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Abstract For a group G of order m, Singh and Manilal [2] conceptualized a new
graph structure called strong power graph, denoted by PS(G), as a graph with G as the
vertex set in which a pair of distinct vertices vi and vj are adjacent if vk1

i = vk2
j in G

and k1, k2 are positive integers strictly less than m. In this paper, we have formulated
the signless characteristic polynomial of PS(G) for any finite group G of a given order.
We have also characterized the cases where the signless laplacian is integral. We have
evaluated the signless laplacian energy for the strong power graph for (i) any cyclic
group of prime order and (ii) cyclic group of order m (where m is composite and is of
the form m = 2r3s; r, s > 1). Also we have computed the number of spanning trees of
PS(Zm) when m is composite.

1 Introduction

Associating graphs to algebraic structures and investigating the graph theoretic proper-
ties using the algebraic properties of the parent structure has been a fascinating area of
research during the past few decades. Consequently, numerous graph structures have
evolved from various algebraic structures of which power graph is a noteworthy exam-
ple. It was Kelarev and Quinn [9] who proposed the concept of directed power graphs for
semigroups. Subsequently, Chakrabarty together with Sen and Ghosh [1] conceived the
idea of undirected power graph P(S) associated with a semigroup S to be a graph with
S as the vertex collection wherein a pair of different vertices vi and vj form an edge if
vi = vαj or vj = vβi for some α, β ∈ N. Several studies have been carried out in this regard
and can be found in [3]. Over the years, Singh and Manilal [2] introduced the concept
of strong power graph for finite groups. For more undefined terminologies regarding the
spectral characterization of arbitrary graphs, the reader is referred to [10].

Analogous to the graph structure of the power graph, Singh and Manilal intro-
duced the notion of strong power graph for any finite group. They defined strong power
graph, denoted by PS(G) as a graph with vertex set G in which a pair of distinct vertices
vi and vj are adjacent if vk1

i = vk2
j in G and k1, k2 are positive integers strictly less than m

where k is the order of group G.
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2 Preliminaries

Throughout this study, we consider only finite groups and simple graphs. Suppose that
Γ is any graph with vertex set V (Γ) and edge set E(Γ). Let vi denote any arbitrary
vertex in V (Γ) and di denote its corresponding degree. The degree matrix corresponding
to Γ denoted by D(Γ) is the diagonal matrix with degrees of vertices along the main
diagonal and the adjacency matrix denoted by A(Γ) is the binary matrix with entries 1’s
whenever two vertices are adjacent and 0’s elsewhere. Associated with the same graph
Γ, there are several other matrix representations such as the Signless Laplacian matrix
Q(Γ), Laplacian matrix L(Γ), etc. to name a few. Given any graph Γ, there is an empirical
relation between all the matrices described above as demonstrated by:

L(Γ) = D(Γ)−A(Γ) and Q(Γ) = D(Γ) +A(Γ) (2.1)

For any matrix B, the characteristic polynomial of B is given by det(λI − B). In
particular, if B = Q(Γ), then we call det(λI−Q(Γ)) as the signless laplacian characteristic
polynomial [4] and denote it by φ(Q(Γ);λ) or simply φ(Γ;λ). The eigenvalues obtained
from the signless laplacian matrix along with its multiplicities constitute the Signless
Laplacian spectrum of Γ. The notion of energy, conceptualized by Ivan Gutman [5, 6]
was initially defined for the adjacency matrix of a graph. Gutman further developed the
concept of signless laplacian energy [7], denoted by LE+(Γ) given by

∑p
i=1 |λi−

2q
p | where

λ1, λ2, . . . , λp are the signless laplacian eigenvalues obtained from Q(Γ) and p, q denote
the respective order and size of Γ.

Given any graph G with m vertices, McLeman and McNicholas [11] defined a graph
parameter, namely the coronal (or A-coronal), which is given by 1T

m(λIm − A(G))−11m.
Later, Shu-Yu Cui and Gui-Xian Tian [12] generalized the concept of coronal to any
matrix B associated with G. Given a graph G with vertex set cardinality m and any
matrix B associated with G, the B-coronal is given by ΓB(λ) = 1T

m(λIm −B)−11m where
1m stands for the vector of order m× 1 with each of its entries equal to one.
In this study, we have formulated the signless characteristic polynomial of the strong
power graph PS(Zm) in the cases where m is prime and where m is composite. Also, we
have determined the signless characteristic polynomial of PS(G) when G is non-cyclic.
Also, we have analyzed the cases where the signless laplacian is integral (i.e., all the
signless eigenvalues are integers). We have also reformulated the number of spanning
trees of PS(Zm) when m is composite. We have also evaluated the signless laplacian
energy of the strong power graph in the following cases :

i. when m is prime

ii. when m is composite and is of the form m = 2r3s.

Throughout the work, A,L,Q stands for its true meanings (the matrix representations)
unless mentioned otherwise.

The following results are vital for the subsequent reading of the paper :

Proposition 2.1. [12] Consider any r-regular graph G of order m, then the corresponding
Q-coronal of G is

ΓQ(G)(λ) =
m

λ− 2r

Proposition 2.2. [13] Consider two arbitrary graphs H1 and H2 with orders m1 and m2
respectively. Then

φQ(H1 ∨H2 ; λ) = φQ(H1 ; λ−m2)· φQ(H2 ; λ−m1)· [1−ΓQ(H1)(λ−m2)· ΓQ(H2)(λ−m1)]

where φQ(H ; λ) represents the signless characteristic polynomial of H.

Proposition 2.3. The signless characteristic polynomial of Km is

φQ(Km ; λ) = [λ− 2(m− 1)][λ− (m− 2)]m−1
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3 Signless Laplacian of Strong Power Graphs

At the outset, we deduce the signless characteristic spectrum of Q(PS(Zm)) when m is
prime as demonstrated in the following theorem :

Theorem 3.1. For every prime m,

φQ(PS(Zm) ; λ) = λ(λ− 2(m− 2))(λ− (m− 3))(m−2)

Proof. Let V (PS(Zm)) = {v0, v1, v2, . . . , vm−1}. Then by definition, the vertices vi and vj
are adjacent for all i, j ̸= 0. On the other hand, the vertices vi and v0 do not form an
edge for any i. Thus, PS(Zm) ∼= Km−1 ∪ K1. Indexing the rows and columns in the
order of generators and finally the identity element of Zm, the signless laplacian matrix
corresponding to PS(Zm) is given by

Q(PS(Zm)) =



m− 2 1 . . . 1 0
1 m− 2 . . . 1 0
...
1 1 . . . m− 2 0
0 0 . . . 0 0


m×m

Then φ(Q(PS(Zm));λ) is determined by

det(λIm −Q) =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− (m− 2) −1 . . . −1 0
−1 λ− (m− 2) . . . −1 0
...

−1 −1 . . . λ− (m− 2) 0
0 0 . . . 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣
m×m

= λ

∣∣∣∣∣∣∣∣∣∣
λ− (m− 2) −1 . . . −1

−1 λ− (m− 2) . . . −1
...

−1 −1 . . . λ− (m− 2)

∣∣∣∣∣∣∣∣∣∣
m−1×m−1

Applying the following elementary column and row operations :

(i) C1 → C1 + C2 + . . . Cm−1

(ii) Ri → Ri −R1 ; i = 2, 3, . . . ,m− 1

we arrive at the desired result.

Our immediate aim is to determine the signless laplacian spectrum of Q(PS(Zm))
when m is composite and is given by the following theorem :

Theorem 3.2. For every composite m,

φQ(PS(Zm);λ) = (λ− (m− 2))m−ϕ(m)−1(λ− (m− 3))ϕ(m)−1.f(λ)

where f(λ) = λ2 − 3mλ+ λϕ(m) + 5λ+ 2m2 − 2mϕ(m)− 8m+ 6ϕ(m) + 6

Proof. Let V (PS(Zm)) = {v0, v1, v2, . . . , vm−1}. Let vi, vj , vk and v0 ∈ V (PS(Zm)) that
corresponds to generators i and j, non-generator k and identity 0 in Zm. Then the
following are true :

(i) vi and vj are adjacent.

(ii) Both vi and vj are adjacent to vk (respectively).
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(iii) vk and v0 are adjacent

(iv) Both vi and vj are not adjacent to v0.

Since this is true for every generator and non-generator, m − ϕ(m) − 1 vertices (non-
generators of Zm) form an edge, one with each vertex of PS(Zm). On the other hand, ϕ(m)
vertices (generators of Zm) form an edge, one with each of the vertices in PS(Zm) except
v0.

Thus, PS(Zm) ∼= [Kϕ(m) ∪K1] ∨Km−ϕ(m)−1

Let H1 = Kϕ(m) ∪ K1 and H2 = Km−ϕ(m)−1 be two graphs with m1 = ϕ(m) + 1 and
m2 = m− ϕ(m)− 1 vertices. Then by Proposition 2.3,

ψ(Q(H2);λ−m1) = (λ− 2m+ ϕ(m) + 3)(λ−m+ 2)m−ϕ(m)−2

Also, ψ(Q(H1);λ−m2) = (λ−m+ ϕ(m) + 1)(λ−m− ϕ(m) + 3)(λ−m+ 3)ϕ(m)−1

Since H2 is regular with regularity r = m− ϕ(m)− 2, by Proposition 2.1,

ΓQ(H2)(λ−m1) =
m− ϕ(m)− 1

λ− 2m+ ϕ(m) + 3

Now to find ΓQ(H1)(λ−m2), we observe that (λ−m2)Im1 −Q(H1)=

λ−m + 2 −1 −1 . . . −1 −1
−1 λ−m + 2 −1 . . . −1 −1
−1 −1 λ−m + 2 . . . −1 −1
...

...
...

. . .
...

...
−1 −1 −1 . . . λ−m + 2 −1
0 0 0 . . . 0 λ−m + ϕ(m) + 1


(ϕ(m)+1)×(ϕ(m)+1)

(3.1)

= X(say)

From (3.1), it follows that

det X = det B · det C = (λ−m+ ϕ(m) + 1) · det B (3.2)

where B =


λ−m+ 2 −1 −1 . . . −1

−1 λ−m+ 2 −1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . λ−m+ 2


ϕ(m)×ϕ(m)

and C =
[
λ−m+ ϕ(m) + 1

]
1×1

Applying the elementary column and row operations :

(i) C1 → C1 + C2 + . . .+ Cϕ(m)

(ii) Ri → Ri −R1 ; i = 2, 3, . . . ϕ(m) on B , we get

det B = (λ−m− ϕ(m) + 3)(λ−m+ 3)ϕ(m)−1

Thus equation 3.2 =⇒ det X = (λ−m+ϕ(m)+ 1)(λ−m−ϕ(m)+ 3)(λ−m+ 3)ϕ(m)−1

Now to find the adjoint of X, we find the principal minors X1,1, X1,2, . . . , Xϕ(m)+1,ϕ(m)+1

where Xi,j denotes the principal minor obtained after the deletion of ith row and jth

column. By applying similar elementary row and column operations we get,

Xi,i = (λ−m+ ϕ(m) + 1)(λ−m− ϕ(m) + 4)(λ−m+ 3)ϕ(m)−2

∀ i = 1, 2, . . . ϕ(m)

Xi,j = (λ−m+ ϕ(m) + 1)(λ−m+ 3)ϕ(m)−2 ∀ i, j = 1, 2, . . . , ϕ(m)

such that i ̸= j

Xϕ(m)+1,ϕ(m)+1 = (λ−m− ϕ(m) + 3)(λ−m+ 3)ϕ(m)−1

Xi,ϕ(m)+1 = Xϕ(m)+1,j = 0 ∀ i, j = 1, 2, . . . , ϕ(m)
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Then X−1 is given by
λ−m−ϕ(m)+4

(λ−m−ϕ(m)+3)(λ−m+3)
1

(λ−m−ϕ(m)+3)(λ−m+3) . . . 1
(λ−m−ϕ(m)+3)(λ−m+3) 0

1
(λ−m−ϕ(m)+3)(λ−m+3)

λ−m−ϕ(m)+4
(λ−m−ϕ(m)+3)(λ−m+3) . . . 1

(λ−m−ϕ(m)+3)(λ−m+3) 0
...

...
. . .

...
1

(λ−m−ϕ(m)+3)(λ−m+3)
1

(λ−m−ϕ(m)+3)(λ−m+3) . . .
λ−m−ϕ(m)+4

(λ−m−ϕ(m)+3)(λ−m+3) 0

0 0 . . . 0 1
λ−m+ϕ(m)+1


(ϕ(m)+1)×(ϕ(m)+1)

Then, ΓQ(H1)(x−m2) = 1T
n1
X−11n1

=
λϕ(m) + λ−mϕ(m) + [ϕ(m)]2 −m+ 3
(λ−m− ϕ(m) + 3)(λ−m+ ϕ(m) + 1)

Thus, signless characteristic polynomial of PS(Zm)

= φ(Q(H1) ; λ−m2) · φ(Q(H2) ; λ−m1) · [1 − ΓQ(H1)(λ−m2) · ΓQ(H2)(λ−m1)]

= (λ−m+2)m−ϕ(m)−1(λ−m+3)ϕ(m)−1×[λ2−3mλ+λϕ(m)+5λ+2m2−2mϕ(m)−8m+6ϕ(m)+6]

Next, we analyse the particular cases where Q(PS(Zm)) is Signless Laplacian integral
and one such characterization is given by :

Theorem 3.3. If m = 2r3s where r, s are positive integers, then the signless laplacian spec-
trum of PS(Zm) is demonstrated as :(

m− 2 m− 3 m− ϕ(m)− 2 2m− 3
m− ϕ(m)− 1 ϕ(m)− 1 1 1

)

Proof. If m = 2r3s, then ϕ(m) = 2r3s−1 = m
3 . Then from Theorem 3.2,

φ(Q(PS(Zm) ; λ)) = (λ−m+ 2)m−ϕ(m)−1(λ−m+ 3)ϕ(m)−1 · f(λ)

where f(λ) = λ2 − 3mλ+ λϕ(m) + 5λ+ 2m2 − 2mϕ(m)− 8m+ 6ϕ(m) + 6
Hence the two roots of f(λ) are 2m− 3 and 2m

3 − 2 = m− ϕ(m)− 2.

Our next objective is to completely characterize the cases when Q(PS(Zm)) is the
Signless Laplacian integral. Before discussing the key result, we revisit a classical result
in Number Theory for a comprehensive understanding of the result, which is given by :

Proposition 3.4. [14] Given any positive integer m, then the Euler-Totient function ϕ and
the Möbius function µ are related by the following :

m

ϕ(m)
=
∑
d|m

µ2(d)

ϕ(d)

The necessary and sufficient condition for Q(PS(Zm)) to be Signless Laplacian inte-
gral is proposed in the following theorem :

Theorem 3.5. Q(PS(Zm)) is Signless Laplacian integral if and only if m is prime or m =
2r3s, where r, s are positive integers.

Proof. As a consequence of Theorem 3.1 and Theorem 3.3, the first part holds. Con-
versely assuming that the signless laplacian spectrum of PS(Zm) are all integers, we
need to prove that m is prime or m = 2r3s, where r, s are positive integers. With refer-
ence to Theorem 3.3, it is sufficient to demonstrate that ϕ(m) = m − 1 or m = 3ϕ(m) is
not valid for any m (other than m is prime and m = 2r3s) .
Without loss of generality, we assume and analyze the following cases :
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(i) Suppose m = pk (p stands for any prime)
Case (i) When p is an even prime (i.e, m = 2k),
By Proposition 3.4,

m

ϕ(m)
=

k∑
i=0

µ2(2i)

ϕ(2i)
= 2

Case (ii) When m = pk; p ̸= 2,
By Proposition 3.4,

m

ϕ(m)
=

k∑
i=0

µ2(pi)

ϕ(pi)
= 1 +

1
p− 1

< 2

(ii) Suppose m = qn1
1 qn2

2 (where q1, q2 are primes such that q1, q2 ̸= 2, 3)
By Proposition 3.4,

m

ϕ(m)
=
µ2(1)
ϕ(1)

+
µ2(q1)

ϕ(q1)
+
µ2(q2)

ϕ(q2)
+
µ2(q1q2)

ϕ(q1q2)
+
∑
i,j ̸=1

µ2(qi1q
j
2)

ϕ(qi1q
j
2)

= 1 +
1

q1 − 1
+

1
q2 − 1

+
1

(q1 − 1)(q2 − 1)
< 3

(iii) Suppose m = 2r3spt (p stands for any prime such that p ̸= 2, 3 )
By Proposition 3.4,

m

ϕ(m)
=
µ2(1)
ϕ(1)

+
µ2(2)
ϕ(2)

+
µ2(3)
ϕ(3)

+
µ2(p)

ϕ(p)
+
µ2(2.3)
ϕ(2.3)

+
µ2(2.p)
ϕ(2.p)

+
µ2(3.p)
ϕ(3.p)

+
∑

i,j,k ̸=1

µ2(2i3jpk)

ϕ(2i3jpk)

= 3 +
2

p− 1
+

1
2(p− 1)

(iv) When m = 2n1pn2 (where p ̸= 3) or 3n1qn2 (where q ̸= 2)
Case (i) When m = 2n1pn2 (where p ̸= 3)
By Proposition 3.4,

m

ϕ(m)
=
µ2(1)
ϕ(1)

+
µ2(2)
ϕ(2)

+
µ2(p)

ϕ(p)
+
µ2(2.p)
ϕ(2.p)

+
∑
i,j ̸=1

µ2(2ipj)

ϕ(2ipj)
= 2 +

2
p− 1

Case (ii) When m = 3n1qn2 (where q ̸= 2)
By Proposition 3.4,

m

ϕ(m)
=
µ2(1)
ϕ(1)

+
µ2(3)
ϕ(3)

+
µ2(q)

ϕ(q)
+
µ2(3.q)
ϕ(3.q)

+
∑
i,j ̸=1

µ2(3iqj)

ϕ(3iqj)
=

3q
2(q − 1)

Hence in any of the above cases, ϕ(m) = m− 1 or m = 3ϕ(m) does not hold. Extending
the idea to the cases where m comprises of more than two prime factors and applying
the same, we arrive at the desired result. Hence the proof.

Next, we compute the Signless Laplacian energy of PS(Zm)) when m is prime :

Theorem 3.6. Assume that G is any cyclic group of prime order, the signless laplacian
energy of the strong power graph of G is evaluated as :

LE+(PS(G)) = 2(m− 1)− 4
m
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Proof. From Theorem 3.1, we see that PS(Zm)) ∼= Km−1 ∪ K1. Thus, the number of
edges in PS(Zm) = q = (m−1)(m−2)

2 .
From Theorem 3.1, it follows that 0, 2(m− 2) and m− 3 are the signless laplacian eigen
values of PS(Zm) with respective multiplicities 1, 1 and m − 2. Thus, LE+(PS(G)) =∑p

i=1 |λi −
2q
p | = 2(m− 1)− 4

m

By Theorem 3.5, PS(Zm) is Signless Laplacian integral if and only if m = 2r3s (when
m is composite). Hence, we discuss the following theorem :

Theorem 3.7. If G is any cyclic group of order m with m = 2r3s; r, s > 1, the signless
laplacian energy of strong power graph of G is evaluated as :

LE+(PS(G)) = 2(m− 2)− 4ϕ(m)

m

Proof. From Theorem 3.3, we see that PS(Zm) ∼= [Kϕ(m) ∪K1] ∨Km−ϕ(m)−1. Thus, the
size of PS(Zm) = q = (m−1)(m−2)

2 +m − ϕ(m) − 1. Hence from Theorem 3.3, the result
follows.

In the next result, we discuss the signless laplacian spectrum of strong power graphs
of non-cyclic groups which is given by :

Theorem 3.8. For any non-cyclic group G of order m, Q(PS(G)) is given by(
2(m− 1) m− 2

1 m− 1

)

Proof. Singh and Manilal in [17] proved that if G is a non-cyclic group with order m,
then PS(G) is a complete graph. Thus, PS(G) ∼= Km. Hence, from Proposition 2.3, the
theorem holds.

As a consequence of theorem 3.8, we have the following result :

Corollary 3.9. If G is any non-cyclic group G with order m, LE+(PS(G)) = 2(m− 1)

Proof. From Theorem 3.8, we see that PS(G) ∼= Km. Then the size of PS(G) =
m(m−1)

2 .
Also by Theorem 3.8, we see that 2(m − 1) and m − 2 are the signless laplacian eigen
values of PS(G) with multiplicities 1 and m − 1 respectively. Hence, LE+(PS(G)) =
2(m− 1).

3.1 Number of Spanning Trees of PS(Zm)

Bhuniya and Bera in [15] have determined the number of spanning trees using the
laplacian spectrum of strong power graphs. Here, the authors have determined the same
in an alternative way using signless laplacian spectrum. The following result is vital for
the better understanding of the key result :

Proposition 3.10. [16] For a graph Γ with order m, the number of spanning trees κ(Γ) is

computed using the rule κ(Γ) =
det(J + L)

m2 where J stands for the m ×m matrix with all
its entries +1.

Remark 3.11. Singh and Manilal in [17] have characterized a necessary and sufficient
condition for the connectedness for PS(Zm) as : PS(Zm) is connected if and only if m
is composite. Hence it is meaningless to find the number of spanning trees of PS(Zm)
when m is prime.

Theorem 3.12. If m is composite, the number of spanning trees of PS(Zm) is given by

mm−ϕ(m)−2(m− 1)ϕ(m)−1(m− ϕ(m)− 1)
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Proof. From equation 2.1, Q = D +A =⇒ J + L = J +Q− 2A.
Then by Proposition 3.10,

κ(Γ) =
det(J +Q− 2A)

m2 (3.3)

Here Q = Q(PS(Zm)) and is given by

m− 1 1 . . . 1 1 1 . . . 1 1
1 m− 1 . . . 1 1 1 . . . 1 1
...

...
. . .

...
...

...
. . .

...
...

1 1 . . . m− 1 1 1 . . . 1 1
1 1 . . . 1 m− 2 1 . . . 1 0
1 1 . . . 1 1 m− 2 . . . 1 0
...

...
. . .

...
...

...
. . .

...
...

1 1 . . . 1 1 1 . . . m− 2 0
1 1 . . . 1 0 0 . . . 0 m− ϕ(m)− 1


m×m

Then J +Q− 2A is given by

m 0 . . . 0 0 0 . . . 0 0
0 m . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . m 0 0 . . . 0 0
0 0 . . . 0 m− 1 0 . . . 0 1
0 0 . . . 0 0 m− 1 . . . 0 1
...

...
. . .

...
...

...
. . .

...
...

0 0 . . . 0 0 0 . . . m− 1 1
0 0 . . . 0 1 1 . . . 1 m− ϕ(m)



 m− ϕ(m)− 1 rows


ϕ(m) + 1 rows

=

[
X 0
0 Y

]
Then det (J +Q− 2A) = det X· det Y = mm−ϕ(m)−1· det Y
Applying a series of elementary column and row operations

(i) C1 → C1 + C2 + . . .+ Cϕ(m)+1

(ii) Ri → Ri −R1 ∀ i = 2, 3, . . . , ϕ(m) + 1

(iii) Rϕ(m)+1 → Rϕ(m)+1 − 1
m−1Rj ∀ j = 2, 3, . . . , ϕ(m) on Y ,

we get det Y = m(m− ϕ(m)− 1)(m− 1)ϕ(m)−1

Thus, det (J +Q− 2A) = mm−ϕ(m) · (m− ϕ(m)− 1) · (m− 1)ϕ(m)−1

Substituting in equation 3.3, we get the desired result.

4 Conclusion remarks

In this paper, we have discussed the signless laplacian spectrum of strong power graphs
of any cyclic group of finite order. We have also analyzed the cases when the strong
power graph is Signless Laplacian integral. Also, we have evaluated the signless Lapla-
cian energy of strong power graphs (when the graphs are Signless Laplacian integral).
We have also determined the number of spanning trees of PS(Zm) when m is composite.
When m is composite and m ̸= 2r3s, the strong power graph is not signless Laplacian
integral. Evaluating the bounds of the signless Laplacian spectral radius of PS(Zm) lies
in the future scope of this work.
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