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Abstract These days, interior-point methods are one of the most valuable tools for solving
linear problems. A significantly improved primal-dual interior point algorithm for linear opti-
mization (LO) is presented based on a novel kernel function. We show a primal-dual interior-
point technique for linear optimization based on an eligible class of kernel functions. This
research suggests a new efficient kernel function for (LO) problems. The kernel function de-
scribed here extends the one proposed in [2]. Using a few new technical lemmas, we get the
iteration complexity bound that meets the best-known iteration bounds for large-update meth-
ods: O

(√
n logn log

n

ϵ

)
. This iteration complexity bound is the same as the best-known itera-

tion bounds for large-update methods obtained, which coincides with the currently best iteration
complexity bounds for large-update methods. We test the effectiveness and validity of our al-
gorithm using calculation tests. Then we compare our numerical results with those obtained by
algorithms based on various kernel functions.

1 Introduction

We consider the linear optimization (LO) problem in its standard form.

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,

with its dual problem
(D) max

{
bT y : AT y + s = c, s ≥ 0

}
,

where A ∈ Rm×n is a real m×n matrix with rank m, and c, x ∈ Rn, b ∈ Rm. The dual problem
of (P ) is given with y ∈ Rm and s ∈ Rn.

The majority of the interior-point methods (IPMs) for LO are based on the logarithmic
barrier function (El Ghami et al. [11]. Roos et al. [17]. Peng et al. [16] introduced novel IPM
versions based on a non-logarithmic kernel function. This kind of function is strongly convex,
smooth, and coercive in its domain. They obtained the best-known complexity results for large-
and small-update methods. For further research on primal-dual IPMs based on kernel functions,
see [17], [1], [10], [3], [11], [9], [14]. Recently, Bai et al. [2] developed a generic primal-dual
interior-point method for LO. Instead of the classical primal-dual logarithmic barrier function,
they used the barrier function of an eligible kernel function. For some related study see [18],
[19], [20]

The majority of the kernel functions that are utilized in IPMs may be categorized as either
logarithmic, simple algebraic, exponential, or trigonometric, given the precedence that has been
established. The remaining kernel functions are a binary combination of these different kinds.
For more research on primal-dual IPMs that are based on a kernel function, various authors,
including, Boudjellal et al. [6], Z.Moaberfardi et al. [13], Bounibane and Djeffal [7], Benhadid
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and Merahi [4] and Sajad Fathi-Hafshejani et al. [12]. Inspired by their previous work, this study
defines a new kernel function that uses the kernel functions described in [2] as exceptional cases.

Using a variety of technical lemmas and taking a = 1 + 2
(
nθ+2τ+2

√
2nτ

2(1−θ)

) 1
2
, we show that the

method has a good iteration complexity bound, namely O(
√
n logn) log n

ϵ , which is the most
well-known iteration complexity bound for large-update IPMs . Some preliminary numerical re-
sults also confirm the algorithm’s efficacy and consistency. Our paper is structured as follows:
Section 2 starts by reviewing the basics of IPMs for LO, like the central path. Section 3 presents
details concerning the parametric kernel function and barrier function. We show that the kernel
function meets the conditions for eligibility. In Section 4, we derive the algorithm’s inner itera-
tion bound and total iteration bound. The results of experimental tests are presented in Section
5. Section 6 is the concluding part of the paper. It offers some conclusions and remarks.

2 Preliminaries

2.1 Central path and classical Newton search direction for LO

We consider (P ) and (D) to meet the interior point condition (IPC), i.e., there exists an (x0, s0, y0)
such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

We suppose x0 = s0 = 1, where 1 denotes the all-one vector, i.e., 1 =(1, 1, ..., 1)T . We rec-
ommend the most up-to-date works, including those written by Peng et al. [17] and Roos et al.
[16] Finding the optimal solution for (P ) and (D) corresponds to solving the nonlinear system
shown below. 

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,
xs = 0.

(2.1)

The key principle of primal-dual IPM is to replace the complementarity condition in (2.1) with
the parameterized equation xs = µ.1, (µ > 0). This provides the next system.

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,
xs = µ.1.

(2.2)

If the IPC is satisfied, the parameterized system (2.2) has a unique solution (x(µ), y(µ), s(µ))
for each µ > 0, which is called a µ-center of (P ) and (D). The set of µ-centers is said to be
the central path of (P ) and (D). If µ −→ 0, then the limit of the central path exists. Since the
limit point satisfies the complementarity condition, the limit point yields optimal solutions for
(P ) and (D). For fixed µ > 0, by applying Newton’s method to the parameterized system (2.2),
we obtain the search direction (∆x,∆y,∆s) from the following Newton system

A∆x = 0,
AT∆y + ∆s = 0,
s∆x+ x∆s = µ1− xs.

(2.3)

Since A has a full-row rank, the system (2.3) has a unique solution (∆x,∆y,∆s) for any x > 0
and s > 0.

We can generate a new iteration (x+, y+, s+) by taking a step along the search direction (∆x,
∆y, ∆s) according to

x+ := x+ α∆x, y+ := y + α∆y, s+ := s+ α∆s,

where the step size α satisfies 0 < α ≤ 1.
Now, to facilitate the analysis of the algorithm, we introduce the following notations: for any

feasible x > 0 and any feasible s > 0
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v :=
√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
. (2.4)

Then the Newton system (2.3) can be rewritten as
Ādx = 0,
ĀT∆y + ds = 0,
dx + ds = v−1 − v,

(2.5)

where
Ā :=

1
µ
AV −1X, V := diag(v), X := diag(x).

Note that dx and ds are orthogonal vectors since dx belongs to the null space and ds to the row
space of the matrix Ā ;

Hence, we will have

dx = ds = 0 ⇐⇒ v − v−1 = 0, x = x(µ), s = s(µ).

Note that the right-hand side of the third equation in (2.5) equals the negative gradient of the
logarithmic barrier function Ψl(v), i.e.,

dx + ds = −∇ Ψl(v),

and system (2.5) can be rewritten as follows:
Ādx = 0;
ĀT∆y + ds = 0;
dx + ds = −∇ Ψl(v),

(2.6)

where the barrier function Ψl(v) : Rn
++ → R+ is defined as follows:

Ψl(v) = Ψl(x, s;µ) =
n∑
i=1

ψl(vi),

ψl(vi) =
v2
i − 1

2
− log (vi) .

For a given µ > 0, we use Ψl(v) as the proximity function to calculate the distance between the
current iterate and the µ-center.

We call ψl(t) the kernel function of the logarithmic barrier function Ψl(v). As defined in
Sect. 3, we replace ψl(t) with a new kernel function ψa(t) and Ψl(v) with a new barrier function
Ψ(v) in this paper. As a result, the generic primal-dual interior-point algorithm works as follows.

Generic Primal-Dual Algorithm for LO

Input:
A proximity function Ψ(v);
athreshold parameter τ, τ > 0;
an accuracy parameter ϵ, ϵ > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
begin
x := e; s := e; µ := 1; v := e.
While nµ ≥ ϵ do
begin (outer iteration)
µ := (1 − θ)µ;

while Ψ(v) > τ do
begin (inner iteration)

solve the system (2.6) to obtain (∆x,∆y,∆s) ;
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choose a suitable step size α;
x := x+ α∆x, y := y + α∆y, s := s+ α∆s,

v =
√

xs
µ

end
end

end

3 Kernel-function properties

First, we study the basic characteristics of the kernel function ψ(t).

3.1 Kernel function characteristics

In the analysis of the algorithm, we also use the norm-based proximity measure δ(v) : Rn
++ →

R+, defined by

δ(v) =
1
2
∥∇ Ψ(v)∥ =

1
2
∥dx+ ds∥ . (3.1)

Since Ψ(v) is strictly convex and attains its minimum value of zero at v = e, we have

Ψ(e) = 0 ⇔ δ(v) = 0 ⇔ v = e.

Now, the new function ψa (t) is defined as follows:

ψa (t) =
t2 − 1

2
−
∫ t

1
a(

1
x−1)dx a ≥ e, t > 0. (3.2)

In the sequel, we derive the three first derivatives of ψa (t) with respect to t as follows:

ψ′
a (t) = t− a(

1
t−1), (3.3)

ψ′′
a (t) = 1 +

log a
t2

a(
1
t−1), (3.4)

ψ′′′
a (t) = − log a (2t+ log a)

t4
a(

1
t−1). (3.5)

We can deduce from (3.4) that ψ′′
a(t) > 1 for t > 0, implying that ψa(t) is strongly convex over

R++. There is also ψa(1) = ψ′
a(1) = 0. Thus, ψa(t) is indeed a kernel function.

Because of the conditions ψa(1) = ψ′
a(1) = 0, we can completely describe ψa(t) by its

second derivative:

ψa(t) =

∫ t

1

∫ ξ

1
ψ′′
a (ζ) dζdξ.

In [2], the authors introduced a class of eligible kernel functions by using the following
conditions:

Lemma 3.1. Let the function ψa (t) be defined as in (3.2). Then, we have

tψ′′
a (t) + ψ′

a (t) > 0, t < 1, (3.6)

tψ′′
a (t)− ψ′

a (t) > 0, t > 1, (3.7)

ψ′′′
a (t) < 0 t > 0, (3.8)

2 (ψ′′
a (t))

2 − ψ′
a(t)ψ

′′′
a (t) > 0, t < 1, (3.9)

ψ′′
a(t)ψ

′
a(βt)− βψ′

a(t)ψ
′′
a(βt) > 0, t > 1, β > 1. (3.10)

Proof. For (3.6) and all t > 0, we get the following:

tψ′′
a (t) + ψ′

a (t) = 2t+
(

log a
t

− 1
)
a(

1
t−1)
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Using the following inequality

expx ≥ 1 + x, ∀ x ∈ R,

we obtain for t ∈ (0, 1)

tψ′′
a (t) + ψ′

a (t) ≥
[

2t+
(

log a
t

− 1
)(

1 +

(
1 − t

t

)
log a

)]
.

tψ′′
a (t) + ψ′

a (t) ≥ 0 ⇔ log a− t ≥ 0

This last inequality is due to the fact that a ≥ e, and t ∈ (0, 1), this shows that the condition
(3.6) is satisfied.

For (3.7) , by substituting ψ′
a (t) and ψ′′

a (t), we obtain,

tψ′′
a (t)− ψ′

a (t) =

(
log a+ t

t

)
a(

1
t−1) > 0, t > 0.

For (3.8). It is simple to observe ψ′′′
a (t) < 0 from (3.5).

For (3.9) , we have

2 (ψ′′
a (t))

2 − ψ′
a(t)ψ

′′′
a (t) = 2

[
1 +

log a
t2

a(
1
t−1)

]2

+

[
(2t+ log a) log a

t4
a(

1
t−1)

]
×
[
t− a(

1
t−1)

]
=

[
2 +

t log a (log a+ 6t) a(
1
t−1) + log a (log a− 2t) a2( 1

t−1)

t4

]
,

If a ≥ e2, the condition (3.9) is unquestionably satisfied for 0 < t < 1. So it’s still clear that:[
2 (ψ′′

a (t))
2 − ψ′

a(t)ψ
′′′
a (t) > 0

]
⇔

[
t log a (log a+ 6t) a(

1
t−1) + log a (log a− 2t) a2( 1

t−1) > 0
]

(3.11)

Let’s examine the case 0 < a < e2 and t ∈
(

0, log a
2

)
.The relationship (3.11) is obviously

satisfied. It’s sufficient to prove that (3.9) holds for{
t ∈

(
log a

2 , 1
)

a ∈
[
e, e2

[
.

Then [
2 (ψ′′

a (t))
2 − ψ′

a(t)ψ
′′′
a (t) > 0

]
⇔

[
a(

1
t−1) ≤ (log a+ 6t) t

2t− log a

]

⇔

[
a(

1
t−1) ≤

(
t log a

2t−log a

+ 6t2

2t−log a

)]
,

and this is obviously true if

a(
1
t−1) <

log a
2 − log a

t

(3.12)

Let u = 1
t . The relation (3.12) can then be expressed as follows:

au−1 <
log a

2 − u log a
, u ∈

(
1

log a
,

2
log a

)
,
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which to
1 > (

2
log a

− u)au−1. (3.13)

For (3.13) , let h (u) = 1 − ( 2
log a − u)au−1, then{

h′ (u) = au−1 (−1 + u log a)
h′′ (u) = au−1. (log a)2

u > 0 for t > 0.

If we set h′(u) = 0, we obtain u = 1
log a . Since h(u) is strictly convex and has a global minimum,

h
(

1
log a

)
> 0

We have the result

As an observation, we give some results about the new kernel function.

Lemma 3.2. For ψa(t) with, a ≥ e, we get:

1
2
(t− 1)2 ≤ ψa (t) ≤

1
2
ψ′
a (t)

2
, t > 0, (3.14)

ψa (t) ≤ 1
2
ψ′′
a (1) (t− 1)2

, t ≥ 1, (3.15)

∥v∥ ≤
√
n+

√
2 Ψ (v). (3.16)

Proof. For (3.14) , according to the definition of ψa (t) , we have:

ψa (t) ≥
1
2
(t− 1)2

,

which proves the first inequality. The second inequality is obtained as follows:

ψa (t) =

∫ t

1

∫ ξ

ψ′′
a (ζ) dζdξ ≤

∫ t

1

∫ ξ

ψ′′
a (ξ)ψ

′′
a (ζ) dζdξ

=

∫ t

1
ψ′′
a (ξ)ψ

′
a (ξ) dξ

=

∫ t

1
ψ′
a (ξ) dψ

′
a (ξ) =

1
2
(ψ′
a (t))

2
.

For (3.15), since ψa (1) = ψ′
a (1) = 0, ψ′′′

a (t) < 0, ψ′′
a (1) = 1+ log a, and by using Taylor’s

expansion we have for some ξ, such that 1 ≤ ξ ≤ t.

ψa (t) = ψa (1) + ψ′
a (1) (t− 1) +

1
2
ψ′′
a (1) (t− 1)2

+
1
6
ψ′′′
a (ξ) (ξ − 1)3

=
1
2
ψ′′
a (1) (t− 1)2

+
1
6
ψ′′′
a (ξ) (ξ − 1)3

<
1
2
ψ′′
a (1) (t− 1)2

.

Which completes the proof.
For (3.16) , then by using the left hand side of (3.14) and the Cauchy-Schwarz inequality,

one can obtain,

2 Ψ (v) = 2
n∑
i=1

ψa (vi) ≥
n∑
i=1

(vi − 1)2

=

[
n∑
i=1

v2
i − 2

n∑
i=1

vi + n

]

= ∥v∥2 − 2eT v + ∥e∥2 ≥
(
∥v∥2 − 2 ∥v∥ ∥e∥+ n

)
= (∥v∥ − ∥e∥)2

,
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that is to say

∥v∥ ≤ ∥e∥+
√

2 Ψ (v) =
√
n+

√
2 Ψ (v),

where e = {1, 1, ..., 1} denotes the all-one vector.
This completes the proof.

Lemma 3.3. Let β ≥ 1. Then

ψa (βt) ≤ ψa (t) +
1
2
(
β2 − 1

)
t2.

Proof. Defining

ψb (t) = −
t∫

1

a(
1
t−1) < 0,

we have ψ′
b (t) = −a(

1
t−1) < 0 i.e., ψb (t) is thus a decreasing function when t > 0. Thus

ψb (βt) ≤ ψb (t) for β ≥ 1. So

ψa (βt)− ψa (t) =
1
2
(
β2 − 1

)
t2 + ψb (βt)− ψb (t) ≤

1
2
(
β2 − 1

)
t2.

That implies the lemma.

4 Algorithm analysis for LO

In this section, we analyze the complexity of the LO interior-point algorithm for large updates.
The algorithm is analyzed using the norm-based proximity measure.

Lemma 4.1. Let ϱ : [0,+∞) −→ [1,+∞) be the inverse function of ψa (t) for t ≥ 1 and
ρ : [0,+∞) −→ (0, 1] the inverse function of −1

2 ψ
′
a (t) for t ∈ (0, 1], we have:

√
2s+ 1 ≤ ϱ (s) ≤

√
2s+ 1, s ≥ 0, (4.1)

ρ (z) ≥ 1

1 + log(1+2z)
log a

, z ≥ 0. (4.2)

Proof. For (4.1), let s = ψa (t) for t ≥ 1. Then ϱ (s) = t, t ≥ 1, using (3.14) of lemma 3.2, we
have s = ψa (t) ≥ 1

2 (t− 1)2, so t = ϱ (s) ≤
√

2s+ 1. By the definition of ψ (t) we have

s = ψa (t) = ψb (t) +
t2 − 1

2
≤ t2 − 1

2
⇔ 2s ≤ t2 − 1

⇔ t = ϱ (s) ≥
√

1 + 2s.

Thus
t = ϱ (u) ≥

√
1 + 2s.

For (4.2) . To find the inverse function of the restriction of −1
2 ψ

′
a (t) in the interval (0, 1], we

need to solve the equation −1
2 ψ

′
a (t) = z for t ∈ (0, 1]. To do so, we have

2z = −ψ′
a (t) ⇔ −

(
t− a(

1
t−1)

)
= 2z.

This implies that

a(
1
t−1) = t+ 2z ≤ 1 + 2z

⇔ 1
t
≤ 1 +

log (1 + 2z)
log a

Hence we have
t = ρ (z) ≥

1

1 + log(1+2z)
log a

,

This completes the proof.
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Theorem 4.2 (Lemma 2.4 in [2].). Assume that ϱ is defined as in Lemma 4.1. Then

Ψ (βv) ≤ nψ

(
βϱ

(
Ψ (v)

n

))
, v ∈ Rn

++, β ≥ 1.

Lemma 4.3. Let 0 ≤ θ < 1 and v+ = v√
1−θ . If Ψ (v) ≤ τ then we have:

Ψ (v+) ≤ Ψ (v) +
1
2

(
θ

1 − θ

)[
n+ 2 Ψ (v) + 2

√
2n Ψ (v)

]
, (4.3)

Proof. For (4.3) , using Lemma 3.3 with β = 1√
1−θ , and Lemma 3.2 (3.16) , we obtain

Ψ (v+) = Ψ (βv) =
n∑
i=1

ψa (βvi) ≤
n∑
i=1

[
ψa (vi) +

1
2
(
β2 − 1

)
v2
i

]

= Ψ (v) +
1
2
(
β2 − 1

)∑n

i=1
v2
i

= Ψ (v) +
1
2

(
θ

1 − θ

)
∥v∥2

≤ Ψ (v) +
1
2

(
θ

1 − θ

)(√
n+

√
2 Ψ (v)

)2

= Ψ (v) +
1
2

(
θ

1 − θ

)(
n+ 2 Ψ (v) + 2

√
2n Ψ (v)

)
.

Since Ψ (v) ≤ τ, we have

Ψ (v+) ≤ τ +
θ

2 (1 − θ)

(
n+ 2τ + 2

√
2nτ

)
.

This completes the proof.

Denote

Ψ̄0 =
2τ + nθ + 2θ

√
2nτ

2 (1 − θ)
, (4.4)

We’ll utilize Ψ̄0 for the upper bounds of Ψ (v) for large-update methods throughout the algo-
rithm.

Remark 4.4. For the large-update method, by taking τ = O (n) , θ = Θ (1) , Ψ̄0 = O (n) .

4.1 An Estimation of the Step Size

Lemma 4.5. Let δ (v) be defined as in (3.1) .

δ (v) ≥
√

Ψ (v)

2
. (4.5)

Proof. Using (3.14)

Ψ (v) =
n∑
i=1

ψa (vi) ≤
n∑
i=1

1
2
[ψ′
a (vi)]

2

=
1
2
∥▽ Ψ∥2 = 2δ (v)2

.

So that δ (v) ≥
√

Ψ(v)
2 . This finishes the proof.

Remark 4.6. We always assume that τ ≥ 1. During this work, we use Lemma 4.5 and the
assumption Ψ (v) ≥ τ ≥ 1 we have

δ(v) ≥
√

1
2
.
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In preparation for the next discussion, the difference in proximities between a new iterate and
a current iterate for fixed µ is defined, for α > 0.

f(α) = Ψ(v+)− Ψ(v).

Now, we give many lemmas that will be used to determine an appropriate lower bound for the
step size α

Lemma 4.7 (Lemma 4.3 in [2]). Let δ (v) be defined as in (3.1) , then the largest possible value
of the step size of α is given by

ᾱ :=
1
2δ

(ρ(δ)− ρ (2δ) .

Lemma 4.8 (Lemma 4.4 in [2]). One has

ᾱ ≥ 1
ψ′′ (ρ (2δ))

.

Define
α̃ =

1
ψ′′ (ρ (2δ))

. (4.6)

Then, α̃ ≤ ᾱ in the next step, we made this the default value for step size in Algorithm 1.

Lemma 4.9. Let ρ and ᾱ defined in Lemma 4.7 if Ψ (t) ≥ τ ≥ 1, then we have

ᾱ ≥ 1

8δ log a
[
1 + log(1+4δ)

log a

]2 .

Proof. As a result, by substituting t = ρ(2δ), which is equivalent to 4δ = −ψ′
a(t), we get

1
t
≤ 1 +

log (1 + 4δ)
log a

.

Furthermore, using the, defintion of ψ′′
a (t) for z = 2δ and (4.2), we conclude that

ᾱ ≥ 1
ψ′′
a (ρ (2δ))

=
1

1 + log a
(ρ(2δ))2 a

( 1
ρ(2δ)−1)

≥ 1

1 + log a (4δ + 1)
[

log(4δ+1)
log a + 1

]2 .

Using Remark 2, one has

ᾱ ≥ 1
√

2δ log a+
(

1 + log(1+4δ)
log a

)2 (
4δ +

√
2δ
)

log a

≥ 1

2δ log a+
(

1 + log(1+4δ)
log a

)2
(4δ + 2δ) log a

.

This implies that

ᾱ ≥ 1

8δ
(

1 + log(1+4δ)
log a

)2
log a

.

This completes the proof.
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Denoting

α̃ =
1

8δ
[
1 + log(1+4δ)

log a

]2
log a

, (4.7)

Lemma 4.10. If the step size α̃ in as (4.6) Then we have

f (α̃) ≤ − δ2

ψ′′ (ρ (2δ))
. (4.8)

Lemma 4.11. Let α̃ be as defined in (4.7) and Ψ (v) ≥ 1. Then we have the following upper
bound for f (α̃) :

f (α̃) ≤ −
√

Ψ

16 log a
[

1 +
log(1+2

√
Ψ0)

log a

]2 . (4.9)

Proof. According to Lemma 10, with α = α̃ and (4.7), we have

f (α̃) ≤ −α̃δ2

= − δ2

8δ log a
[
1 + log(1+4δ)

log a

]2 ≤ −
√

Ψ

16 log a
[

1 +
log(1+2

√
Ψ0)

log a

]2 .

This proves the theorem.

Lemma 4.12 (Proposition 1.3.2 in [15]). Suppose that a sequence
{
tk > 0, k = 0, 1, 2, ...,K

}
is satisfying the following inequality:

tk+1 ≤ tk − ηt1−γk , k = 0, 1, 2, ...,K − 1,

where η > 0 and γ ∈ (0, 1] . Then K ≤
⌈
tγ0
ηγ

⌉
.

(4.8) shows the diminution of every inner iteration. In [15] we may obtain the proper values
of η and γ ∈ (0, 1].

η =
1

16 log a
(

1 +
log(1+2

√
Ψ0)

log a

)2 , γ =
1
2
.

Theorem 4.13. Let Ψ̄0 be defined as in (4.4) and let L be the total number of inner iterations in
the outer iteration for large-update methods. We have

L ≤ 32 log a

1 +
log
(

1 + 2
√

Ψ̄0

)
log a

2

Ψ̄
1
2
0 ,

Proof. By Lemma 4.12 and Theorem 4.2, we have

L ≤
Ψ̄
γ
0

ηγ
= 32 log a

1 +
log
(

1 + 2
√

Ψ̄0

)
log a

2

Ψ̄
1
2
0 .

This completes the proof.

The number of outer iterations is bounded above by log n
ϵ

θ (see [17] Lemma II.17, page116).
By multiplying the number of outer iterations by the number of inner iterations, we get an upper
bound for the total number of iterations, which is32 log a

 log a+ log
(

1 + 2
√

Ψ̄0

)
log a

2

Ψ̄
1
2
0

1
θ

log
n

ϵ

 , for large -update methods.
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For large-update methods, set τ = O(n) and θ = Θ(1)
By choosing

a = 1 + 2

(
nθ + 2τ + 2

√
2nτ

2 (1 − θ)

) 1
2

The iteration bound reduces to O (
√
n(logn) logn), which matches the currently best-known

iteration bound for large-update IPMs.

5 Numerical results

In this section, the principal objective is to compare the number of iterations and the time pro-
duced by the algorithm for certain kernel functions to validate the efficacy of our proposed kernel
function, where the experiments are conducted using Dev-Cpp 5.11 TDM-GCC 4.9.2. Install
and run on a computer. We take the accuracy parameter ϵ = 10−6, a threshold parameter τ =

√
n,

barrier update
θ ∈ {0.1, 0.5, 0.7, 0.9, 0.95, 0.99}, various values for the barrier parameter a and the practical

value for step size αpra = ρmin(αx, αs) with α ∈ (0, 1) and

αx = min

{
−xi

∆xi
if ∆xi < 0

1 else
, αs = min

{
−si
∆si

if ∆si < 0
1 else

We assume that It and T represent the number of iterations and the time produced by our
algorithm, respectively. Recall that a pair of primal-dual linear optimization (LO) problems is
defined as

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,

with its dual problem
(D) max

{
bT y : AT y + s = c, s ≥ 0

}
,

The results of our numerical comparisons between the ψa (t) function described in (3.2) and
other existing kernel functions in the literature are mentioned above with different sizes

1- ψ1 (t) = t2 − 1 − log (t) +
t−p − 1

p
, p =

logn
2

− 1 [7]

2- ψ2 (t) = t2 − t− t−p+1 − 1
p+ 1

p > 1 [6]

3- ψ3 (t) = t2 − 1 − t−2p+1 − 1
−2p+ 1

− t−p+1 − 1
−p+ 1

, p > 1 [4]

4- ψcl (t) =
t2 − 1

2
− log t [11]

5- ψ4 (t) = p
t2 − 1

2
+

4
π

ep
(

tan

(
π

2 + 2t

))
−1

− 1

 , p ≥ 1 [13]

6- ψ5(t) = (p+ 1)t2 − 1
tp

− (p+ 2)t, p > 4 [8]

7- ψa (t) =
t2 − 1

2
−
∫ t

1
a(

1
x−1)dx a ≥ e, New kernel function.

Where ψcl (t) is the classical logarithmic kernel function.
Now, we present some problems.
For m = 2 and n = 4, the matrix A and the two vectors b and c are defined as follows

A =

(
1 1 1 1
1 1 0 −3

)
, b =

(
1 0.5

)T
, c =

(
1 2 3 4

)T
and the initial feasible iterate is given by x0 =

(
0.5 1 1 1

)T
,
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y0 =
(

0.25 0.25
)T

, s0 =
(

0.5 1.75 3 4.75
)T

For m = 3 and n = 5, the matrix A and the two vectors b and c are defined as follows

A =

 2 1 1 0 0
1 2 0 1 0
0 1 0 0 1

 , b =
(

8 7 3
)T

, c =
(

4 5 2 2 2
)T

and the initial feasible iterate is given by x0 =
(

1 1 1 1 1
)T

,

y0 =
(

1 1 1
)T

, s0 =
(

1 2 1 1 2
)T

The results are summarized in the
following table.
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Table 1. NUMERICAL RESULTS OF OUR TWO PROBLEMS.
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We consider the Bouafiaâ’s problem [5] with only minor changes. Thus, we have n = 2m
and the matrix A of the problem are given by

Aij =

{
1 if j = i or j = i+m

0 else
.

At this stage, we distingue two cases

CASE 1. b =
(

2 . . . 2
)T

, ci = −1 if i = 1, . . . ,m, ci = 0 if i = m + 1, . . . , n, s0
i = 1

if i = 1, . . . ,m, s0
i = 2 if i = m + 1, . . . , n, y0 =

(
−2 . . . −2

)T
, x0

i = 1 if i = 1, . . . , n

and the optimal solution is y∗ =
(

1 . . . 1
)T

, s∗i = 0, x∗i = 2 if i = 1, . . . ,m and s∗i = 1,
x∗i = 0 if i = m+ 1, . . . , n

CASE 2. b =
(

2 . . . 2
)T

, ci = −1 if i = 1, . . . ,m, ci = 0 if i = m + 1, . . . , n,

s0 =
(

1 1 . . . 1 1
)T

, y0 =
(

−2 . . . −2
)T

, x0
i = 1.5 if i = 1, . . . ,m, x0

i =

0.5 if i = m + 1, . . . , n and the optimal solution is s∗ =
(

0 0 . . . 0 0
)T

, y∗ =(
−1 . . . −1

)T
and x∗i = 1.4793 if i = 1, . . . ,m, x∗i = 0.5207 if i = m+ 1, . . . , n
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49
1.
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0.

94
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3
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67

17
7

2.
23

12
7

1.
82

61
1.

46
35

1.
25

30
0.

99

Table 2. NUMERICAL RESULTS OF THE TWO CASES OF PROBLEM 3.

We consider the following problem with n = 2m and the matrix A of the problem is given
by

Aij =

{
−2 if j = i or j = i+m

0 else
.

b =
(

4 . . . 4
)T

, ci = 3 if i = 1, . . . ,m, ci = 2 if i = m + 1, . . . , n, we choose the

strictly feasible initial point as s0
i = 8 if i = 1, . . . ,m, s0

i = 5 if i = m + 1, . . . , n, y0 =(
1 . . . 1

)T
, x0

i = 1 if i = 1, . . . , n we finish our algorithm with the following solution

y∗ =
(

0 . . . 0
)T

, s∗i = 0, x∗i = 4 if i = 1, . . . ,m and s∗i = 0, x∗i = 3 if i = m+ 1, . . . , n
Comments
The results of our numerical studies demonstrate the efficacy of our novel efficient kernel

function. We see that when the problem dimension grows more significant, the difference in
the number of inner iterations and computation time between our novel kernel function, that of
Bounibane and Djeffal [7], Boudjellal et al. [6], Benhadid and Merahi [4], El Ghami et al.[11],
Z. Moaberfardithatand al. [13] Djeffal and Laouar[8] and that of Bouafia et al. [5] become
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significant. These numerical results support and reinforce our theoretical findings.

6 Concluding Remarks

Motivated by recent works of Bai et al.[2], we present a novel kernel function that generalizes
the kernel function in [2] and establishes a primal-dual IPM for LO problems, which reduces the
algorithm’s iteration complexity. We have shown that it yields the best possible iteration bounds
for large-update methods for a function with a double barrier term. The algorithm produces the
iteration bounds O

(√
n logn log n

ϵ

)
, which is currently the best-known iteration bound for such

methods for large methods. In addition, we have provided some numerical results to demonstrate
the validity of our approach by comparing methods based on distinct kernel functions. Accord-
ing to our numerical results, the new kernel function performed better than the others. Future
research could concentrate on the examination of semidefinite optimization.
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