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Abstract In this article, we explore a broad class of Bilinear-GARCH processes, abbreviated
as BL-GARCH. Our exclusive focus lies on examining the moment structure of the BL-GARCH
model. Specifically, we investigate both sufficient and necessary conditions for the existence of
the unconditional fourth moment of the BL-GARCH(p, q, d) process. Additionally, we derive
the autocorrelation function for the squared process.

1 Introduction

The bilinear-GARCH model, introduced by Storti and Vitale [[20], [21]] and further developed
by Ghezal et al. [[8], [9], [12]], is designed to capture asymmetry, allowing it to account for the
leverage effect. This effect, a negative correlation between return shocks and subsequent shocks
in volatility patterns for financial time series, has garnered attention across various models such
as the generalized quadratic ARCH (GQARCH, [19]), threshold GARCH (TGARCH, [[18],
[22], [14]]), GJR-GARCH [15], logGARCH [[10], [11]], exponential GARCH (EGARCH,
[17]), and bilinear (BL, [[4], [5], [6], [7], [13]]) models. A BL − GARCH model (Xt)t∈Z ,
Z := {0,±1,±2, ...} is defined on a probability space (Ω,A, P ) and satisfies

Xt =
√
σtet. (1.1)

Here, the innovation process (et)t∈Z is an i.i.d. sequence with zero mean and unit variance de-
fined on the same probability space (Ω,A, P ) and σt (volatility) is a general function depending
on the past observations and their realizations, given by:

σt = a0 +
q∑

i=1

aiX
2
t−i +

p∑
j=1

bjσt−j +
d∑

k=1

ckXt−k
√
σt−k. (1.2)

Here, d = min (p, q) , so (ai)0≤i≤q , (bj)1≤j≤p are non-negative coefficients with a0 > 0,
(ck)1≤k≤d have values in (−∞,+∞). If ck = 0, k = 1, ..., d, it reduces to the standard
GARCH(p, q) model. The positivity of the coefficients (ai)0≤i≤q , (bj)1≤j≤p ensures the pos-
itivity of σt in GARCH(p, q). A sufficient condition for σt > 0 is given by the following as-
sumption

[A.0] c2
k ≤ 4akbk for k = 1, ..., d (see Storti and Vitale [20]).

Despite the growing literature on bilinear−GARCH models, the fourth-moment structures have
not, to our knowledge, been provided thus far. Cavicchioli derived these moments for a range
of Markov switching multivariate and univariate GARCH models (see., [1], [2]). In this article,
we present the sufficient and necessary condition for the existence of the unconditional fourth
moment of the BL−GARCH process and provide an expression for the moment itself. Section
3 covers the derivation of the autocorrelation function for the squared process. Section 4 serves
as the conclusion for the articles.
Some notations are used throughout the article:
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• I(n) is the n× n identity matrix.
• O(n,m) denotes an n × m matrix with zero entries. For simplicity, we set O(n) := O(n,n)

and O(n) := O(n,1).
• The spectral radius of a square matrix M is denoted by ρ (M).
• ep := (1, ..., 1, 0, ..., 0)′ is an r× 1 vector with the first p components equal to 1 and the last
r− p components equal to 0. ẽp is a (r + 1)× 1 vector with the p− th component equal to
1 and otherwise equal to 0, 1r denotes the vector of order r × 1 whose entries are all ones.

• γ
R
(t) := (γ1 (t) , ..., γr (t))

′ and δR is its expectation. σR := (σt−1, ..., σt−r)
′ is an r × 1

vector with the index set R = {1, ..., r} . Meanwhile, γ
R\{h} (t) is a (r − 1)× 1 subvector

of γ
R
(t) obtained by excluding the element γh (t) from γ

R
and defining the other index set

Rh := {h+ 1, ..., h+ r} .
• ⊙ denotes the usual Hadamard product of matrices. If (Mi, i ∈ I ⊂ Z) is a sequence of

n× n matrices, for any integer l and j,
j∏

i=l

Mi =MlMl+1...Mj if l ≤ j, and I(n) otherwise.

• Finally, we define some matrices used here, for h ≤ r,

Γj :=

(
γ′
(R−1)\{h} (t− j + 1) γr (t− j + 1)

I(r−2) O(r−2)

)
(r−1)×(r−1)

for j = 2, ..., h;

for j = 1, ..., r − 2,

Sr−j (γj+1 (t− i+ 2)) :=

 O(j−1,r−j−1) O(j−1)

γ′
(R−1)\{1,...,j} (t− i+ 2) γr (t− i+ 2)

γj (t− i+ 2) I(r−j−1) O(r−j−1)


(r−1)×(r−j)

;

if j = r − 1,

S1 (γr (t− i+ 2)) :=
(
O′

(r−2) γr (t− i+ 2)
)′
, r̃ =

r−1∑
j=1

(r − j) ;

Γh+1 :=
(
Sr−1 (γ2 (t− h))

... Sr−2 (γ3 (t− h))
... . . .

... S1 (γr (t− h))

)
(r−1)×r̃

;

where, for i > h+ 1

Γi :=



Sr−1 (γ2 (t− i+ 1))
... Sr−2 (γ3 (t− i+ 1)) . . .

. . . . . . . . .

I(r−2)
... O(r−2)

... O(r−2) . . .

O(r−3,r−1)
... I(r−3)

... O(r−3) . . .
...

. . . . . .

O′
(r−1)

... O′
(r−2) . . .

S1 (γr (t− i+ 1))
. . .

0
0
...
0


r̃×r̃

.

For h > r,

Γ̃j :=

 1 O′
(r−1) 0

a0 γ′
(R−1)

(t− j + 1) γr (t− j + 1)

O(r−1) I(r−1) O(r−1)


(r+1)×(r+1)

for j = 2, ..., h,

and
Γ̃j = Γj for j > h+ 1,

Γ̃h+1 :=

 O(2,r−1)
... O(2,r−2)

... . . .
... O(2)

Sr−1 (γ2 (t− h))
... Sr−2 (γ3 (t− h))

... . . .
... S1 (γr (t− h))


(r+1)×r̃

.
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2 Condition for the existence of the fourth moment

In this section, we derive the sufficient and necessary condition for the existence of the uncon-
ditional fourth moment of the BL−GARCH (r, r, r) process and provide an expression for the
moment itself. In what follows, we shall assume, without loss of generality, that aq > 0, bp > 0,
cd ̸= 0 and r = max (p, q), Equation (1.2) can be expressed in the following representation

σt = a0 +
r∑

i=1

γi (t)σt−i, (2.1)

where γi (t) = bi+ciet−i+aie2
t−i for i = 1, ..., r, with (γi (t)) being a sequence of i.i.d. random

variables such that γi (t) is independent of σt−i. Now, we consider the following assumption:

[A.1] The BL−GARCH model has a finite fourth moment and let κ = E
{
e4
t

}
.

From the assumption [A.1], implying the existence of the second moment of (Xt), it follows that
r∑

i=1
δ
(1)
i < 1, where δ(1)i = E {γi (t)} = ai + bi, i = 1, ..., r. Now, let’s look at the unconditional

fourth moment of (Xt) , in the form of the square Equation (2.1), and then take the unconditional
expectations. This gives:

E
{
σ2
t

}
= a2

0 + 2a0δ1E {σt}+ δ2E
{
σ2
t

}
+ 2

∑
i<j

E {γi (t) γj (t)σt−iσt−j} , (2.2)

where δk =
r∑

i=1
δ
(k)
i , k = 1, 2 and δ

(2)
i = E

{
γ2
i (t)

}
= a2

iκ + b2
i + c2

i + 2aibi, i = 1, ..., r,

and E {σt} = a0
1−δ1

. In the next step, E
{
σ2
t

}
can be determined by Equation (2.2) if we find

a comfortable expression for E {γi (t) γj (t)σt−iσt−j} as functions of E {σt} and E
{
σ2
t

}
. In

the following lemma, we shall confront this problem by searching for a suitable expression for
σtσt−h, h ≥ 1

Lemma 2.1. For any l ≥ h+ 1, σtσt−h can be expressed as combinations of the terms of σt−i,
σ2
t−j and σt−iσt−j such that

σtσt−h =
(

Σ
(1)
0 + Σ

(2)
0

)
+

l−1∑
i=h+1

(
Σ
(1)
i + Σ

(2)
i

)
+ Σl, (2.3)

where, if h ≤ r,

Σ
(1)
0 : = a0


1 + γ′

R\{h} (t)
h−1∑
i=1


i∏

j=2

Γj

 e1

σt−h + γ′
R\{h} (t)


h∏

j=2

Γj

σRh\{h+r}

 ,

Σ
(2)
0 : =

γh (t) + γ′
R\{h} (t)

h−1∑
i=1


i∏

j=2

Γj

 e1γh−i (t− i)

σ2
t−h

+γ′
R\{h} (t)


h∏

j=2

Γj

σ
(1)
Rh\{h+r},

Σ
(1)
i : = a0γ

′
R\{h} (t)


i∏

j=2

Γj

σ
(1)
i (t) ,

Σ
(2)
i : = γ′

R\{h} (t)


i∏

j=2

Γj

σ
(2)
i (t) ,

Σl : = γ′
R\{h} (t)


l∏

j=2

Γj

σl (t) ,
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and if h > r,

Σ
(1)
0 : = γ̃′

R
(t)


h∏

j=2

Γ̃j

 σ̃
(1)
t , Σ

(2)
0 := γ̃′

R
(t)


h∏

j=2

Γ̃j

 σ̃
(2)
t ,

Σ
(1)
i : = a0γ̃

′
R
(t)


i∏

j=2

Γ̃j

σ
(1)
i (t) , Σ

(2)
i := γ̃′

R
(t)


i∏

j=2

Γ̃j

σ
(2)
i (t) ,

Σl : = γ̃′
R
(t)


l∏

j=2

Γ̃j

σl (t) .

Proof. First step: if h ≤ r, we can use Equation (2.1) to find the following

σtσt−h = a0σt−h + γh (t)σ
2
t−h + a0γ

′
R\{h} (t)σR\{h}σt−h. (2.4)

Again, applying the Equation (2.1) to σt−1 and continuing the iteration, we find

σtσt−h = a0σt−h + γh (t)σ
2
t−h + a0γ

′
R\{h} (t)

n−1∑
i=1


i∏

j=2

Γj

 e1σt−h

+γ′
R\{h} (t)

n−1∑
i=1


i∏

j=2

Γj

 e1γh−i (t− i)σ2
t−h

+a0γ
′
R\{h} (t)


h∏

j=2

Γj

σRh\{h+r} + γ′
R\{h} (t)


h∏

j=2

Γj

σ
(1)
Rh\{h+r}

+γ′
R\{h} (t)


h+1∏
j=2

Γj

σh+1 (t) ,

where:

σ
(1)
Rh\{h+r} : = γ

(R−1)
(t− h)⊙ σ⊙2

Rh\{h+r}, σ
(1)
i (t) :=

(
σ′
Ri\{i+r}, O

′
(r̃−r+1)

)′
,

σ
(2)
i (t) : =

((
σ
(1)
Ri\{i+r}

)′
, O′

(r̃−r+1)

)′

,

σl (t) : =
(
σt−lσ

′
Rl\{l+r}, σt−l−1σ

′
Rl\{l+1,l+r}, ..., σt−l−r+2σt−l−r+1

)′
r̃×1

.

As i > h+ 1, using Equation (2.1) again for σt−i in σi (t) , we have

σi (t) = a0σ
(1)
i (t) + σ

(2)
i (t) + Γi+1σi+1 (t) . (2.5)

Finally, by the recursion of Equation (2.4) and using Equation (2.5), we arrive at Equation (2.3).
Second step: if h > r, here we use the same method above to get the Equation (2.3) with

σ̃
(1)
t : =

(
σt−h, 0, a0σ

′
Rh\{h+r}

)′
(r+1)×1

, σ̃
(2)
t =

(
0, σ2

t−h, σ
(1)
Rh\{h+r}

)′
(r+1)×1

,

γ̃
R
(t) : =

(
a0, γ

′
R
(t)
)′
(r+1)×1

.

This completes the proof.

Currently, we insist on the necessity of E {γi (t) γj (t)σt−iσt−j} with 1 ≤ i < j ≤ r. For this,
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and the application of Lemma 2.1 by exchanging t− i for t and j − i for h, we have

E {γi (t) γj (t)σt−iσt−j} = E
{
γi (t) γj (t)Σ

(1)
0

}
+E

{
γi (t) γj (t)Σ

(2)
0

}
+E {γi (t) γj (t)Σl}

(2.6)

+
l−1∑

u=j−i+1

(
E
{
γi (t) γj (t)Σ

(1)
u

}
+E

{
γi (t) γj (t)Σ

(2)
u

})
.

Suppose that the process began at some finite value infinitely many periods ago. It has been
shown that the limit of Equation (2.6) exists and is independent of t as l → +∞ iff

λ(1) := ρ (Λ) < 1, (2.7)

where Λ := E {Γl} for l > j − i+ 1. For this purpose, we have the following results

Lemma 2.2. For 1 ≤ i < j ≤ r, E {γi (t) γj (t)Σl} −→
l↑∞

0 iff the Condition (2.7) is satisfied.

Proof. Using Lemma 2.1, we find

E {γi (t) γj (t)Σl} = E

{
γi (t) γj (t) γ

′
R\{j−i} (t)

{
l∏

u=2

Γu

}
σl (t)

}
for l ≥ r + j − i

= δ
(1)
i δ

(1)
j E

{
γ′
R\{j−i} (t)

{
j−i+1∏
u=2

Γu

}}
E


l−r+1∏

u=j−i+2

Γu


×E

{{
l∏

u=l−r+2

Γu

}
σl (t)

}
.

We note that in the recent equality, for any l ≥ r + j − i, E

{
l−r+1∏

u=j−i+2
Γu

}
= Λl−(r+j−i)

because E {ΓuΓv} = E {Γu}E {Γv} for u, v > j − i+ 1 and u ̸= v, while the third expectation

E

{{
l∏

u=l−r+2
Γu

}
σl (t)

}
is not a function of l. Using these notes, the proof is complete.

Lemma 2.3. For 1 ≤ i < j ≤ r,

lim
l→+∞

l−1∑
u=j−i+1

E
{
γi (t) γj (t)Σ

(1)
u

}
= a0δ

(1)
i δ

(1)
j δ′R\{j−i}

{
j−i+1∏
u=2

Λu

}
(Ir̃ − Λ)

−1
e(r−1)E {σt} ,

(2.8)
where Λu := E {Γu} for 2 ≤ u ≤ j − i + 1. You can find the Equation (2.8) iff the Condition
(2.7) is realized.

Proof. We know that

l−1∑
u=j−i+1

E
{
γi (t) γj (t)Σ

(1)
u

}
= a0δ

(1)
i δ

(1)
j E

{
γ′
R\{j−i} (t)

}
E

{
j−i+1∏
u=2

Γu

}

×

 l−1∑
u=j−i+1

Λ
u−(j−i+1)

E
{
σ
(1)
i (t)

}
.

Since the
l−1∑

u=j−i+1
Λu−(j−i+1) −→

l↑+∞
(Ir̃ − Λ)

−1 iff the Condition (2.7) is realized.
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Lemma 2.4. For 1 ≤ i < j ≤ r,

lim
l→+∞

l−1∑
u=j−i+1

E
{
γi (t) γj (t)Σ

(2)
u

}
= δ

(1)
i δ

(1)
j

{
r−1∑
u=1

δ
(2;j−i+u)
R\{j−i} + δ′R\{j−i}

{
j−i+1∏
u=2

Λu

}
(2.9)

× (Ir̃ − Λ)
−1
δ
(j−i+2r−1)
(j−i+r+1)

}
E
{
σ2
t

}
,

where δ(u−i−1;u)
R\{j−i} := E

{
γ′
R\{j−i} (t)

{
i+1∏
v=0

Γu−(i+1)+v

}(
γ′
(R−1)

(t− u− i+ 1) , O′
)′}

for i <

u ≤ r,

δ
(u)
(u−v) := E

{{
v∏

l=0
Γu−v+l

}(
γ′
(R−1)

(t− u− i+ 1) , O′
)′}

for v ≤ r−2, u > j−i+2r−1.

You can find the Equation (2.9) iff the Condition (2.7) is valid.

Proof. In the proof of Lemma 2.4, we must evaluate E

{
γi (t) γj (t)

l−1∑
u=j−i+1

Σ
(2)
u

}
, but the

task is not an easy due to σ
(2)
i (t) not being stochastically independent of the matrix product

i∏
j=i−r+2

Γj . Now, assume that k ≥ j − i+ r + 1, we have:

E

γi (t) γj (t)
l−1∑

u=j−i+1

Σ
(2)
u

 = δ
(1)
i δ

(1)
j E


j−i+r−1∑
u=j−i+1

Σ
(2)
u +

l−1∑
u=j−i+r

Σ
(2)
u


= δ

(1)
i δ

(1)
j E


j−i+r−1∑
u=j−i+1

Σ
(2)
u

+ δ
(1)
i δ

(1)
j δ′R\{j−i}

{
j−i+1∏
v=2

Γv

}

×
l−1∑

u=j−i+r

E


u−r+1∏

v=j−i+2

Γv

E

{{
u∏

v=u−r+2

Γv

}
σ(2)u (t)

}
.

Moreover, the expectation of

{
u∏

v=u−r+2
Γv

}
σ
(2)
u (t) is not a function of u for u ≥ j− i+2p−1.

In the next stage, we introduce some symbols to formulate a concise expression. For any u ≥

j − i+ 2p− 1, E

{{
u∏

v=u−r+2
Γv

}
σ
(2)
u (t)

}
= δ

(j−i+2r−1)
(j−i+r+1) E

{
σ2
t

}
and

E

{
γ′
R\{j−i} (t)

{
u∏

v=2

Γv

}
σ(2)u (t)

}
= δ

(2;u)
R\{j−i}E

{
σ2
t

}
.

Furthermore, Condition (2.7) holds iff
l−1∑

u=j−i+r

E

{
u−r+1∏

v=j−i+2
Γv

}
−→
l↑∞

(Ir̃ − Λ)
−1
. The rest fol-

lows immediately.

Now, utilizing the previous Lemmas 2.1 − 2.4 and Condition (2.7), we conclude that the mixed
moment E {γi (t) γj (t)σt−iσt−j} converges to a finite value. This value is a linear function of
E {σt} and E

{
σ2
t

}
as l ↑ ∞. We express this result formally in the following proposition

Proposition 2.5. Under Condition (2.7), we have

E {γi (t) γj (t)σt−iσt−j} = δ
(1)
i

(
a0δ

(1)
j Ξ1 (i, j)E {σt}+ Ξ2 (i, j)E

{
σ2
t

})
,

where, for j > i+ 1,

Ξ1 (i, j) = 1+δ′R\{j−i}

(
j−i−1∑
u=1

{
u∏

v=2

Λv

}
e1 +

{
j−i∏
u=2

Λu

}(
Λj−i+1 (Ir̃ − Λ)

−1
er−1 + 1r−1

))
,
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and Ξ2 (i, j) = Ξ
(1)
2 (i, j) + δ

(1)
j

4∑
u=2

Ξ
(u)
2 (i, j) such that for j > i+ 1,

Ξ
(1)
2 (i, j) = δ̃

(j)
(j−i) + δ′R\{j−i}

j−i−1∑
u=1

{
u∏

v=2

Λv

}
e1δ̃

(j)
(j−i−u),

Ξ
(2)
2 (i, j) =

j−i−1∑
u=1

δ(1)u Ξ
(2)
2 (i+ u, j) +

r∑
u=j−i+1

δ̃
(u)
(u−j+i),

Ξ
(3)
2 (i, j) =

r−1∑
u=1

δ
(2;u+j−i−1)
R\{j−i} ,

Ξ
(4)
2 (i, j) = δ′R\{j−i}

{
j−i+1∏
u=2

Λu

}
(Ir̃ − Λ)

−1
δ
(j−i+2r−1)
(j−i+r+1) ,

where δ̃(j)(i) := E {γi (t+ i) γj (t+ j)} for i < j.

Proof. To evaluate E
{
γi (t) γj (t)Σ

(1)
0

}
and E

{
γi (t) γj (t)Σ

(2)
0

}
, we employ similar methods

as before, we get

E
{
γi (t) γj (t)Σ

(1)
0

}
= a0δ

(1)
i δ

(1)
j

(
1 + δ′R\{j−i}

(
j−i−1∑
u=1

{
u∏

v=2

Λv

}
e1 +

{
j−i∏
u=2

Λu

}
1r−1

))
×E {σt} .

For j > l+ 1,

E

γi (t) γj (t)
Σ

(2)
0 − γ′

R\{j−i} (t)


j−i∏
j=2

Γj

σ
(1)
Rj−i\{(j−i)+r}


= δ

(1)
i

(
δ̃
(j)
(j−i) + δ′R\{j−i}

j−i−1∑
u=1

{
u∏

v=2

Λv

}
e1δ̃

(j)
(j−i−u)

)
E
{
σ2
t

}
.

To calculate E

{
γi (t) γj (t) γ′R\{j−i} (t)

{
j−i∏
j=2

Γj

}
σ
(1)
Rj−i\{(j−i)+r}

}
, we use recursion for j =

i+ 1, ..., i+ r − 1, we find the following

if j = i+ 1, E
{
γi (t) γj (t) γ

′
R\{1} (t)σ

(1)
R1\{r+1}

}
= δ

(1)
i δ

(1)
j

 r∑
j=2

δ̃
(j)
(j−1)

E
{
σ2
t

}
,

if j = i+ 2, E
{
γi (t) γj (t) γ

′
R\{2} (t)Γ2σ

(1)
R2\{r+2}

}
= δ

(1)
i δ

(1)
j

×

δ(1)1

r∑
j=2

δ̃
(j)
(j−1) +

r∑
j=3

δ̃
(j)
(j−2)

E
{
σ2
t

}
.

Taking Ξ
(2)
2 (j − 1, j) =

r∑
j=2

δ̃
(j)
(j−1), we then obtain Ξ

(2)
2 (j − 2, j) = δ

(1)
1 Ξ

(2)
2 (j − 1, j)+

r∑
j=3

δ̃
(j)
(j−2).

Continuing this process, we arrive at the desired result. In the latter part, utilizing the above re-
sults, the proof is completed.

Below are given the most important result in this section

Theorem 2.6. Under the Condition (2.7), a necessary and sufficient condition for the existence
of the fourth unconditional moment of (Xt) is given by

λ(2) := δ2 + 2
∑
i<j

δ
(1)
i Ξ2 (i, j) < 1 (2.10)
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while a detailed expression for the fourth moment

E
{
X4

t

}
= a2

0κ
(1 − δ1)

−1
ϒ

1 − λ(2)
,

where ϒ := 1+ δ1 + 2
∑
i<j

δ
(1)
i δ

(1)
j Ξ1 (i, j) and the kurtosis coefficient of the process is calculated

as

κ4 :=
E
{
X4

t

}(
E
{
X2

t

})2 = κ
(1 − δ1)ϒ

1 − λ(2)
.

Proof. The proof is straight forward. Therefore, we omit the details.

Example 2.7. In the following table, we present the necessary and sufficient conditions for the
existence of E

{
X4

t

}
and an expression for some specific cases

BL−GARCH (2, 2, 2) BL−GARCH (1, 1, 1)
λ(1) < 1 δ

(1)
2 < 1 δ

(1)
1 < 1

λ(2) < 1 δ2 + 2δ(1)1 δ̃
(2)
1

(
1 − δ

(1)
2

)−1
< 1 δ

(2)
1 < 1

E
{
X4

t

}
a2

0κ
1 + δ1 + 2δ(1)1 δ

(1)
2

(
1 − δ

(1)
2

)−1

(1 − δ1)
(
1 − λ(2)

) a2
0κ

1 + δ1

(1 − δ1)
(

1 − δ
(2)
1

)
Kurtosis κ

1 − δ2
1 + 2δ(1)1 δ

(1)
2

(
1 − δ

(1)
2

)−1
(1 − δ1)

1 − λ(2)
κ

1 − δ2
1

1 − δ
(2)
1

Table 1 : Condition (2.10) pertains to the existence of E
{
X4

t

}
and provides an expression as well as the kurtosis coefficient.

Remark 2.8. From Table 1, it is noteworthy that the outcomes derived from the BL-GARCH(1,1,1)
model align with those obtained by Storti and Vitale [20]. Additionally, the results for the Stan-
dard GARCH(2,2) model, which can be derived from the BL-GARCH(2,2,2) models by setting
c1 = c2 = 0, coincide with findings from He and Teräsvirta [3].

3 The autocorrelation function for the square process

In this section, we derive the autocorrelation function for the squared observations, touching on
some models included in the main model, such as ARCH (p) by Milhϕj [16], GARCH (p, q)
by He and Teräsvirta [3] and the first-order BL − GARCH model by Storti and Vitale [20].
Regardless, the autocorrelation function of

(
X2

t

)
at lag h is given by

ρ−h = ρh = ρ
(
X2

t , X
2
t−h

)
=
Cov

(
X2

t , X
2
t−h

)
V ar

(
X2

t

) for any h > 0.

The next step is to find a detailed expression for the mixed moment E
{
X2

tX
2
t−h

}
as a function

of E {σt} and E
{
σ2
t

}
. In the following lemma, we address this problem by searching for a

suitable expression for the mixed moment E
{
X2

tX
2
t−h

}
, 1 ≤ h ≤ r

Lemma 3.1. For 1 ≤ h ≤ r, the previous result mentioned in Proposition 2.5 gives

E
{
X2

tX
2
t−h

}
= a2

0Ξ1 (0, h)E {σt}+ Ξ2 (0, h)E
{
σ2
t

}
. (3.1)

Here, Ξ
(1)
2 (0, h) has changed to become Ξ

(1)
2 (0, h) = δ̂h + δ′R\{h}

h−1∑
u=1

{
u∏

v=2
Λv

}
e1δ̂h−u where

δ̂u := E
{
e2
tγu (t+ u)

}
.



222 Ahmed Ghezal, Amel Zerari and Imane Zemmouri

Proof. The proof is directly verified with the use of Proposition 2.5.

Now, we seek to obtain the same Equation (3.1) but with different coefficients for bothE {σt}
and E

{
σ2
t

}
, for h > r. For this purpose, we have the following results

Lemma 3.2. For h > r, the expectation of the
{

r−1∏
u=0

Γ̃h+u−r+1

}
σ̃
(2)
t does not depend on h and

we have

E

{
e2
t−h

{
r−1∏
u=0

Γ̃h+u−r+1

}(
0, 1, γ′

(R−1)
(t− h)

)′}
=

r∑
u=1

(
Ξ
(1)
2 (0, u) + Ξ

(2)
2 (0, u)

)
ẽr−u+2.

Proof. It is noted that the product
r−1∏
u=0

Γ̃h+u−r+1 is not stochastically independent of σ̃(2)t . After

some calculations, we find that:

r−1∏
u=0

Γ̃h+u−r+1 = Πh =


1 0 · · · 0
ψ21 (h) ψ22 (h) · · · ψ2,r+1 (h)
...

...
. . .

...
ψr+1,1 (h) ψr+1,2 (h) · · · ψr+1,r+1 (h)

 and Πh = Πh−1Γ̃h,

where ψk,m (s) is determined recursively with respect to integers s = h− r + 1, ..., h such that

ψkm (s) =

{
ψk2 (s− 1) γm−1 (t− s+ 2m− 3) + ψk,m+1 (s− 1) for m = 2, ..., r
ψk2 (s− 1) γr (t− s+ 1) for m = r + 1

,

with the initial values ψk,m (h− r + 1) = γkm for any k,m, where γkm is the (k,m)−th element
of matrix Γ̃h−r+1, we find

E

{
e2
t−h

{
r−1∏
u=0

Γ̃h+u−r+1

}(
0, 1, γ′

(R−1)
(t− h)

)′}
=

r+1∑
k,m=2

E
{
e2
t−hψk,m (h) γm−2 (t− h)

}
ẽk,

by convention γ0 (t− h) = 1.

Lemma 3.3. For h > r, we obtain E
{
X2

tX
2
t−h

}
as in Equation (3.1) with Ξ2 (0, h) defined by

Ξ2 (0, h) = δ̃
′
RΛ̃

h−r−1
r∑

u=1

Ξ2 (0, u) ẽr−u+2,

where δ̃R := E
{
γ̃
R
(t)
}
=
(
a0, δ

′
R

)′ and E
{

Γ̃j

}
= Λ̃ for j = 2, ..., h.

Proof. Enough to note that Ξ2 (0, h) is the coefficient ofE
{
σ2
t

}
in Equation (3.1). For any h > r

and by Lemma 3.2 we have

E
{
e2
t−hΣ

(2)
0

}
= δ̃RΛ̃

h−r−1
r∑

u=1

(
Ξ
(1)
2 (0, u) + Ξ

(2)
2 (0, u)

)
ẽr−u+2E

{
σ2
t

}
=

(
Ξ
(1)
2 (0, h) + Ξ

(2)
2 (0, h)

)
E
{
σ2
t

}
.

Moreover, For any h > r,

lim
l↑∞

l−1∑
i=h+1

E
{
e2
t−hΣ

(2)
i

}
= δ̃R

r−1∑
i=1

δ
(h+i)
(2) E

{
σ2
t

}
+ δ̃RΛ̃

h−1
Λ̃h+1 (Ir̃ − Λ)

−1
δ
(h+2r−2)
(h+r) E

{
σ2
t

}
= δ̃R

r−1∑
i=1

Λ̃
h−p+iδ

(h+i+1)
(3+i) E

{
σ2
t

}
+ δ̃RΛ̃

h−1
Λ̃h+1 (Ir̃ − Λ)

−1

×δ(3r−1)
(2r+1)E

{
σ2
t

}
=

(
Ξ
(3)
2 (0, h) + Ξ

(4)
2 (0, h)

)
E
{
σ2
t

}
.
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Now, the next result provides the mixed moment for any h ≥ 1

Proposition 3.4. Under Condition (2.7), the validity of Equation (3.1) is established for any
h ≥ 1. Specifically, for h ≥ 1, we have Ξ1 (0, h) := δ̃RΛ̃h−1

(
a0 + Λ̃h+1 (Ir̃ − Λ)

−1
er−1

)
with

a0a0 :=
(
1, 0, a01r−1

)′
, and Ξ2 (0, h) is defined by Lemma 3.1 and Lemma 3.3.

Proof. Using Lemma 2.1 is sufficient to note that

E
{
e2
t−nΣ

(1)
0

}
= a0δ̃RΛ̃

h−1a0E {σt} ;

lim
l↑∞

l−1∑
u=h+1

E
{
e2
t−nΣ

(1)
u

}
= a0δ̃RΛ̃

h−1
Λ̃h+1 (Ir̃ − Λ)

−1
er−1E {σt} .

Below is the most important result in this section

Theorem 3.5. Consider the BL − GARCH models (1.1) and (1.2). Assume that κ < ∞ and
that Condition (2.10) holds. Then the autocorrelation function of

(
X2

t

)
is, for any h ≥ 1

ρh =
ϒΞ2 (0, h) +

(
1 − λ(2)

) (
Ξ1 (0, h)− (1 − δ1)

−1
)

κϒ −
(
1 − λ(2)

)
(1 − δ1)

−1 .

4 Conclusion

In conclusion, the analysis of the BL-GARCH model in this scientific inquiry has yielded valu-
able insights into the dynamic behavior and statistical properties of financial processes. The
conditional stability condition (2.7) emerged as a critical determinant of the model’s stability,
emphasizing the role of joint moments and their persistence in shaping the long-term dynam-
ics. The examination of mixed moments provided a detailed formulation for various random
variables and their correlations, shedding light on the distributions of σt and σ2

t . Furthermore,
the autocorrelation function for X2

t was precisely formulated, unveiling the intricate relationship
between values at different time points. The existence conditions for higher-order moments un-
derscored specific requirements for the continued existence of high-order moments, delineating
the necessary conditions for such occurrences.

In summary, the BL-GARCH model offers a robust framework for analyzing the dynamic
behavior of financial processes. The conditions and results obtained contribute significantly to
understanding the complex interactions among different variables, providing valuable insights
for modeling and forecasting financial time series. The findings presented here enhance our
understanding of the underlying mechanisms governing financial processes and offer avenues
for further research in the field.
Acknowledgments

We would like to thank the Editor in Chief of the journal Ayman Badawi, an Associate
Editor and the anonymous referees for their constructive comments and very useful suggestions
and remarks which were most valuable for improvement in the final version of the paper. We
would also like to express our gratitude to our colleagues, Dr. Karima Himour and Dr. Samira
Himour, for their significant encouragement.

References
[1] Cavicchioli, M. (2021). Fourth moment structure of Markov switching multivariate GARCH models.

Journal of Financial Econometrics, 19 (4), 565 − 582.

[2] Cavicchioli, M. (2022). Markov switching GARCH models: Higher order moments, kurtosis measures,
and volatility evaluation in recessions and pandemic. Journal of Business & Economic Statistics, 40 (4) ,
1772 − 1783.

[3] He, C., T. Teräsvirta. (1999) Fourth moment structure of the GARCH (p, q) process. Econometric The-
ory, 15, 824 − 846.



224 Ahmed Ghezal, Amel Zerari and Imane Zemmouri

[4] A. Ghezal. (2015) . Consistency of quasi-maximum likelihood estimator for Markov-switching bilinear
time series models. Statistics & Probability Letters, 100, 192 − 202.

[5] A. Ghezal. (2016) . On periodic time-varying bilinear processes: structure and asymptotic inference. Sta-
tistical Methods & Applications, 25(3), 395 − 420.

[6] A. Ghezal. (2016) . Minimum distance estimation of Markov-switching bilinear processes. Statistics,
50(6), 1290 − 1309.

[7] A. Ghezal. (2017) . QMLE of periodic bilinear models and of PARMA models with periodic bilinear
innovations. Kybernetika, 54(2), 375 − 399.

[8] A. Ghezal. (2018) . Markov-switching BILINEAR − GARCH models: Structure and estimation.
Communications in Statistics-Theory and Methods, 47(2), 307 − 323.

[9] A. Ghezal. QMLE of periodic time-varying bilinear−GARCH models. Communications in Statistics-
Theory and Methods, 48(13), 3291 − 3310 (2019).

[10] Ghezal, A. (2021). QMLE for periodic time-varying asymmetric logGARCH models. Communica-
tions in Mathematics and Statistics, 9(3), 273 − 297.

[11] A. Ghezal., I. Zemmouri. (2023). On Markov-switching asymmetric logGARCH models: stationarity
and estimation. Filomat, 37 (29) , 1 − 19.

[12] Ghezal, A., I. Zemmouri. (2023). Estimating MS − BLGARCH models using recursive method. Pan-
American Journal of Mathematics, 2, 6.

[13] A. Ghezal. (2023). Spectral representation of Markov-switching bilinear processes. São Paulo Journal of
Mathematical Sciences, 1 − 21.

[14] A. Ghezal., I. Zemmouri. M-estimation in periodic Threshold GARCH models: Consistency and asymp-
totic normality. Miskolc Mathematical Notes, Accepted.

[15] Glosten, L. R., R. Jagannathan and D. E. Runkle. (1993). On the relation between the expected value and
the volatility of nominal excess return on stocks. Journal of Finance 48, 1779 − 1801.

[16] Milhϕj, A. (1985) The moment structure of ARCH process. Scandinavian Journal of Statistics 12, 281−
292.

[17] Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59,
347 − 370.

[18] Rabemananjara, R., J. M. Zakoian. (1993). Threshold ARCH models and asymmetries in volatility.
Journal of Applied Econometrics, 8, 31 − 49.

[19] Sentana, E. (1995). Quadratic ARCH models. Review of Economic Studies, 62 (4), 639 − 661.

[20] Storti, G., C. Vitale. (2003) BL−GARCH models and asymmetries in volatility. Statistical Methods &
Applications 12, 19 − 40.

[21] Storti, G., C. Vitale. (2003). Likelihood inference in BL − GARCH models. Computational Statistics
18, 387 − 400.

[22] Zakoian, J. M. (1994). Threshold heteroscedastic models. Journal of Economic Dynamics and Control,
18, 931 − 955.

Author information
Ahmed Ghezal, Department of Mathematics, Abdelhafid Boussouf University Center of Mila, Algeria.
E-mail: a.ghezal@centre-univ-mila.dz

Amel Zerari, Laboratoire de Mathématiques et leurs interactions, Department of Mathematics, Abdelhafid
Boussouf University Center of Mila, Algeria.
E-mail: a.zerrari@centre-univ-mila.dz

Imane Zemmouri, Department of Mathematics, University of Annaba, Elhadjar 23, Annaba, Algeria.
E-mail: imanezemmouri25@gmail.com

Received: 2023-05-03

Accepted: 2023-12-19


	1 Introduction
	2 Condition for the existence of the fourth moment
	3 The autocorrelation function for the square process
	4 Conclusion

