v^{g},
$$
(2.8)

A direct calculation shows that

$$
|\operatorname{grad}|H|^{2}|^{2} \le 4|H|^{2}|\nabla^{\perp}H|^{2},\tag{2.9}
$$

on M_+ . According to inequalities [\(2.8\)](#page-2-3) and [\(2.9\)](#page-2-4) with

$$
\lambda = \frac{1}{2|H|^2 f(|H|^2)},
$$

on M_{+} , we obtain the following

$$
\int_{M_+} \rho^2 f'(|H|^2) |\operatorname{grad}|H|^2 |^{2} v^g + 2m \int_{M_+} \rho^2 |H|^4 f(|H|^2) v^g
$$

$$
\leq 2 \int_{M_+} |H|^2 f(|H|^2) |\operatorname{grad} \rho|^2 v^g.
$$
 (2.10)

Let $\rho : M \longrightarrow [0,1]$ be a smooth cut-off function with $\rho = 1$ on $B_R(x)$, $\rho = 0$ off $B_{2R}(x)$ and $|\text{grad }\rho| \leq \frac{2}{R}$. We suppose that the derivative function $f' \geq 0$. From inequality [\(2.10\)](#page-2-5), we find that

$$
m \int_{B_R(x)\cap M_+} |H|^4 f(|H|^2) \, v^g \le \frac{4}{R^2} \int_{B_{2R}(x)\cap M_+} |H|^2 f(|H|^2) \, v^g. \tag{2.11}
$$

Since $\int_M |H|^2 f(|H|^2) v^g < \infty$, when $R \to \infty$, we obtain

$$
\int_{M_+} |H|^4 f(|H|^2) v^g = 0.
$$
\n(2.12)

This contradicts our assumption. Hence $M_+ = \emptyset$. Therefore, (M, g) is harmonic.

 \Box

Theorem [1.1](#page-1-2) it is considered as an affirmative answer under the condition (1.5) to the generalized of global version of Chen's biharmonic conjecture (see [\[1,](#page-2-1) [3,](#page-3-8) [4,](#page-3-9) [9\]](#page-3-6)).

References

[1] K. Akutagawa and S. Maeta, *Biharmonic properly immersed submanifolds in Euclidean spaces*, Geom Dedicata, 164, 351–355, (2013).

- [2] P. Baird, J. C. Wood, *Harmonic morphisms between Riemannain manifolds*, Clarendon Press Oxford, (2003).
- [3] R. Caddeo, S. Montaldo and P. Piu, *On biharmonic maps*, Contemp. Math. 288, 286–290, (2001).
- [4] B. Y. Chen, *Some open problems and conjectures on submanifolds of finite type*, Soochow J. Math.,17, 169–188, (1991).
- [5] J. Eells and J. H. Sampson, *Harmonic mappings of Riemannian manifolds*, Amer. J. Math., 86, 109–160, (1964).
- [6] G. Y. Jiang, *2-Harmonic maps between Riemannian manifolds*, Annals of Math., China, 7A(4), 389–402, (1986).
- [7] Y. Luo, *On biharmonic submanifolds in non-positively curved manifolds*, J. Geom. Phy., 88, 76-87, (2015).
- [8] N. Nakauchi, H. Urakawa, *Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature*, Ann. Global Anal. Geom., 40, 125–131, (2011).
- [9] N. Nakauchi, H. Urakawa, Biharmonic Submanifolds in a Riemannian Manifold with Non-Positive Curvature, Results in Mathematics, 63, 467–474, (2013).
- [10] O'Neil, *Semi-Riemannian Geometry*, Academic Press, New York, (1983).
- [11] Y. Xin, *Geometry of harmonic maps*, Fudan University, (1996).

Author information

A. Mohammed Cherif, Faculty of Exact Sciences, University Mustapha Stambouli, Mascara, Algeria. E-mail: a.mohammedcherif@univ-mascara.dz

Received: 2023-05-03
Accepted: 2023-12-09 Accepted: 2023-12-09