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Abstract Dendrimers have become a significant focus of research in various biomedical
fields due to their unique nanoparticle properties. These branched macromolecules grow from
the central core and form an intricate three-dimensional structure.
In this article, first we explore the creation of new Revan indices using dendrimers based on tri-
azines and porphyrins , phthalocyanine-containing dendrimers, porphyrin cores, and phosphorus-
containing dendrimers. In the following by utilizing M-polynomials derived from molecular
graphs and MATLAB, we will present the results obtained from our investigation.

1 Introduction

In recent years, dendrimers have gained significant attention as a new class of polymer materi-
als, particularly in drug delivery systems due to their unique properties. Dendrimers can deliver
drugs directly to the affected area of a patient’s body. Dendrimers are macromolecular struc-
tures that offer multiple advantages that may vary depending on the chemical nature of the drug
being delivered [14].
The reason why dendrimers are highly regarded in drug delivery is that they possess features
such as uniform size, water solubility, changeable surface performance, high branching degree,
multi-capacity, well-defined molecular weight, and accessible internal cavities. In addition, their
high surface control over dendritic architecture makes them ideal carriers.
A dendrimer is a tree with two additional parameters, the progressive degree t, and the radius
r. Each internal node of the tree has a degree t+ 1. Like any tree, a dendrimer has one central
node (single-center dendrimer) or two (double-center dendrimers). The radius represents the
(maximum) distance from an outer node to the center (nearest) node. The radius r denotes the
(largest) distance from an external node to the (closer) center. If all external nodes are at a dis-
tance r from the center, then the dendrimer is called homogeneous. Internal nodes are different
from the central nodes are called branching nodes and are said to be on the i -th orbit if their
distance to the (nearer) center is r[21].
Many studies have been done on the possible use of dendrimers as drug delivery tools. One of
these cases are Alzheimer’s disease.
With proper design, they can target diseased areas of the brain and have multiple functions on the
blood-brain barrier. Also, we have several dendrimers with therapeutic potential for Alzheimer’s
disease [2].
So far, many Graph polynomials have been introduced [1, 5, 9, 13, 28]. Many of which are
useful in mathematical chemistry. valuable results have been obtained regarding Graph polyno-
mials in chemical networks and consequently in topological indices. These results are used by
researchers to find a useful relationship between chemical compounds and their chemical and
biological properties. One of the most widely used polynomials is M-polynomial. Suppose G be



226

a graph, and let mi,j , i, j ≥ 1 be the number of edges uv of G such that {du, dv} = {i, j}.
The minimum and maximum vertex degree of graph G are denoted by δ and ∆ respectively.

Definition 1.1. The M-polynomial of G is obtained as follows [4]:

M(G, x, y) =
∑

δ≤i≤j≤∆

mi,jx
iyj . (1.1)

The following operators are used in the subsequent theorems.

Dx = x× ∂M(G,x,y)
∂x , Dy = y × ∂M(G,x,y)

∂y ,

Qx(a)M(G, x, y) = xa.M(G, x, y) , Qy(a)M(G, x, y) = ya.M(G, x, y) ,

SxM(G, x, y) =
∫ x

0
M(G,t,y)

t dt , SyM(G, x, y) =
∫ y

0
M(G,x,t)

t dt ,

J M(G, x, y) = M(G, x, x).

One of the applications of the M-Polynomial is that it is possible to calculate topological indices with the help of mathe-
matical relations (derivatives, integrals, etc.) for x and y. The calculation of topological indices using M-polynomial in the
molecular Graphs have also been investigated [3, 11, 12, 26].

Definition 1.2. The first and second Revan indices of a Graph G were introduced as follows [15]:

R1(G) =
∑

uv∈E(G)

[ru + rv ] , R2(G) =
∑

uv∈E(G)

[ru. rv ].

Where ru = ∆ + δ − du.
Recently, many studies have been conducted using topological indices [8, 23, 24, 25, 27].

Numerous research studies have been carried out on the Revan indices [7, 19, 20].

Definition 1.3. The product connectivity Revan index was introduced as follows [16]:

PR(G) =
∑

uv∈E(G)

1
√
ru.rv

.

Definition 1.4. The forgotten Revan (F-Revan) index was introduced as follows [17]:

FR(G) =
∑

uv∈E(G)

[r2
u + r2

v ].

Definition 1.5. The symmetric division Revan index was introduced as follows [17]:

SDR(G) =
∑

uv∈E(G)

ru

rv
+

rv

ru
.

Definition 1.6. The harmonic Revan index was introduced as follows [18]:

HR(G) =
∑

uv∈E(G)

2
ru + rv

.

Definition 1.7. The inverse sum indeg Revan index was introduced as follows [18]:

IR(G) =
∑

uv∈E(G)

ru.rv

ru + rv
.

In this article, first, By using M-polynomial we calculate product connectivity Revan, forgotten Revan (F-Revan), sym-
metric division Revan, harmonic Revan, and inverse sum indeg Revan indices. In the following for molecular Graph of ph-
thalocyanines, Pamam, triazine, phosphorus-based on dendrimers the Revan indices have been calculated and M-polynomial
was plotted. Finally, by using M- polynomial derived from molecular Graphs and using MATLAB, the F-Revan index from
M-polynomial coding is computed.
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2 relationship between M-polynomial and some connectivity Revan indices
Theorem 2.1. Let M(G, x, y) be the M-Polynomial the Graph G. Then the product connectivity Revan index is computed as,

PR(G) = [D
− 1

2
x D

− 1
2

y (Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))]
∣∣|(x,y)=(1,1) .

Proof.

PR(G) =
∑

uv∈E(G)

1
√
ru · rv

=
∑

uv∈E(G)

1√
(∆ + δ − du) · (∆ + δ − dv)

(2.1)

Qx(−∆−δ)Qy(−∆−δ)M(G, x, y) =
∑

δ≤i≤j≤∆
mijx

(i−∆−δ)y(j−∆−δ),

D
− 1

2
y (

∑
δ≤i≤j≤∆

mijx
i−∆−δyj−∆−δ)

=
∑

δ≤i≤j≤∆
mijx

(i−∆−δ) 1√
(j−∆−δ)

(y(j−∆−δ))−
1
2 ,

D
− 1

2
x D

− 1
2

y (
∑

mi,jx
(i−∆−δ)y(j−∆−δ) )

=
∑

δ≤i≤j≤∆
mij

1√
(i−∆−δ)(j−∆−δ)

(x(i−∆−δ))−
1
2 . (y(j−∆−δ))−

1
2

D
− 1

2
x D

− 1
2

y (
∑

δ≤i≤j≤∆

mijx
(i−∆−δ)yj−∆−δ)|(x,y)=(1,1) =

∑
δ≤i≤j≤∆

mi,j
1√

(i− ∆ − δ)(j − ∆ − δ)
, (2.2)

Hence, according to relations (2.1) and (2.2), we have

PR(G) = [D
− 1

2
x D

− 1
2

y (Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))] |(x,y)=(1,1) .

Theorem 2.2. Let M(G, x, y) be the M-Polynomial the graph G. Then the F-Revan Revan index is computed as,

FR(G) = (Dx
2 +D2

y)(Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))
∣∣∣
(x,y)=(1,1)

.

Proof.

FR(G) =
∑

uv∈E(G)

[r2
u + r2

v ] =
∑

uv∈E(G)

[(∆ + δ − du)
2 + (∆ + δ − dv)

2] (2.3)

Q
x(−∆−δ)

Q
y(−∆−δ)

M(G, x, y) =
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ)

D2
x(
∑

mi,jx
(i−∆−δ)y(j−∆−δ) ) +D2

y(
∑

mi,jx
(i−∆−δ)y(j−∆−δ) )

=
∑

δ≤i≤j≤∆
mi,j . [(i− ∆ − δ)2 + (j − ∆ − δ)2]x(i−∆−δ) . y(j−∆−δ),

D2
x(

∑
uv∈E(G)

mi,jx
(i−∆−δ))y(j−∆−δ)) +D2

y(
∑

uv∈E(G)

mi,jx
(i−∆−δ))y(j−∆−δ))|(x,y)=(1,1) (2.4)

=
∑

δ≤i≤j≤∆

mi,j [(i− ∆ − δ)2 + (j − ∆ − δ)2],

Hence, according to relations (2.3) and (2.4), we have

FR(G) = [(D2
x +D2

y)(Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))]
∣∣∣
(x,y)=(1,1)

.

Theorem 2.3. Let M(G, x, y) be the M-Polynomial the graph G. Then the symmetric division Revan index is computed as,

SDR(G) = (DxSy + SxDy)(Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))|(x,y)=(1,1).
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Proof.

SDR(G) =
∑

uv∈E(G)

ru

rv
+

rv

ru
=

∑
uv∈E(G)

(
du − ∆ − δ

dv − ∆ − δ
+

dv − ∆ − δ

du − ∆ − δ
) (2.5)

Dy(
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ)) =
∑

δ≤i≤j≤∆
mi,j(j − ∆ − δ)x(i−∆−δ)y(i−∆−δ)

SxDy(
∑

∂≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ)) =
∑

∂≤i≤j≤∆
(mi,j(j − ∆ − δ)y(j−∆−δ)

∫ x

0
t(i−∆−δ)

t
dt),

=
∑

∂≤i≤j≤∆
mi,j(j − ∆ − δ)y(j−∆−δ) x(i−∆−δ)

(i−∆−δ)
,

=
∑

∂≤i≤j≤∆
mi,j

(j−∆−δ)
(i−∆−δ)

x(i−∆−δ). y(j−∆−δ),

SyDx(
∑

∂≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ)) =
∑

∂≤i≤j≤∆
(mi,j(i− ∆ − δ)x(j−∆−δ)

∫ y

0
t(j−∆−δ)

t
dt),

=
∑

∂≤i≤j≤∆
mi,j(i− ∆ − δ)x(i−∆−δ) y(j−∆−δ)

(j−∆−∂)
,

=
∑

∂≤i≤j≤∆
mi,j

(i−∆−δ)
(j−∆−δ)

x(i−∆−δ). y(j−∆−δ),

(SxDy + SyDx)(
∑
δ≤∆

mi,jx
(i−∆−δ)y(j−∆−δ))|(x,y)=(1,1) =

∑
δ≤∆

mi,j(
i− ∆ − δ

j − ∆ − δ
+

j − ∆ − δ

i− ∆ − δ
) (2.6)

Hence, according to relations (2.5) and (2.6), we have

SDR(G) = (SxDy + SyDx) (
∑

δ≤i≤j≤∆

mi,jx
(i−∆−δ)y(j−∆−δ))

∣∣∣∣∣∣
(x,y)=(1,1)

.

Theorem 2.4. Let M(G, x, y) be the M-Polynomial the graph G. Then the harmonic Revan index is computed as,

HR(G) = (−2Sx.J.Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))|x=1.

Proof.

HR(G) =
∑

uv∈E(G)

2
ru + rv

= −2
∑

δ≤i≤j≤∆

1
(du − ∆ − δ) + (dv − ∆ − δ)

, (2.7)

J(
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ) ) =
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ),

Sx. J(
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ) ) =
∑

δ≤i≤j≤∆
mi,j

∫ x
0

t(i+j−2∆−2δ)

t
dt,

= (−2SxJ(
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ) )

∣∣∣∣∣
(x=1)

,

= −2
∑

δ≤i≤j≤∆

mi,j
1

(i− ∆ − δ) + (j − ∆ − δ)
(2.8)

Hence, according to relations (2.7) and (2.8), we have

HR(G) = (−2Sx.J.Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))|x=1.

,

Theorem 2.5. Let M(G, x, y) be the M- Polynomial the graph G. Then the Inverse sum indeg Revan index is computed as,

IR(G) = −(SxJDxDy)Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))|x=1.

Proof.

IR(G) =
∑

uv∈E(G)

ru · rv
ru + rv

= −
∑

uv∈E(G)

(du − ∆ − δ) · (dv − ∆ − δ)

(du − ∆ − δ) + (dv − ∆ − δ)
, (2.9)
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Dx. Dy(
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ))

=
∑

δ≤i≤j≤∆
mi,j(i− ∆ − δ)(j − ∆ − δ)x(i−∆−δ)y(j−∆−δ),

JDxDy(
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ))

=
∑

δ≤i≤j≤∆
mi,j(i− ∆ − δ)(j − ∆ − δ)x(i−∆−δ)x(j−∆−δ),

−SxJDxDy(
∑

δ≤i≤j≤∆
mi,jx

(i−∆−δ)y(j−∆−δ) )

∣∣∣∣∣
x=1

= [−
∑

δ≤i≤j≤∆
mi,j(i− ∆ − δ)(j − ∆ − δ)

∫ x

0
ti+j−2∆−2δ

t
dt]

∣∣∣∣∣
x=1

,

=
∑

δ≤i≤j≤∆

mi,j
(i− ∆ − δ) · (j − ∆ − δ)

(i + j − 2∆ − 2δ)
(2.10)

Hence, according to relations (2.9) and (2.10), we have

IR(G) = −(SxJDxDy)Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))|x=1.

According to the results of the above theorems, Table (1) is obtained to calculate Revan indices using M-polynomial.

Topological Index name Derivation from M(G, x, y)

Product connectivity

Revan index [D− 1
2

x D
− 1

2
y (Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))]

∣∣|(x,y)=(1,1)

F-Revan index [(Dx
2 +D2

y)(Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))]
∣∣∣
(x,y)=(1,1)

Symmetric division
Revan index [(DxSy + SxDy)(Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))]|(x,y)=(1,1)

Harmonic Revan index [( - 2Sx.J.Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))]|x=1

Inverse sum
Revan index [ - (SxJDxDy)Qx(−∆−δ)Qy(−∆−δ)M(G, x, y))]|x=1

Table 1. Derivation of Revan indices from M-polynomial.
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Figure 1. Molecular Graph of denderimers (a)H1(n), (b)H2(n), (c)H3(n), (d)H4(n), (e)H5(n),

3 Phthalocyanines dendrimer H1(n)

The proposed structure of phthalocyanines has been the subject of significant research efforts. These molecules have since
been explored for their potential in various applications.
Let H1(n) be the molecular Graph of the following dendrimer, where n represents the generation stages of H1(n). Figure
(1)-(a) depicts the structure of H1(n) for n = 2.

E1(H1(n)) = {uv ∈ E1(H1(n)) : du = 4 and dv = 3}| E1(H1(n))| = 4,
E2(H1(n)) = {uv ∈ E2(H1(n)) : du = 1 and dv = 3}| E2(H1(n))| = 2n+2,

E3(H1(n)) = {uv ∈ E3(H1(n)) : du = 2 and dv = 2}| E3(H1(n))| = 2n+2,

E4(H1(n)) = {uv ∈ E4(H1(n)) : du = 3 and dv = 2}| E4(H1(n))| = 8(2n+2 − 1),
E5(H1(n)) = {uv ∈ E5(H1(n)) : du = 3 and dv = 3}| E5(H1(n))| = 20.

Theorem 3.1. Let H1(n) be the molecular Graph structures of Phthalocyanines dendrimers, then, the M-Polynomial are:

M(H1(n, x, y)) = 4x4y3 + 2n+2xy3 + 2n+2x2y2 + 8(2n+2 − 1)x3y2 + 20x3y3.

Proof. It is easily obtained by the definition of (1.1) and the structure of H1(n).

Theorem 3.2. Suppose H1(n), is the Graph structure of Phthalocyanines dendrimer. New Revan indices are calculated as
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follows:

1. PR(H1(n)) = ( 3
√

2+4+16
√

6
12 )2n+2 + (10 + 2

√
2 − 4

√
6

3 ),

2. F r(H1(n), x, y) = 142(2n+2) + 76,

3. SDR(H1(n), x, y) = ( 131
6 )2n+2 + 98

3 ,

4. HR(H1(n)) =
58
15 (2

n+2) + 142
15 ,

5. IR(H1(n)) =
373
30 (2n+2) + 196

15 .

Proof. By applying the operators of Table (1) to Theorem (3.1), we have:

Qx(−5)Qy(−5)M(H1(n), x, y) = 4x−1y−2 + 2n+2x−4y−2 + 2n+2x−3y−3

+8(2n+2 − 1)x−2y−3 + 20x−2y−2,

D
− 1

2
x D

− 1
2

y (Qx(−5)Qy(−5)M(H1(n), x, y)) = 4 × 1√
2
x−1 .y−2 + 2n+2 × 1√

8
x−4.y−2

+2n+2 × 1√
9
x−3 .y−3 + 8√

6
(2n+2 − 1)x−2 .y−3 + 20 × 1√

4
x−2 .y−2 ,

D2
yQx(−5)Qy(−5)M(H1(n), x, y) = 4.(−2)2x−1y−2 + 2n+2.(−2)2x−4y−2

+2n+2.(−3)2x−3y−3 + 8(2n+2 − 1).(−3)2x−2y−3 + 20.(−2)2x−2y−2,

D2
xQx(−5)Qy(−5)M(H1(n), x, y) = 4.(−1)2x−1y−2 + 2n+2.(−4)2x−4y−2

+2n+2.(−3)2x−3y−3 + 8(2n+2 − 1).(−2)2x−2y−3 + 20.(−2)2x−2y−2,

Dx(Qx(−5)Qy(−5)M(H1(n), x, y)) = (−1)× (4)x−1y−2 + (−4)2n+2x−4y−2

+(−3)× 2n+2x−3y−3 + 8(−2)(2n+2 − 1)x−2y−3 + 20(−2)x−2y−2,

Dy(Qx(−5)Qy(−5)M(H1(n), x, y)) = 4 × (−2)x−1y−2 + 2n+2 × (−2)x−4y−2

+2n+2 × (−3)x−3y−3 + 8 × (−3)(2n+2 − 1)x−2y−3 + 20 × (−2)x−2y−2,

Sy(Qx(−5)Qy(−5)M(H1(n), x, y)) =
y∫
0

4x−1t−2

t
dt +

y∫
0

2n+2x−4t−2

t
dt +

y∫
0

2n+2x−3t−3

t
dt

+
y∫
0

8(2n+2−1)x−2t−3

t
dt +

y∫
0

20x−2t−2

t
dt

= 4
−2x

−1y−2 + 2n+2

−2 x−4y−2 + 2n+2

−3 x−3y−3 + 8
−3 (2

n+2 − 1)x−2y−3 + 20
−2x

−2y−2,

SxDy(Qx(−5)Qy(−5)M(H1(n), x, y)) =
x∫
0

−8t−1y−2

t
dt +

x∫
0

(−2)2n+2t−4y−2

t
dt

+
x∫
0

(−3)2n+2t−3y−3

t
dt +

x∫
0

−24(2n+2−1)t−2y−3

t
dt +

x∫
0

−40t−2y−2

t
dt

= 8x−1y−2 + 1
2 (2

n+2)x−4y−2 + 2n+2x−3y−3 + 12(2n+2 − 1)x−2y−3 + 20x−2y−2,

DxSy(Qx(−5)Qy(−5)M(H1(n), x, y)) =
4
−2x

−1y−2 + 2n+2

−2 x−4y−2 + 2n+2

−3 x−3y−3

+ 8
−3 (2

n+2 − 1)x−2y−3 + 20
−2x

−2y−2

= 2x−1y−2 + 2(2n+2)x−4y−2 + 2n+2x−3y−3 + 16
3 (2n+2 − 1)x−2y−3 + 20x−2y−2,

J(Q
x(−5)Qy(−5)M(H1(n), x, y))) = 4x−1x−2 + 2n+2x−4x−2 + 2n+2x−3x−3

+8(2n+2 − 1)x−2x−3 + 20x−2x−2,

SxJ(Qx(−5)Qy(−5)M(H1(n), x, y))) =
x∫
0

4t−3

t
dt+

x∫
0

2n+2t−6

t
dt +

x∫
0

2n+2t−6

t
dt

+
x∫
0

8(2n+2−1)t−5

t
dt +

x∫
0

20t−4

t
dt

= 4x−3

−3 + 2n+2x−6

−6 + 2n+2x−6

−6 +
8(2n+2−1)x−5

−5 + 20x−4

−4 ,

DxDy(Qx(−5)Qy(−5)M(H1(n), x, y)) = 8x−1y−2 + 8(2n+2)x−4y−2 + 9(2n+2)x−3y−3

+48(2n+2 − 1)x−2y−3 + 80x−2y−2,

J DxDy(Qx(−5)Qy(−5)M(G, x, y)) = 8x−3 + 8(2n+2)x−6 + 9(2n+2)x−6

+48(2n+2 − 1)x−5 + 80x−4,

Sx J DxDy(Qx(−5)Qy(−5)M(G, x, y)) =
x∫
0

8t−3

t
dt +

x∫
0

8(2n+2)t−6

t
dt +

x∫
0

9(2n+2)t−6

t
dt

+
x∫
0

48(2n+2−1)t−5

t
dt +

x∫
0

80t−4

t
dt

= 8
−3x

−3 +
8(2n+2)

−6 x−6 +
9(2n+2)

−6 x−6 +
48(2n+2−1)

−5 x−5 + 80
−4x

−4,

Now we have:
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1. [D
− 1

2
x D

− 1
2

y (Qx(−5)Qy(−5)M(H1(n), x, y))]

∣∣∣∣
(x,y)=(1,1)

= ( 3
√

2+4+16
√

6
12 )2n+2

+(10 + 2
√

2 − 4
√

6
3 ),

2. [(D2
x +D2

y)(Qx(−5)Qy(−5)M(H1(n), x, y))]
∣∣
(x,y)=(1,1)

= 142(2n+2) + 76,

3. [(DxSy + SxDy)(Qx(−5)Qy(−5)M(H1(n), x, y))]|(x,y)=(1,1) =
119
6 (2n+2) + 2n+1 + 98

3 ,

4. [−2SxJ(Qx(−5)Qy(−5)M(H1(n), x, y))]
∣∣
x=1

= 58
15 (2

n+2) + 142
15 ,

5. [−Sx J DxDy(Qx(−5)Qy(−5)M(H1(n), x, y))]
∣∣
x=1

= 373
30 (2

n+2) + 196
15 .

4 Pamam dendrimers with poryphyrin core (H2(n))
One of the important applications of PAMAM dendrimers with porphyrin core is as a potential photosensitizer for photody-
namic therapy applications [22]

E1(H2(n)) = {uv ∈ E1(H2(n)) : du = 2 and dv = 2}| E1(H2(n))| = 4(3 × 2n + 1),
E2(H2(n)) = {uv ∈ E2(H2(n)) : du = 2 and dv = 3}| E2(H2(n))| = 4(3 × 2n + 4),
E3(H2(n)) = {uv ∈ E3(H2(n)) : du = 3 and dv = 3}| E3(H2(n))| = 12,
E4(H2(n)) = {uv ∈ E4(H2(n)) : du = 2 and dv = 1}| E4(H2(n))| = 2n+1,

E5(H2(n)) = {uv ∈ E5(H2(n)) : du = 3 and dv = 1}| E5(H2(n))| = 4(2n − 1).

Theorem 4.1.

M(H2(n, x, y)) = 4(3 × 2n + 1)x2y2 + 4(3 × 2n + 4)x2y3 + 12x3y3 + 2n+1x2y + 4(2n − 1)x3y3.

Proof. It is easily obtained by the definition of (1.1) and the structure of H2(n).

Theorem 4.2. Suppose H2(n) , is the Graph structure of Pamam dendrimer. New Revan indices are calculated as follows:

1. PR(H2(n)) =
√

6
6 2n+1 + ( 4

√
3

3 + 6
√

2 + 6)2n + (8
√

2 + 2 − 4
√

3
3 ),

2. F r(H2(n)) = 13(2n+1) + 196(2n) + 96,

3. SDR(H2(n)) =
13(2n+1)

6 +
202(2n)

3 + 176
3 ,

4. HR(H2(n)) =
2n+2

5 + (16)2n + 68
3 ,

5. IR(H2(n)) =
12(2n+1)

5 + 46(2n) + 34
3 .

Proof. By applying the operators of Table (1) to Theorem (4.1), we have:

1. [D
− 1

2
x D

− 1
2

y (Qx(−5)Qy(−5)M(H2(n), x, y))]

∣∣∣∣
(x,y)=(1,1)

=
√

6
6 2n+1 + ( 4

√
3

3 + 6
√

2 + 6)2n

+(8
√

2 + 2 − 4
√

3
3 ),

2. [ (D2
x +D2

y)(Qx(−5)Qy(−5)M(H2(n), x, y))]
∣∣
(x,y)=(1,1)

= 13(2n+1) + 196(2n) + 96,

3. (DxSy + SyDx)(Qx(−5)Qy(−5)M(H2(n), x, y))
∣∣
(x,y)=(1,1)

= 13(2n+1)
6 + 202(2n)

3 + 176
3 ,

4. − 2SX J(Qx(−5)Qy(−5)M(H2(n), x, y))
∣∣
(x=1)

= 2n+2

5 + (16)2n + 68
3 ,

5. [−SX JDxDy(Qx(−5)Qy(−5)M(H2(n), x, y))]
∣∣
(x=1)

= 6(2n+1)
5 + 23(2n) + 53

3 .

5 Triazine- based dendrimer (H3(n))
Triazine dendrimers have been investigated by scientists for a variety of pharmaceutical applications, including DNA delivery
systems, especially in anticancer drugs.
The molecular Graph of the triazine-based dendrimer with production step n for n = 1 and n = 2 is shown in (1)-(c).
suppose V (H3(n)) has two representive. Say Z1 = {α1, α2, α3, α4, α5}, Z2 = {aj , bj , cj , dj , ej , fj , gj , hj} where
1 ≤ j ≤ n, The corresponding edges of sets are E(Z1) = {α1α1, α1α2, α2α3, α3α4, α4α5, α5α1} and E(Z2) =
{ajbj , bjcj , cjdj , cjej , ejfj , fjgj , gjhj , hjaj+1} where 1 ≤ j ≤ n.The partition of edges of set Z1 and Z2 for Triazine-
based dendrimer with respect to the representative end vertices and its frequency is presented in Table (2).

Theorem 5.1. Let H3(n), is the Graph structure of Triazine- based dendrimer, then, the M-Polynomial is:

M(H3(n, x, y)) = (1 +
4
3
(4n − 1))x3y3 + (8 + 4(

4
3
(4n − 1) +

2
3
(4n − 4))x3y2

+ (4 +
2
3
(4n − 4))x2y2 + (4 +

4
3
(4n − 1))x2y3 + 22n+1x2y.
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Representative pairs edges Frequency Representative pairs edges Frequency
(α1, α1) 1 (cj , dj) 22j

(α1, α2) 4 (cj , ej) 22j

(α2, α3) 4 (ej , fj) 22j+1

(α3, α4) 4 (fj , gj) 22j+1

(α4, α5) 2 (gj , hj) 22n+1

(α5, α1) 2 (gj , hj) when j ̸= n 22j+1

(aj , bj) 22j (hj , aj+1) when j ̸= n 22j+1

(aj , bj) 22j

Table 2. The edges partition for Triazine- based dendrimer based on set edges Z1 and Z2 con-
cerning, for, to the representative end vertices and its frequency [10]

Proof. It is easily obtained by the definition of (1.1) and the structure of H3(n).

Theorem 5.2. Suppose H3(n) for n = 1 and n = 2, is the Graph structure of Triazine- based dendrimer. New Revan indices
are calculated as follows:

1. PR(H3(n)) =
√

2
6 (8 + 4n+1)× + 1

3 (−1 + 4n+1) +
√

2
6 (2(4n) + 4n+2)

+ 1
6 (2(4

n − 8)) +
√

6
6 22n+1,

2. F r(H3(n)) =
5
3 (4

n+2) + 7
3 (4

n+1) + 26
3 (4n) + 13(22n+1)− 122,

3. SDR(H3(n)) =
3
2 (4

n+1) + 5
6 (4

n+2) + 3(4n) + 13
12 (2

2n+1) + 2
3 ,

4. HR(H3(n)) = 22n( 167
80 ) + 2n( 4

3 ) +
57
5 ,

5. IR(H3(n)) =
2
9 (8 + 4n+1) + 1

6 (−1 + 4n+1) + 2
9 (2(4

n) + 4n+2)

+ 4
3 (2(4

n − 8)) + 6
5 (2

2n+1).

Proof. By applying the operators of Table (1) to Theorem (5.2), we have:

1. [D
− 1

2
x D

− 1
2

y Qx(−5)Qy(−5)M(H3(n), x, y)]

∣∣∣∣
(x,y)=(1,1)

= 1
3 (8 + 4n+1)× 1√

2

+ 1
3 (−1 + 4n+1)× 1√

1
+ 1

3 (2(4
n) + 4n+2)× 1√

2
+ 1

3 (2(4
n − 8))× 1√

4
+ 22n+1 × 1√

6
,

2. [ (D2
x +D2

y)Qx(−5)Qy(−5)M(H3(n), x, y)]
∣∣
(x,y)=(1,1)

= 5
3 (4

n+2) + 7
3 (4

n+1) + 26
3 (4n)

+13(22n+1)− 122,
3. [(DxSy + SxDy)Qx(−5)Qy(−5)M(H3(n), x, y)]

∣∣
(x,y)=(1,1)

= 3
2 (4

n+1) + 5
6 (4

n+2)

+3(4n) + 13
12 (2

2n+1) + 2
3 ,

4. [−2Sx J(Q
x(−5)Qy(−5)M(H3(n), x, y))]

∣∣∣
(x=1)

= 22n( 167
80 ) + 2n( 4

3 ) +
57
5 ,

5. [−SxJDxDyQx(−5)Qy(−5)M(H3(n), x, y)]
∣∣
x=1

= 2
9 (8 + 4n+1) + 1

6 (−1 + 4n+1)

+ 2
9 (2(4

n) + 4n+2) + 4
3 (2(4

n − 8)) + 6
5 (2

2n+1).

6 Phosphorus-containing dendrimers (H4(n) and H5(n))
Phosphorus-containing dendrimers are a class of dendrimers known for their unique properties, including the ability to form
bifunctional structures. These dendrimers have found use as recyclable and potent catalysts. Suppose H4(n) and H5(n), are
the molecular Graphs of Phosphorus dendrimers with the generation stage n. Figure (1)-(d) and -(e) respectively depicts the
structure of Phosphorus-containing dendrimer H4(n) and H5(n) for n = 2. From a Graph structure of H4(n) the edges
partition are as follows [10]

E1(H4(n)) = {uv ∈ E1(H4(n)) : du = 1 and dv = 3}| E1(H4(n))| = 3(2n − 1),
E2(H4(n)) = {uv ∈ E2(H4(n)) : du = 2 and dv = 4}| E2(H4(n))| = 3(2n − 1),
E3(H4(n)) = {uv ∈ E3(H4(n)) : du = 2 and dv = 2}| E3(H4(n))| = 9(2n − 1),
E4(H4(n)) = {uv ∈ E4(H4(n)) : du = 2 and dv = 3}| E4(H4(n))| = 12(2n − 1),
E5(H4(n)) = {uv ∈ E5(H4(n)) : du = 3 and dv = 4}| E5(H4(n))| = 3(2n − 1),
E6(H4(n)) = {uv ∈ E6(H4(n)) : du = 1 and dv = 4}| E5(H4(n))| = 2(3 × 2n − 1).

From a Graph structure of H5(n) the edges partition are as follows [10]

E1(H5(n)) = {uv ∈ E1(H4(n)) : du = 1 and dv = 4}| E1(H5(n))| = 6(2n+1 − 1),
E2(H5(n)) = {uv ∈ E2(H4(n)) : du = 1 and dv = 3}| E2(H5(n))| = 6(2n − 1),
E3(H5(n)) = {uv ∈ E3(H4(n)) : du = 3 and dv = 4}| E3(H5(n))| = 6(2n − 1),
E4(H5(n)) = {uv ∈ E4(H4(n)) : du = 2 and dv = 3}| E4(H5(n))| = 42(2n − 1),
E5(H5(n)) = {uv ∈ E5(H4(n)) : du = 2 and dv = 2}| E5(H5(n))| = 18(2n − 1),
E6(H5(n)) = {uv ∈ E6(H4(n)) : du = 2 and dv = 4}| E5(H5(n))| = 12.
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Theorem 6.1. Let H4(n) and H5(n) are the molecular Graph structures of Phosphorus-containing dendrimers, then, the
M-Polynomial are:

i)M(H4(n, x, y)) = 3(2n − 1)xy3 + 3(2n − 1)x2y4 + 9(2n − 1)x2y2

+12(2n − 1)x2y3 + 3(2n − 1)x3y4 + 2(3 × 2n − 1)xy4,

ii)M(H5(n, x, y)) = 6(2n+1 − 1)xy4 + 6(2n − 1)xy3 + 6(2n − 1)x3y4

+42(2n − 1)x2y3 + 18(2n − 1)x2y2 + 12x2y4.

Proof. It is easily obtained by the definition of (1.1) and the structure of H4(n) and H5(n)

Theorem 6.2. Let H4(n) and H5(n) are the molecular Graph structures of Phosphorus-containing dendrimers, New Revan
indices are calculated as follows:

1. PR(H4(n)) = (6 + 9
√

2
4 +

√
3 + 2

√
6)2n + (− 9

√
2

4 −
√

3 − 2
√

6 − 4),
2. F r(H4(n), x, y)) = 525(2n)− 457,
3. SDR(H4(n)) =

189
2 (2n)− ( 155

2 ),

4. HR(H4(n)) =
147
10 (2n)− 131

10 ,

5. IR(H4(n)) =
819
20 (2n)− 851

20 ,

6. PR(H5(n)) = 3(2n+1) + ( 9
2

√
2 + 7

√
6 + 9)2n + (−12 − 9

2

√
2 − 7

√
6 − 4

√
3),

7. F r(H5(n), x, y) = 102(2n+1) + 1020(2n − 1) + 120,
8. SDR(H5(n)) =

51
2 (2n+1) + (137)(2n)− 215

2 ,

9. HR(H5(n)) =
12
5 (2n+1) + ( 144

5 )(2n)− 186
5 ,

10. IR(H5(n)) =
24
5 (2n+1) + 447

5 (2n)− 516
5 .

Proof. By applying the operators of Table (1) to Theorem (6.1), we have:

1. [D
− 1

2
x D

− 1
2

y (Qx(−5)Qy(−5)M(H4(n), x, y))]

∣∣∣∣
(x,y)=(1,1)

= (6 + 9
√

2
4 +

√
3 + 2

√
6)2n

+(− 9
√

2
4 −

√
3 − 2

√
6 − 4),

2. [ (D2
x +D2

y)(Qx(−5)Qy(−5)M(H4(n), x, y))]
∣∣
(x,y)=(1,1)

= 525(2n)− 472,

3. [ (DxSy + SxDy)(Qx(−5)Qy(−5)M(H4(n), x, y))]
∣∣
(x,y)=(1,1)

= 189
2 (2n)− ( 155

2 ),

4. [−2Sx J(Qx(−5)Qy(−5)M(H4(n), x, y))]
∣∣
(x=1)

= 147
10 (2

n)− 131
10 ,

5. [−SxJ DxDy(Qx(−5)Qy(−5)M(H4(n), x, y))]
∣∣
(x=1)

= 819
20 (2

n)− 851
20 ,

6. [D
− 1

2
x D

− 1
2

y (Qx(−5)Qy(−5)M(H5(n), x, y))]

∣∣∣∣
(x,y)=(1,1)

= 3(2n+1)

+( 9
2

√
2 + 7

√
6 + 9 + 4

√
3)2n + (−12 − 9

2

√
2 − 7

√
6),

7. [ (D2
x +D2

y)Qx(−5)Qy(−5)M(H5(n), x, y)]
∣∣
(x,y)=(1,1)

= 102(2n+1) + 1020(2n − 1) + 120,

8. [(DxSy + SxDy)(Qx(−5)Qy(−5)M(H5(n), x, y))]
∣∣
(x,y)=(1,1)

= 51
2 (2

n+1)

+(137)(2n)− 215
2 ,

9. [−2Sx J(Qx(−5)Qy(−5)M(H5(n), x, y))]
∣∣
(x=1)

= 12
5 (2

n+1) + ( 144
5 )(2n)− 186

5 ,

10 . [−Sx J DxDy(Qx(−5)Qy(−5)M(H5(n), x, y))]
∣∣
(x=1)

= 24
5 (2

n+1) + 447
5 (2n)− 516

5 .

7 Plotting and comparing M-polynomial for dendrimers
The graphical representation of the M-polynomial of H1(n),...,H5(n) is given by Figure (2). According to Figure (2), it is
clear that for positive values of x,y, the M-polynomial is always positive, therefore, Table (1) is valid for calculating Rivan’s
indices.

8 MATLAB coding for topological indices
In this section, we provide MATLAB coding for the calculation of topological indices using M-polynomial and the relation-
ships proved in Section (2). The F-Revan index from M-polynomial coding is computed as,
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Figure 2. Molecular Graph of denderimers (a)H1(n)M-polynomial, (b)H2(n)M-polynomial,
(c)H3(n)M-polynomial, (d)H4(n)M-polynomial, (e)H5(n)M-polynomial,

clear

clc

n = input(′numberofsentence :′);
A = zeros (n, 3) ;
for i = 1 : n
for j = 1 : 3

A(i, j) = input(′data′);
end

end

symsx y

mGxy = 0;
for i = 1 : n

mGxy = mGxy +A(i, 1) ∗ xA(i, 2) ∗ yA(i, 3);
end

mGxy

Delta = input(′entermaximumdegree of graph :′);
dlta = input(′enterminimumdegree of graph :′);
f = −Delta− dlta;
B = zeros (n, 3) ;
for i = 1 : n

for j = 1 : 3
if j == 1
B (i, j) = A (i, j) ;
else

B (i, j) = A (i, j) + f ;
end

end

end

B;
FA = 0;
for i = 1 : n
FA = FA +B(i, 1) ∗ xB(i, 2) ∗ yB(i, 3);

end

FADX = diff(FA, x) ∗ x

DX2 = diff(DX,x) ∗ x

DY = diff(FA, y) ∗ y

DY 2 = diff(DY, y) ∗ y

DXDY = 0;
for i = 1 : n
DXDY = DXDY +B(i, 1) ∗B(i, 2) ∗B(i, 3) ∗ xB(i, 2) ∗ yB(i, 3);
end

DXDY

HR1 = [(DX2 +DY 2)]
symsx y

subs(HR1, [x, y], [1, 1])
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9 Conclusion remarks
This article presents new Revan indices obtained through the use of M-polynomial calculations. Additionally, we apply M-
polynomial and new Revan indices to five classes of dendrimers and present graphical representations of the results in Figures
(2)(a)-(e). Our findings highlight the potential of these indices in predicting reactivity and other properties of dendrimers,
which could have significant implications for future research in this field. In the future, one can also work on other Revan
index from M-polynomial coding.
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