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Abstract The objective of this paper is to investigate sufficient conditions for the existence
of periodic solutions of seventh-order differential equation

x(7) + (α2 + β2 + 1)x(5) + (α2(β2 + 1) + β2)
...
x + (αβ)2 .

x = εF (x,
.
x,

..
x,

...
x,

....
x , x(5), x(6)),

where α, β are rational numbers different from −1, 0, 1, and α ̸= ±β with ε sufficiently small,
and F is a nonlinear autonomous function. Moreover we provide some applications.

1 Introduction and statement of the main results

In the qualitative theory of ordinary differential equations, one of the main problems is the study
of their limit cycles. A limit cycle of a differential equation is a periodic orbit isolated from the
set of all periodic orbits of the differential equation. There are several theories and methods for
studying limit cycles; one of the most important perturbative methods is the averaging theory.

In [11], the authors studied the limit cycles of the following third-order differential equation
...
x − µ

..
x+

.
x− µx = εF (x,

.
x,

..
x),

where µ and ε are real parameters, ε is a small and the function F ∈ C2 is a nonlinear autonomous
function.

In [10], the authors studied the limit cycles of the following fourth-order differential equation
....
x + (1 + p2)

..
x+ p2x = εF (x,

.
x,

..
x,

...
x),

where p is a rational number different from 0, ε is a small real parameter, and F is a nonlinear
autonomous function.

In [5], the authors studied the limit cycles of the following fifth-order differential equation

x(5) − λ
....
x + (1 + p2)

...
x − λ(1 + p2)

..
x+ p2 .

x− λp2x = εF (x,
.
x,

..
x,

...
x,

....
x ),

where λ and ε are real parameters, p is rational number different from −1, 0, 1, ε is a small
enough, and F ∈ C2 is a nonlinear autonomous function.

In [6], the authors studied the limit cycles of the following fifth-order differential equation

x(6) + (p2 + q2 + 1)
....
x + (p2 + q2 + p2q2)

..
x+ p2q2x = εF (x,

.
x,

..
x,

...
x,

....
x , x(5)),

where p and q are rational numbers different from 1, 0, 1, and p ̸= q, ε is a small enough param-
eter, and F ∈ C2 is a nonlinear autonomous function.
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The objective of this paper is to apply the averaging theory to studying the periodic solutions
for a class of seventh-order autonomous ordinary equation

x(7) + (α2 + β2 + 1)x(5) + (α2(β2 + 1) + β2)
...
x + (αβ)2 .

x = εF (x,
.
x,

..
x,

...
x,

....
x , x(5), x(6)), (1.1)

where α, β are rational numbers different from −1, 0, 1, and α ̸= ±β, with ε sufficiently small,
and F is a nonlinear autonomous function.

There are many paper that studied seventh-order differential equations in different ways.
Thus, our class of equations is not far from the ones studied in [7, 9, 16]. But our main tool for
studying the periodic orbits of equation (1.1) is completely different to the tools of the mentioned
papers, and consequently the results obtained seem distinct and new. We shall use the averag-
ing theory, more precisely Theorem 2.1. Many of the quoted papers dealing with the periodic
orbits of differential equations use Schauder’s or Leray–Schauder’s fixed point theorem, see for
instance [2, 8], the non-local reduction method or variational methods see [1]. For studying the
periodic solutions of Lotka–Volterra system see [3, 13].

In general to obtain analytically periodic solutions of a differential system is a very difficult
task, usually impossible see. Here with the averaging theory this difficult problem for the dif-
ferential equation (1.1) is reduced to find the zeros of a non-linear function. We must say that
the averaging theory for finding periodic solutions in general does not provide all the periodic
solutions of the system. For more information about the averaging theory see section 2 and the
references quoted there, and the books [15, 17].

Now, the main results for the periodic solutions of equation (1.1) are the following:

Theorem 1.1. Assume that α, β are rational numbers different from −1, 0, 1 and α ̸= ±β, in
differential equation (1.1). For every simple zero (r∗0 , Z

∗
0 , U

∗
0 , V

∗
0 ,W ∗

0 , S
∗
0 ) with r∗0 > 0 solution

of the system
Fi(r0, Z0, U0, V0,W0, S0) = 0, i = 1, 6, (1.2)

satisfying

det(
∂(F1,F2,F3,F4,F5,F6)

∂(r0, Z0, U0, V0,W0, S0) |(r0,Z0,U0,V0,W0,S0)=(r∗0 ,Z∗
0 ,U∗

0 ,V ∗
0 ,W∗

0 ,S∗
0 )

) ̸= 0, (1.3)

where

F1(r0, Z0, U0, V0,W0, S0) =
1

2πα2

∫ 2πα

0 cos(θ)F (A1, A2, A3, A4, A5, A6, A7) dθ,

F2(r0, Z0, U0, V0,W0, S0) = − 1
2πα3

∫ 2πα

0

βU0 sin(θ)−r0α cos(
β
α

θ)

r0
F (A1, A2, A3, A4, A5, A6, A7) dθ,

F3(r0, Z0, U0, V0,W0, S0) =
1

2πα3

∫ 2πα

0

βZ0 sin(θ)−r0α sin(
β
α

θ)

r0
F (A1, A2, A3, A4, A5, A6, A7) dθ,

F4(r0, Z0, U0, V0,W0, S0) = − 1
2πα3

∫ 2πα

0

W0 sin(θ)−r0α cos(
θ
α

)

r0
F (A1, A2, A3, A4, A5, A6, A7) dθ,

F5(r0, Z0, U0, V0,W0, S0) =
1

2πα3

∫ 2πα

0

Z0 sin(θ)−r0α sin(
θ
α

)

r0
F (A1, A2, A3, A4, A5, A6, A7) dθ,

F6(r0, Z0, U0, V0,W0, S0) =
1

2πα2

∫ 2πα

0 F (A1, A2, A3, A4, A5, A6, A7) dθ,

(1.4)

with
A1 = − r cos(θ)

(α2−1)(α2−β2)α2 + Z
(β2−1)(α2−β2)β2 − V

(α2−1)(β2−1) +
S

α2β2 ,

A2 = r sin(θ)
(α2−1)(α2−β2)α

− U
(β2−1)(α2−β2)β

+ W
(α2−1)(β2−1) ,

A3 = r cos(θ)
(α2−1)(α2−β2)

− Z
(β2−1)(α2−β2)

+ V
(α2−1)(β2−1) ,

A4 = − (α2β2−α)r sin(θ)+(β−α2β)U+(α2−β2)W

(α2−β2)(α2−1)(β2−1) ,

A5 = − α2r cos(θ)
(α2−1)(α2−β2)

+ β2Z
(β2−1)(α2−β2)

− V
(α2−1)(β2−1) ,

A6 = (α3β2−α3)r sin(θ)+(β3−α2β3)U+(α2−β2)W

(α2−β2)(α2−1)(β2−1) ,

A7 = α4r cos(θ)
(α2−1)(α2−β2)

− β4Z
(β2−1)(α2−β2)

+ V
(α2−1)(β2−1) ,

(1.5)

the differential equation (1.1) has a periodic solution x(t, ε) tending to the periodic solution

x0(t) = − r0 cos(t)
(α2 − 1)(α2 − β2)α2 +

Z0

(β2 − 1)(α2 − β2)β2 − V0

(α2 − 1)(β2 − 1)
+

S0

α2β2
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of x(7)+(α2 +β2 +1)x(5)+(α2(β2 +1)+β2)
...
x+(αβ)2 .

x = 0 when ε → 0. Note that this solution is periodic
of period 2πα.

Theorem 1.1 is proved in section 3. Its proof is based on the averaging theory for computing periodic orbits,
see section 2. An application of Theorem 1.1 is given in the following corollary.

Corollary 1.2. if f(x,
.
x,

..
x,

...
x,

....
x , x(5), x(6)) = −x2 + 1, then the differential system (1.1) with

α = 2, β = 3, has six periodic solutions xi(t, ε) with i = 1..6 tending to the periodic solutions

x1(t) =
690214
488055cos(t),

x2(t) =
403163
532200cos(t) +

84958338371891
212745327291720 ,

x3(t) =
10365
15214cos(t)−

10688
193932 ,

x4(t) =
10365
15214cos(t)−

37920534167429
20199739916160 ,

x5(t) =
135527
308340cos(t)−

104112649759
112115190960 ,

x6(t) =
135527
308340cos(t)−

104112649759
112115190960 ,

(1.6)

of differential equation x(7) + 14x(5) + 49
...
x + 36

.
x = 0 when ε → 0.

Remark 1.3. In the case α and β are rational numbers different from 1, 0,−1, and α = ±β, then
we cannot apply Theorem 2.1 for studying the periodic orbits.

2 Basic results on averaging theory

In this section, we present the basic result of the averaging theory that we will use to demonstrate
the main results of this paper.

We provide the problem of studying T–periodic solutions of differential systems of the form

ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (2.1)

with ε sufficiently small, the functions F0, F1 : R× Ω → Rn and F2 : R× Ω × (−ε0, ε0) → Rn

are of class C2, T−periodic with respect to the first variable, and Ω is an open subset of Rn. We
suppose that for the unperturbed system

ẋ = F0(t,x). (2.2)

There exists a submanifold consisting of periodic solutions. The averaging theory provides a
solution to this problem.

We express by x(t, z) the solution of system (2.2) such that x(0, z) = z. The linearized
system of the unperturbed system (2.2) along a periodic solution x(t, z) is

ẏ = DxF0(t,x(t, z))y. (2.3)

In what follows we denote by Mz(t) some fundamental matrix of the linear differential sys-
tem (2.3), and by ξ : Rk × Rn−k 7→ Rk the projection of Rn onto its first k coordinates; i.e.
ξ(x1, . . . , xn) = (x1, . . . , xk).

Consider V as an open and bounded set with Cl(V ) ⊂ Ω, such that for each z ∈ Cl(V ). In
this context x(t, z) represents the periodic solution of the unperturbed system (2.2) with x(0, z).
The set Cl(V ) is isochronous for the system (2.1); i.e., it is a set formed only by periodic orbits,
all of them having the same period. The following result provides an answer to the problem of
the bifurcation of T–periodic solutions from the periodic solutions x(t, z) that are contained in
Cl(V ).

Theorem 2.1. Assume that there exists an open and bounded set V with Cl(V ) ⊂ Ω such that,
for each z ∈ Cl(V ), the solution x(t, z) is T–periodic, considering a function F : Cl(V ) → Rn

as defined by

F(z) =
1
T

∫ T

0
M−1

z (t)F1(t,x(t, z)) dt. (2.4)

If there exists a ∈ V such that F(a) = 0, and det((dF/dz)(a)) ̸= 0, then there exists a
T−periodic solution φ(t, ε) to system (2.1) such that φ(0, ε) → a as ε → 0.

This theorem dates back to Malkin [12] and Roseau [14], for a shorter proof see Buică [4].
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3 Proof of the results

Proof of Theorem 1.1. Introducing the variable y =
.
x, z =

..
x, u =

...
x, v =

....
x , w = x(5), s =

x(6) we can be written the seventh-order differential equation (1.1) as a first-order differential
system defined in an open subset Ω of R7. Thus we have the differential system

.
x = y,
.
y = z,
.
z = u,
.
u = v,
.
v = w,
.
w = s,
.
s = −(α2 + β2 + 1)w − (α2(β2 + 1) + β2)u− (αβ)2y + εF (t, x,

.
x,

..
x,

...
x,

....
x , x(5), x(6)).

(3.1)
For ε = 0 the unperturbed system of (3.1) has a unique singular point, the origin. The

eigenvalues of the linear part of this system are ±i, ±iα, ±iβ and 0. By the linear invertible
transformation

(X,Y, Z, U, V,W, S)T = B(x, y, z, u, v, w, s)T ,

where B given by

0 0 β2 0 β2 + 1 0 1
0 αβ2 0 α(β2 + 1) 0 α 0
0 0 α2 0 α2 + 1 0 1
0 βα2 0 β(α2 + 1) 0 β 0
0 0 (αβ)2 0 α2 + β2 0 1
0 (αβ)2 0 α2 + β2 0 1 0

(αβ)2 0 (αβ)2 + α2 + β2 0 α2 + β2 + 1 0 1


,

the differential system (3.1) becomes

.

X = −αY + εG(X,Y, Z, U, V,W, S),
.

Y = αX,
.

Z = βZ + εG(X,Y, Z, U, V,W, S),
.

U = −βU,
.

V = −W + εG(X,Y, Z, U, V,W, S),
.

W = V,
.

S = εG(X,Y, Z, U, V,W, S),

(3.2)

where G(X,Y, Z, U, V,W, S) = F (A1, A2, A3, A4, A5, A6, A7) .
Note that the linear part of the differential system (3.2) at the origin is in its real normal form

of Jordan. We switch now from the cartesian variables (X,Y, Z, U, V ) to the cylindrical variables
(r, θ, Z, U, V ) of R6, with X = r cos(θ), Y = r sin(θ), and we find

.
r = ε cos(θ)G(r, θ, Z, U, V,W, S),
.

θ = α− ε

r
sin(θ)G(r, θ, Z, U, V,W, S),

.

Z = −βU + εG(r, θ, Z, U, V,W, S),
.

U = βZ,
.

V = −W + εG(r, θ, Z, U, V,W, S),
.

W = V,
.

S = εG(r, θ, Z, U, V,W, S).

(3.3)
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Dividing by
.

θ the system (3.3) becomes

dr

dθ
=

ε

α
cos(θ)G+O(ε2),

dZ

dθ
= −βU

α
− ε

βU sin(θ)− αr

α2r
G+O(ε2),

dU

dθ
=

βZ

α
+ ε

βZ sin(θ)
α2r

G+O(ε2),

dV

dθ
= −W

α
− ε

W sin(θ)− αr

α2r
G+O(ε2),

dW

dθ
=

V

α
+ ε

V sin(θ)
α2r

G+O(ε2),

dS

dθ
=

ε

α
G+O(ε2),

(3.4)

where G = G(r, θ, Z, U, V,W, S).
We shall apply Theorem 2.1 to the our differential system. We note that system (3.4) can be

written as system (2.1) taking

x =



r

Z

U

V

W

S


, F0(θ,x) =



0

−β

α
U

β

α
Z

− 1
α
W

− 1
α
V

0


, F1(θ,x) =



cos(θ)
α

G

βU sin(θ)− αr

α2r
G

βZ sin(θ)
α2r

G

W sin(θ)− αr

α2r
G

V sin(θ)
α2r

G

0



,

system (3.4) with ε = 0 has the 2πα-periodic solutions given by

r(θ)

Z(θ)

U(θ)

V (θ)

W (θ)

S(θ)


=



r0

Z0 cos(βαθ)− U0 sin(βαθ)

U0 cos(βαθ) + Z0 sin(βαθ)

V0 cos( θ
α)−W0 sin( θ

α)

W0 cos( θ
α) + V0 sin( θ

α)

S0


,

for (r0, Z0, U0, V0,W0, S0) ∈ R with r0 > 0. To look for the periodic solutions of our equation
(3.4) we must calculate the zeros z = (r0, Z0, U0, V0,W0, S0) of the system F(z) = 0 where
F(z) given in (2.4). The fundamental matrix M(θ) of the system (3.4) with ε = 0 along any
periodic solution is

M(θ) = Mz(θ) =



1 0 0 0 0 0

0 cos(βαθ) − sin(βαθ) 0 0 0

0 sin(βαθ) cos(βαθ) 0 0 0

0 0 0 cos( θ
α) − sin( θ

α) 0

0 0 0 sin( θ
α) cos( θ

α) 0

0 0 0 0 0 1


.
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We calculate the F(z) is given by (2.4) we got that the system F(z) = 0 can be written as

F1(r, Z, U, V,W, S)

F2(r, Z, U, V,W, S)

F3(r, Z, U, V,W, S)

F4(r, Z, U, V,W, S)

F5(r, Z, U, V,W, S)

F6(r, Z, U, V,W, S)


=



0
0

0

0

0

0


, (3.5)

we obtain

F1(r0, Z0, U0, V0,W0, S0) =
1

2πα2

∫ 2πα
0 cos(θ)F (A1, A2, A3, A4, A5, A6, A7) dθ,

F2(r0, Z0, U0, V0,W0, S0) = − 1
2πα3

∫ 2πα
0

βU0 sin(θ)− r0α cos(βαθ)
r0

F (A1, A2, A3, A4, A5, A6, A7) dθ,

F3(r0, Z0, U0, V0,W0, S0) =
1

2πα3

∫ 2πα
0

βZ0 sin(θ)− r0α cos(βαθ)
r0

F (A1, A2, A3, A4, A5, A6, A7) dθ,

F4(r0, Z0, U0, V0,W0, S0) = − 1
2πα3

∫ 2πα
0

W0 sin(θ)− r0α cos(βαθ)
r0

F (A1, A2, A3, A4, A5, A6, A7) dθ,

F5(r0, Z0, U0, V0,W0, S0) =
1

2πα3

∫ 2πα
0

Z0 sin(θ)− r0α cos(βαθ)
r0

F (A1, A2, A3, A4, A5, A6, A7) dθ,

F6(r0, Z0, U0, V0,W0, S0) =
1

2πα2

∫ 2πα
0 F (A1, A2, A3, A4, A5, A6, A7) dθ,

where A1, A2, A3, A4, A5, A6 and A7 as in the statement of Theorem 1.
The zeros (r∗0 , Z

∗
0 , U

∗
0 , V

∗
0 ,W ∗

0 , S
∗
0 ) of system (3.5) with respect to the variables r0, Z0, U0, V0,W0

and S0 provide periodic orbits of system (3.4), with ε ̸= 0 sufficiently small and, i.e. if the con-
dition (1.3) is satisfied. Going back though the change of variable, for every simple zero of
system (3.5) we obtain a 2πα-periodic solution x(t, ε) of the differential equation (1.1) for ε ̸= 0
sufficiently small such that x(t, ε) tends to the periodic solution

x0(t) = − r0 cos(t)
(α2 − 1)(α2 − β2)α2 +

Z0

(β2 − 1)(α2 − β2)β2 − V0

(α2 − 1)(β2 − 1)
+

S0

α2β2 ,

of x(7) + (α2 + β2 + 1)x(5) + (α2(β2 + 1) + β2)
...
x + (αβ)2 .

x = 0 when ε → 0. Note that this
solution is periodic of period 2πα.

This completes the proof of Theorem 1.1.

Proof of corollary 1.2 . We have the equation

x(7) + 14x(5) + 49
...
x + 36

.
x = ε(−x2 + 1), (3.6)

which corresponds to the case α = 2, β = 3 and F (x,
.
x,

..
x,

...
x,

....
x , x(5), x(6)) = −x2 + 1. The

functions Fk(r0, Z0, U0, V0,W0, S0) for k = 1, 6 of Theorem 1.1 are

F1(r0, Z0, U0, V0,W0, S0) = − V0
4608 + W0

4608 − r0S0
4320 − U0W0

34560 − V0Z0
34560 ,

F2(r0, Z0, U0, V0,W0, S0) =
8S0Z0r0−9U2

0 V0−135U0V0W0+9U0W0Z0+36V0r
2
0

207360r0
,

F3(r0, Z0, U0, V0,W0, S0) =
8S0U0r0+9U0V0Z0+135V0W0Z0−9W0Z

2
0+36W0r

2
0

207360r0

F4(r0, Z0, U0, V0,W0, S0) =
200S0V0r0−5U0V0W0−75V0W

2
0 +60V0r

2
0+5W 2

0 Z0+4Z0r
2
0

345600r0
,

F5(r0, Z0, U0, V0,W0, S0) =
200S0W0r0+5U0V

2
0 +4U0r

2
0+75V 2

0 W0−5V0W0Z0−60W0r
2
0

345600r0
,

F6(r0, Z0, U0, V0,W0, S0) = − r2
0

14400 − Z2
0

518400 − U2
0

518400 − V 2
0

2304 − W 2
0

2304 − S2
0

2592 + 1
2 .

The system F1 = F2 = F3 = F4 = F5 = F6 = 0 has six real solutions with r0 > 0 given by

( 2760856
32537 , 0, 0, 0, 0, 0), ( 403163

8870 ,− 275198
4131 ,− 92749

61623 ,
104667
27463 ,

101674
4061 , 69964

5209 ),

( 310950
7607 , 0,− 300149

1646 , 0, 248943
12656 ,

106889
5387 ), ( 310950

7607 , 300149
1646 , 0, 248943

12656 , 0,−
106889

5387 ),

( 135527
5139 ,− 74279

9549 ,
74279
9549 ,

743779
32614 ,

743779
32614 , 0), (

135527
5139 ,− 74279

9549 ,−
74279
9549 ,

743779
32614 ,−

743779
32614 , 0).
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Since the Jacobian (1.3) for these solutions (r∗0 , Z
∗
0 , U

∗
0 , V

∗
0 ,W ∗

0 , S
∗
0 )

(−4.845167479)10−14, (−7.096581955)10−13,

(4.037375667)10−13, (4.037375667)10−13,

(1.227210749)10−11, (1.227210749)10−11,

by Theorem 1.1 equation (3.6) has six periodic solutions tending to periodic solutions (1.6) given
in the statement of the corollary 1.2.
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