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Abstract The aim of this article is to present an iterative algorithm for finding a common so-
lution to the variational inclusion problem with Lipschitz continuous single valued and maximal
monotone multivalued mappings and the set of fixed points of a finite family of nonexpansive
mappings. Under some conditions, we prove a strong convergence theorem which converges to
this common solution.

1 Introduction and Preliminaries

Suppose Σ be a real Hilbert space with inner product ⟨·, ·⟩, norm ∥ · ∥ and 2Σ denotes the family
of all the nonempty subsets of Σ. In 1976, Rockafellar [16] studied the inclusion problem of
finding

η† ∈ H−1(0), (1.1)

where H is a maximal monotone set-valued mapping defined on a Hilbert space Σ. We focus on
the following variational inclusion problem

find η† ∈ Σ such that η† ∈ (G+H)−1(0), (1.2)

where G : Σ → Σ is a single valued and H : Σ → 2Σ is a multivalued mapping. When G = 0
then the problem (1.2) reduces to the inclusion problem (1.1) which plays an important role in
minimization problems and other fields of mathematics. Due to its applications in several fields
of science, engineering, management, and social sciences in the last many years, the inclusion
problem has been broadened and generalized in numerous ways; see, for example, [3, 6, 17, 11,
14, 13, 18, 7, 10, 15] and the references therein.

A point η† ∈ Σ is said to be the fixed point of the mapping S : Σ → Σ if S(η†) = η†. We
can easily verify that a point η† ∈ Σ is a solution of the problem (1.2) if and only if η† is a fixed
point of the mapping JH

λ (I − λG), that is η† = JH
λ (I − λG)(η†), where JH

λ is the resolvent
operator of H . This provides us numerous benefits for constructing new algorithms and proving
the convergence of algorithms.

Mann [9] introduced an algorithm to approximate the fixed points of a nonexpansive map-
ping, which is as follows: η1 ∈ Σ

ηn+1 = ϒnηn + (1 − ϒn)S(ηn)

for all n ∈ N and {ϒn} is a sequence in [0, 1]. On the other hand, Halpern [4] introduced an
algorithm as η1 = η ∈ Σ and

ηn+1 = ϒnη + (1 − ϒn)S(ηn)

for all n ∈ N and {ϒn} is a sequence in [0, 1]. In the recent years, there are many researchers
who modified the Mann and Halpern type iteration and defined new algorithms [5, 22, 8]. In
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2008, Zhang et. al. [23] presented an iterative algorithm for finding a common solution of the
set of fixed points of a nonexpansive mapping and the set of solutions to the variational inclusion
problem with inverse strongly monotone mapping and multivalued maximal monotone mapping
in Hilbert spaces. Their algorithm is as follows:{

ςn = JH
λ (ηn − λG(ηn)),

ηn+1 = ϒnη + (1 − ϒn)S(ςn), ∀n ≥ 0.
(1.3)

Here the mapping G : Σ → Σ is α-inverse strongly monotone mapping, H : Σ → 2Σ a maximal
monotone mapping, S : Σ → Σ a nonexpansive mapping and λ ∈ (0, 2α] and ϒn is given
sequence in the interval [0, 1] having the given conditions:

(1) ϒn → 0,
∞∑
n=0

ϒn = ∞,

(2)
∞∑
n=0

|ϒn+1 − ϒn| < ∞.

Then the sequence {ηn} converges strongly to a point of F (S)
⋂
(G+H)−1(0).

Recently, in 2023 Younis et. al. [21] modified above algorithm (1.3) for all type of Lipschitz
continuous mappings and they removed the restriction on λ ∈ (0, 2π] to λ ∈ R+ and presented a
strong convergence result for a new algorithm as follows:

Theorem 1.1. Suppose G : Σ → Σ a single valued Lipschitz continuous, H : Σ → 2Σ a multival-
ued maximal monotone, S : Σ → Σ a nonexpansive mapping. Suppose Θ = F (S)

⋂
(G+H)−1 ̸=

∅. Suppose η = η0 ∈ Σ and the sequence {ηn} generated by{
ςn = J

(G+H)
λ (ηn),

ηn+1 = ϒnη + (1 − ϒn)S(ςn), ∀n ≥ 0.
(1.4)

where λ ∈ R+ and ∀n ∈ N, {ϒn} is the given sequence having the given conditions:

(1) ϒn → 0,
∞∑
n=0

ϒn = ∞,

(2)
∞∑
n=0

|ϒn+1 − ϒn| < ∞.

Then the sequence {ηn} generated by (1.4) converges strongly to a point of F (S)
⋂
(G+H)−1(0).

In this article, motivated by Zhang et. al. [23], Younis et. al. [21] and others we consider a
new algorithm and prove that the sequence generated by the algorithm converges strongly to the
common solution of a finite family of nonexpansive mappings and variational inclusion problem
i.e. to obtain η† ∈ Σ such that

η† ∈
m⋂
i=1

F (Si)
⋂

(G+H)−1(0).

Now we present, some basic definitions and facts from the literature.

Lemma 1.2. [21]. ζ = J
(G+H)
λ (ζ) for all λ ∈ R+ iff ζ ∈ Σ is a solution of the variational

inclusion problem (1.2).

Definition 1.3. The single valued mapping JH
λ : Σ → Σ defined by

JH
λ (η) = [I + λH]−1(η), ∀η ∈ Σ,

is known as resolvent mapping for H : Σ → 2Σ.

Definition 1.4. A mapping S : Σ → Σ is said to be nonexpansive if for all η, ζ ∈ Σ

∥S(η)− S(ζ)∥ ≤ ∥η − ζ∥.

The resolvent mapping JH
λ is also a nonexpansive, i.e. for all η, ζ ∈ Σ

∥JH
λ (η)− JH

λ (ζ)∥ ≤ ∥η − ζ∥.
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Definition 1.5. A mapping S : Σ → Σ is said to be monotone if for each η, ζ ∈ Σ

⟨η − ζ, S(η)− S(ζ)⟩ ≥ 0.

α-inverse strongly monotone with constant α > 0, if for each η, ζ ∈ Σ

⟨η − ζ, S(η)− S(ζ)⟩ ≥ α∥S(η)− S(ζ)∥2.

β-strongly monotone if there exists a positive real number β such that

⟨η − ζ, S(η)− S(ζ)⟩ ≥ β∥η − ζ∥2.

The set of zeros of the mapping S is defined by

S−1(0) = {η ∈ Σ : 0 ∈ S(η)}.

Definition 1.6. [19] Suppose E ≠ ∅ be a closed convex subset of Σ. Then ∀ η ∈ Σ, ∃ one and
only one nearest point in E , known as a metric projection of η ∈ E and denoted by PE(η), that is

∥η − PE(η)∥ ≤ ∥η − ζ∥ for all ζ ∈ E .

Remark 1.7. A metric projection PE has the following properties:

(i) PE : Σ → E is nonexpansive

∥PE(η)− PE(ζ)∥ ≤ ∥η − ζ∥ for all η, ζ ∈ Σ.

(ii) PE is called firmly nonexpansive if

∥PE(η)− PE(ζ)∥2 ≤ ⟨PE(η)− PE(ζ), η − ζ⟩ for all η, ζ ∈ Σ.

(iii) For all η ∈ Σ

ν = PE(η) ⇔ ⟨η − ν, ν − ζ⟩ ≥ 0 for all ζ ∈ E .

Lemma 1.8. [1] A mapping G + H : Σ → 2Σ is maximal monotone, if G : Σ → Σ is Lipschitz
continuous and H : Σ → 2Σ is maximal monotone.

Definition 1.9. Let G : Σ → Σ be a Lipschitz continuous mapping and H : Σ → 2Σ a maximal
monotone mapping. Then a new resolvent mapping of the maximal monotone mapping G+H
is defined as

J
(G+H)
λ (η) = [I + λ(G+H)]−1(η), for all η ∈ Σ. (1.5)

Remark 1.10. The resolvent operator defined by (1.5) is nonexpansive and 1-inverse strongly
monotone.

Lemma 1.11. [20, 12]. Assume {τn} be a given sequence of non negative real numbers that
satisfy

τn+1 ≤ (1 − σn)τn + ξn + δn,

∀ n ≥ 0, where {ξn} and {δn} are sequences in R and {σn} is a subsequence in (0, 1). Let us
consider that:

(1)
∞∑
n=1

σn = ∞,

(2)
∞∑
n=1

|ξn| < ∞ or lim sup
n→∞

ξn
σn

≤ 0,

(3)
∞∑
n=1

δn < ∞.

Then, lim
n→∞

τn = 0.

Lemma 1.12. [2] If Σ is a real Hilbert space, then

∥η1 + η2∥2 ≤ ∥η1∥2 + 2⟨η2, η1 + η2⟩ for all η1, η2 ∈ Σ.
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2 Main Results

Theorem 2.1. Suppose G : Σ → Σ a single valued Lipschitz continuous mapping, H : Σ → 2Σ

a multivalued maximal monotone mapping, and Si : Σ → Σ, i = 1, 2, · · ·m be a finite family of

nonexpansive mappings. Suppose Θ =
m⋂
i=1

F (Si)
⋂
(G + H)−1 ̸= ∅. Suppose η = η0 ∈ Σ and

the sequence {ηn} generated by{
ςn = J

(G+H)
λ (ηn),

ηn+1 = ϒnη + (1 − ϒn)Si(ςn), ∀n ≥ 0.
(2.1)

where λ ∈ R+ and ∀n ∈ N, {ϒn} is a given sequence having these conditions:

(1) ϒn → 0,
∞∑
n=0

ϒn = ∞,

(2)
∞∑
n=0

|ϒn+1 − ϒn| < ∞.

Then the sequence {ηn} converges strongly to a point of
m⋂
i=1

F (Si)
⋂
(G+H)−1(0).

Proof. First we proof that the sequences {ηn} and {ςn} are bounded. Suppose ζ ∈ Θ using
Lemma 1.2, we have

ζ = J
(G+H)
λ (ζ).

Now,

∥ςn − ζ∥ = ∥J (G+H)
λ (ηn)− J

(G+H)
λ (ζ)∥

≤ ∥ηn − ζ∥. (2.2)

∥ηn+1 − ζ∥ = ∥ϒnη + (1 − ϒn)Si(ςn)− ζ∥
= ∥ϒn(η − ζ) + (1 − ϒn)(Si(ςn)− ζ)∥
≤ ϒn∥η − ζ∥+ (1 − ϒn)∥Si(ςn)− ζ∥
≤ ϒn∥η − ζ∥+ (1 − ϒn)∥ςn − ζ∥

Using inequality (2.2) in the above equation we get

∥ηn+1 − ζ∥ ≤ ϒn∥η − ζ∥+ (1 − ϒn)∥ηn − ζ∥
≤ max{∥η − ζ∥, ∥ηn − ζ∥}
· · ·
≤ max{∥η − ζ∥, ∥η0 − ζ∥}
= ∥η − ζ∥.

Thus we can say the sequences {ηn} and {ςn} are bounded. Since Si is the family of nonex-
pansive mappings and G is Lipschitz continuous, the sequences {G(ηn)} and {Si(ςn)} are also
bounded in Σ.

Now we prove that ∥ηn+1 − ηn∥ → 0 and ∥ςn+1 − ςn∥ → 0 as n → ∞.

Now, we have

∥ςn+1 − ςn∥ =
∥∥∥J (G+H)

λ (ηn+1)− J
(G+H)
λ (ηn)

∥∥∥
≤ ∥ηn+1 − ηn∥,

and
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∥ηn+1 − ηn∥ = ∥ϒnη + (1 − ϒn)Si(ςn)− ϒn−1η − (1 − ϒn−1)Si(ςn−1)∥
= ∥(ϒn − ϒn−1)(η − Si(ςn−1)) + (1 − ϒn)(Si(ςn)− Si(ςn−1))∥
≤ |ϒn − ϒn−1|∥η − Si(ςn−1∥+ (1 − ϒn)∥Si(ςn)− Si(ςn−1)∥
≤ D|ϒn − ϒn−1|+ (1 − ϒn)∥ςn − ςn−1∥
≤ D|ϒn − ϒn−1|+ (1 − ϒn)∥ηn − ηn−1∥,

where D = sup
n≥1

∥η − Si(ςn−1)∥. If we take τn = ∥ηn − ηn−1∥, ξn = D|ϒn − ϒn−1|, and

δn = 0 then all the conditions of Lemma 1.11 are satisfied, and hence lim
n→∞

∥ηn+1 − ηn∥ = 0,
lim

n→∞
∥ςn+1 − ςn∥ = 0.

Now we prove that lim
n→∞

∥ηn − Si(ςn)∥ → 0.
Now,

∥ηn − Si(ςn)∥ ≤ ∥ηn − Si(ςn−1)∥+ ∥Si(ςn−1)− Si(ςn)∥
≤ ϒn−1∥η − Si(ςn−1)∥+ ∥ςn−1 − ςn∥.

Since ϒn → 0 and ∥ςn−1 − ςn∥ → 0 as n → ∞, we get ∥ηn − Si(ςn)∥ → 0.

Now we prove that ∥ηn − ςn∥ → 0 and ∥Si(ςn) − ςn∥ → 0. For ζ ∈
n⋂

i=1
F (Si)

⋂
(G+H)−1(0)

and using remark 1.10 we get

∥ςn − ζ∥2 =
∥∥∥J (G+H)

λ (ηn)− J
(G+H)
λ (ζ)

∥∥∥2

=
〈
ηn − ζ, J

(G+H)
λ (ηn)− J

(G+H)
λ (ζ)

〉
= ⟨ηn − ζ, ςn − ζ⟩

=
1
2
{
∥ηn − ζ∥2 + ∥ςn − ζ∥2 − ∥ηn − ζ − (ςn − ζ)∥2}

≤ 1
2
{
∥ηn − ζ∥2 + ∥ηn − ζ∥2 − ∥ηn − ςn∥2} .

We have
∥ςn − ζ∥2 ≤ ∥ηn − ζ∥2 − 1

2
∥ηn − ςn∥2.

Now,

∥ηn+1 − ζ∥2 = ∥ϒnη + (1 − ϒn)Si(ςn)− ζ∥2

= ∥ϒn(η − ζ) + (1 − ϒn)(Si(ςn)− ζ)∥2

≤ ϒn∥(η − ζ)∥2 + (1 − ϒn)∥(Si(ςn)− ζ)∥2

≤ ϒn∥(η − ζ)∥2 + (1 − ϒn)∥(ςn − ζ)∥2

≤ ϒn∥(η − ζ)∥2 + (1 − ϒn)

{
∥(ηn − ζ)∥2 − 1

2
∥ηn − ςn∥2

}
.

It implies

(1 − ϒn)

2
∥ηn − ςn∥2 ≤ ϒn∥(η − ζ)∥2 + (∥ηn − ζ∥2 − ∥ηn+1 − ζ∥2). (2.3)

Since ϒn → 0 and∣∣∥ηn − ζ∥2 − ∥ηn+1 − ζ∥2∣∣ ≤ ∥ηn+1 − ηn∥(∥ηn∥+ ∥ηn+1∥) → 0.
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Using the above condition in the equation (2.3) we get ∥ηn − ςn∥ → 0.

Hence
∥Si(ςn)− ςn∥ ≤ ∥Si(ςn)− ηn∥+ ∥ηn − ςn∥ → 0.

Now we prove that
lim sup
n→∞

⟨η −ϖ,Si(ςn)−ϖ⟩ ≤ 0,

where ϖ = P n⋂
i=1

F (Si)
⋂
(G+H)−1(0)

(η). Since the sequence {ςn} is bounded in Σ, there exists a

subsequence {ςni
} of {ςn} such that ςni

⇀ ς ∈ Σ and

lim sup
n→∞

⟨η −ϖ,Si(ςn)−ϖ⟩ = lim
ni→∞

⟨η −ϖ,Si(ςni)−ϖ⟩.

Since ∥Si(ςn)− ςn∥ → 0, ∥Si(ςni
)− ςni

∥ → 0 and the family of mappings Si is nonexpansive so

I − Si : Σ → Σ is the family demiclosed mappings, so we have Si(ς) = ς , that is ς ∈
n⋂

i=1
F (Si).

Now we prove that
ς ∈ (G+H)−1(0).

Since the mapping G : Σ → Σ is Lipschitz continuous and H : Σ → 2Σ is maximal monotone, us-
ing Lemma 1.8 the mapping G+H is also maximal monotone. Now suppose (p, q) ∈ Graph(G+
H), that is q ∈ (G+H)(p). Since ςni = JG+H

λ (ηni), we have ηni ∈ [I + (G+H)](ςni), that is

1
λ
(ηni

− ςni
) ∈ (G+H)(ςni

).

Using the maximal monotonicity of mapping (G+H), we have〈
p− ςni

, q − 1
λ
(ηni

− ςni
)

〉
≥ 0.

Hence
⟨p− ςni

, q⟩ ≥
〈
p− ςni

,
1
λ
(ηni

− ςni
)

〉
.

Since, ∥ηni
− ςni

∥ → 0 and ςni
⇀ ς , we get

lim
ni→∞

⟨p− ςni
, q⟩ = ⟨p− ς, q⟩ ≥ 0.

Since the mapping G + H is maximal monotone, this implies that 0 ∈ (G + H)(ς), that is

ς ∈ (G+H)−1(0). So ς ∈
n⋂

i=1
F (Si)

⋂
(G+H)−1(0).

Since ∥Si(ςn)− ςn∥ → 0 and ςni ⇀ ς ∈
n⋂

i=1
F (Si)

⋂
(G+H)−1(0). Now using Remark 1.7 we

get

lim sup
n→∞

⟨η −ϖ,Si(ςn)−ϖ⟩ = lim
ni→∞

⟨η −ϖ,Si(ςni
)−ϖ⟩

= lim
ni→∞

⟨η −ϖ,Si(ςni
)− ςni

+ ςni
−ϖ⟩

= lim
ni→∞

⟨η −ϖ, ς −ϖ⟩

≤ 0.

Hence
lim sup
n→∞

⟨η −ϖ,Si(ςn)−ϖ⟩ ≤ 0. (2.4)

Now finally we prove
ηn → ϖ = P n⋂

i=1
F (Si)

⋂
(G+H)−1(0)

(η0).
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Now using Lemma 1.12 we get

∥ηn+1 −ϖ∥2 = ∥ϒn(η −ϖ) + (1 − ϒn)(Si(ςn)−ϖ)∥2

≤ (1 − ϒn)
2∥Si(ςn)−ϖ∥2 + 2ϒn⟨η −ϖ, ηn+1 −ϖ⟩

≤ (1 − ϒn)
2∥ςn −ϖ∥2 + 2ϒn⟨η −ϖ, ηn+1 −ϖ⟩

≤ (1 − ϒn)
2∥ηn −ϖ∥2 + 2ϒn⟨η −ϖ, ηn+1 −ϖ⟩.

∥ηn+1 −ϖ∥2 ≤ (1 − ϒn)
2∥ηn −ϖ∥2 + 2ϒn⟨η −ϖ, ηn+1 −ϖ⟩. (2.5)

Let
Ωn = max{0, ⟨η −ϖ, ηn+1 −ϖ⟩}.

Then Ωn ≥ 0. Now we prove that lim
n→∞

Ωn → 0. It follows from the equation (2.4) that for any
given δ > 0, there exists n0 such that

⟨η −ϖ, ηn+1 −ϖ⟩ < δ.

So, we have
0 ≤ Ωn < δ, for all n ≥ n0.

Since δ > 0 is arbitrary, we get Ωn → 0. So we can write (2.5) as follows

∥ηn+1 −ϖ∥2 ≤ (1 − ϒn)
2∥ηn −ϖ∥2 + 2ϒnΩn.

If we take τn = ∥ηn −ϖ∥2, ξn = 2ϒnΩn, and δn = 0 then all the conditions of Lemma 1.11 are
fulfilled. Hence ηn → ϖ when n → ∞. Thus the proof is now completed.

Corollary 2.2. Suppose G : Σ → Σ a single valued Lipschitz continuous mapping, H : Σ → 2Σ a
multivalued maximal monotone mapping, and S : Σ → Σ be a nonexpansive mapping. Suppose
Θ = F (S)

⋂
(G+H)−1 ̸= ∅. Suppose η = η0 ∈ Σ and the sequence {ηn} generated by{

ςn = J
(G+H)
λ (ηn),

ηn+1 = ϒnη + (1 − ϒn)S(ςn), ∀n ≥ 0.
(2.6)

where λ ∈ R+ and ∀n ∈ N, {ϒn} is a given sequence having these conditions:

(1) ϒn → 0,
∞∑
n=0

ϒn = ∞,

(2)
∞∑
n=0

|ϒn+1 − ϒn| < ∞.

Then the sequence {ηn} converges strongly to a point of F (S)
⋂
(G+H)−1(0).

3 Examples

Example 3.1. Let Σ = Rn and Si : Σ → Σ is the family of nonexpansive mappings for i = 1, 2
defined by

S1(η) = (η0,−η1,−η2, · · · , ηn)

S2(η) = (η0, 0, 0 · · · , 0).

Here
2⋂

i=1
F (Si) = (1, 0, · · · , 0).

Now define H : Σ → 2Σ as

H(η0, η1, · · · , ηn) = {(−η0, η1, η2, · · · , ηn)},

and G : Σ → Σ as

G(η0, η1, · · · , ηn) = (η0(1 + ln(η0)), η1, η2, · · · , ηn).
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Here H is a maximal monotone, multivalued mapping and G is a Lipschitz continuous single
valued mapping and (G + H)−1(0) = (1, 0, · · · , 0) ̸= ∅. If {ηn} is the sequence generated by

(2.1), then the sequence {ηn} converges to
2⋂

i=1
F (Si)

⋂
(G+H)−1(0) = (1, 0, · · · , 0).

Example 3.2. Suppose Σ = R and H : Σ → 2Σ a multivalued maximal monotone mapping
defined as

H(η) = {2η},

and G : Σ → Σ a single valued Lipschitz continuous mapping defined as

G(η) = tanh(η).

Here (G + H)−1(0) = 0. Suppose Si : Σ → Σ is the family of nonexpansive mappings for
i = 1, 2, 3, . . . n defined as

Si(η) =
η

2i
,

then
n⋂

i=1
F (Si) = 0. If {ηn} is the sequence generated by (2.1), then the sequence {ηn} converges

to
n⋂

i=1
F (Si)

⋂
(G+H)−1(0) = 0.

4 Conclusion remarks

In this paper, we have presented an iterative algorithm for finding a common solution to the
variational inclusion problem with Lipschitz continuous single valued and maximal monotone
multivalued mappings and the set of fixed points of a finite family of nonexpansive mappings
and proved a strong convergence theorem which converges to this common solution. We have
also presented an example to verify our results.
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