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Abstract In this paper, we study property (UWE) for functions of operators on an infinite
dimensional complex separable Hilbert space H. We show that if T + K satisfies property
(UWE) for all K ∈ K(H), then so does f(T ) + K where f is an injective function that is
analytic in the neighborhood of σ(T ). In addition, we study functions of Toeplitz operators with
nonconstant continuous symbols satisfying property (UWE).

1 Introduction and Preliminaries

Let B(H) denote the algebra of all bounded linear operators on infinite dimensional complex
separable Hilbert space H and K(H) denotes the ideal of all compact operators on H. For an
operator T ∈ B(H), we denote T ∗, N(T ), R(T ), α(T ), and β(T ) for the adjoint, the kernel,
the range, the nullity, and the defect respectively. If α(T ) < ∞ (resp., β(T ) < ∞) and R(T )
is closed, then T is called an upper semi-Fredholm (resp., lower semi-Fredholm) operator. Let
Φ+(H) denote the class of all upper semi-Fredholm operators and Φ−(H) denote the class of
all lower semi-Fredholm operators. An operator T is called semi-Fredholm, T ∈ SF , if T ∈
Φ+(H)∪Φ−(H). Let Φ(H) = Φ−(H)∩Φ+(H) denote the collection of all Fredholm operators.
For T ∈ SF , the index of T denoted by i(T ) ∈ Z∪{−∞,∞} is defined as i(T ) = α(T )−β(T ).
An operator T ∈ B(H) is Weyl if it is Fredholm of index zero. Let SF+(H) = {T ∈ SF :
i(T ) ≤ 0} and SF−(H) = {T ∈ SF : i(T ) ≥ 0} be the collection of all upper semi-Weyl
operators and the collection of all lower semi-Weyl operators respectively.
Ascent of an operator T is denoted by p := p(T ) is the smallest non-negative integer such that
p = min{n ∈ N ∪ {∞} : N(Tn) = N(Tn+1)}. The descent of an operator T is denoted by
q := q(T ) and is defined by q = min{n ∈ N ∪ {∞} : R(Tn) = R(Tn+1)}. It is admitted that if
ascent and descent are both finite, then p(T ) = q(T ) [1]. If p(T ) = q(T ) < ∞, then the operator
T ∈ B(H) is said to be Drazin invertible. Let

DI(H) = {T ∈ B(H) : T is Drazin invertible}.

Drazin invertible operators can be written as the direct sum of an invertible and a nilpotent
operator. The essential spectrum σe(T ), the Wolf spectrum σlre(T ), the Weyl spectrum σw(T ),
the upper semi-Weyl spectrum σuw(T ), the lower semi-Weyl spectrum σlw(T ), and the Drazin
invertible spectrum σdz(T ) of T ∈ B(H) are given by

σe(T ) = {λ ∈ C : T − λI /∈ Φ(H)},
σlre(T ) = {λ ∈ C : T − λI /∈ SF (H)},
σw(T ) = {λ ∈ C : T − λI is not Weyl},
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σuw(T ) = {λ ∈ C : T − λI /∈ SF+(H)},
σlw(T ) = {λ ∈ C : T − λI /∈ SF−(H)},
σdz(T ) = {λ ∈ C : T − λI /∈ DI(H)}.

Let ρSF (T ) stand for the semi-Fredholm domain of T and is given by ρSF (T ) = C \ σlre(T )
and let

ρ+SF (T ) := {λ ∈ ρSF (T ) : i(T − λI) > 0},
ρ−SF (T ) := {λ ∈ ρSF (T ) : i(T − λI) < 0},

ρ0
SF (T ) := {λ ∈ ρSF (T ) : i(T − λI) = 0}.

Obviously, σw(T ) = C\ρ0
SF (T ) and ρSF (T ) = ρ0

SF (T )∪ρ+SF (T )∪ρ−SF (T ). Let ∅ ≠ σ ⊆ σ(T ),
where σ is a clopen subset. Then there exists an Ω such that σ ⊆ Ω and [σ(T ) \ σ] ∩ Ω = ∅,
where Ω is an analytic Cauchy domain. Then the operator E(σ;T ) defined by

E(σ;T ) = 1
2πi

∫
Γ
(T − λI)−1dλ,

where Γ = ∂Ω positively oriented with respect to Ω. E(σ;T ) commutes with every operator
that commutes with T often called Riesz idempotent operator. Let H(σ;T ) = R(E(σ;T )). We
simply write H(λ;T ) instead of H({λ};T ). An isolated point λ of σ(T ) is called a normal
eigenvalue of T if dimH(λ;T ) < ∞. The set of all normal eigenvalues of T will be denoted
as σ0(T ). We denote E(T ), the set of all isolated eigenvalues and E0(T ) the set of all points in
E(T ) with finite multiplicity.
Hermann Weyl [14] studied that the points λ in the spectrum of self-adjoint operator T on H but
not in ∩{σ(T + K) : K ∈ K(H)} are precisely the points in E0(T ). Coburn [7] studied that
this result remains holds for hyponormal operators. This remarkable result is known as Weyl’s
theorem. According to Coburn [7], an operator T ∈ B(H) is said to satisfy Weyl’s theorem,
T ∈ (W ), if

σ(T ) \ σw(T ) = E0(T ).

Weyl-type theorems and its variations are studied for many classes of operators on Hilbert spaces
and Banach spaces [2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 17]. Li, Zhu, and Feng [11] proved for any
bounded linear operator T on H there is an arbitrary small compact perturbation of T satisfying
Weyl’s theorem. In [6], Berkani and Kachad introduced and studied several variants of Weyl’s
theorem such as property (UWE), (Wπ), (UWπa

), and property (UWπ).
Operator T ∈ B(H) is said to satisfy property (UWE) if

σa(T ) \ E(T ) = σuw(T ).

Berkani and Kachad [6] studied the connection between property (UWE) and other variations
of Weyl-type theorems. In [13] the authors studied stability of property (UWE) under compact
perturbation and proved that T +K satisfies property (UWE) for all K ∈ K(H) if and only if
isolated point of σlre(T ) is empty and σuw(T ) is simply connected. An operator T ∈ B(H) is
said to satisfy property (UWπ) [6] if

σa(T ) \ σuw(T ) = σ(T ) \ σdz(T ).

Stablity of property (UWπ) under quasi-nilpotent and Riesz perturbations and the passage of
property (UWπ) from T to f(T ) where f is an analytic function defined on the neighbourhood
of σ(T ) is studied by Aiena and Kachad [3, 4].

2 Results

Aiena and Kachad [3] studied class of operators satisfying property (UWπ). In a similar manner,
we study it for property (UWE). If T is algebraic, then its spectrum is a finite set of poles and
every pole is an eigenvalue. Then σa(T ) = σ(T ) = E(T ) and σuw(T ) ̸= ∅. Thus, every
algebraic operator fails to satisfy property (UWE). It is evident that every finite-dimensional
operator does not satisfy property (UWE). Also, quasi-nilpotent operators with empty point
spectrum satisfies property (UWE). Let T be a non-injective operator and N be a nilpotent
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operator with TN = NT . If property (UWE) is satisfied for T , T+N satisfies property (UWE).
In [3], Aiena and Kachad proved that σ(T ) and σa(T ) are invariant under commuting quasi-
nilpotent perturbations and σp(T +N) = σp(T ). Hence E(T +N) = E(T ). Therefore, T +N
satisfies property (UWE). In [16], Zhu, Li, and Zhou are given the necessary and sufficient
condition for functions of operators satisfying property (w) and a-Weyl’s theorem. Now we
study stability of property (UWE) for functions of operators. We start with the following result
from [13].

Lemma 2.1 ([13], Theorem 2.9). Let T ∈ B(H). Then, Property (UWE) hold for T if and only
if
(i) σ(T ) is the union of σw(T ) and σ0(T ),
(ii) all isolated eigenvalues are normal eigenvalues, and
(iii) there exist no λ ∈ σp(T ) such that T − λI is semi-Fredholm with i(T ) < 0.

Let iso σ denotes the collection of points in σ that are not accumulation points.

Lemma 2.2 ([8], Chapter XI, Proposition 6.9). Let T ∈ B(H) and λ ∈ iso σ(T ). Then, the
following statements are equivalent.
(i) λ ∈ ρSF (T ).
(ii) λ ∈ ρ0

SF (T ).
(iii) λ ∈ σ0(T ).

The upper semi-Weyl spectrum does not hold the spectral mapping theorem. However, if f
is injective, we have the following result due to Aiena [5].

Lemma 2.3 ([5], Lemma 2.5). Let T ∈ B(H) and suppose that f is injective on σ(T ). Then,

σuw(f(T )) = f(σuw(T )) and σlw(f(T )) = f(σlw(T )).

Let Hol′(σ(T )) denotes the collection of all analytic functions that are injective on any con-
nected neighborhood of σ(T ). An operator T ∈ B(H) is said to be isoloid if the isolated points
of the spectrum are all eigenvalues.

Theorem 2.4. Let T ∈ B(H), Then f(T ) ∈ (UWE) for all f ∈ Hol′(σ(T )) if and only if the
following conditions hold
(i) T ∈ (UWE);
(ii) If ρ−SF (T ) ̸= ∅, then σ0(T ) = ∅ and there exist no λ ∈ ρSF (T ) such that 0 < i(T −λI) < ∞;
(iii) If E(T ) ̸= ∅, then T is isoloid.

Proof. Assume that f(T ) ∈ (UWE) for all f ∈ Hol′(σ(T )). If f(λ) = λ, then (i) follows.
If (ii) does not hold, then we can choose an α ∈ ρ−SF (T ) and β ∈ ρSF (T ) ∩ σp(T ) such that
0 ≤ i(T − βI) < ∞. We can choose k ∈ N such that k.i(T − αI) + i(T − βI) < 0. Set
f2(λ) = (λ − α)k(λ − β). Then, f2(T ) = (T − αI)k(T − βI) ∈ SF and i(f2(T )) < 0.
Clearly, N(f2(T )) ≥ N(T − βI) > 0. Thus, 0 ∈ ρ−SF (f2(T )) ∩ σP (f2(T )). By Lemma 2.1,
f2(T ) /∈ (UWE), a contradiction. Thus (ii) holds. Suppose (iii) does not hold, then there exist
a λ1 ∈ E(T ) and λ2 ∈ iso σ(T ) such that λ2 /∈ σp(T ). Then λ2 ∈ σlre(T ), by Lemma 2.2. Put
f3(T ) = (T − λ1I)(T − λ2I) and so 0 ∈ σlre(f3(T )) and N(f3(T )) = N(T − λ1I) > 0. Since
λ1, λ2 ∈ iso σ(T ), 0 ∈ iso σ(f3(T )). Hence 0 ∈ E(f3(T )). Then by Lemma 2.1, it follows that
f3(T ) does not satisfy property (UWE), a contradiction. Conversely, assume that (i),(ii) and (iii)
holds. By a similar argument as in Theorem 1.2 [16], we get σa(f(T ))\σuw(f(T )) ⊆ E(f(T )).
Now we prove E(f(T )) ⊆ σa(f(T )) \ σuw(f(T )). Let λ ∈ E(f(T )). Then

f(T )− λI = (T − λ1)k1(T − λ2)k2 ....(T − λn)kng(T ),

where λi ̸= λj for i ̸= j and g(T ) is invertible. Since λ ∈ E(f(T )), λ ∈ σ(f(T )). Also,
λi ∈ σ(T ) for all i and there exist an i0 such that λi0 ∈ σp(T ). Hence λi0 ∈ E(T ). By
(iii), λi ∈ E(T ) for all i. Since T ∈ (UWE), we have λi /∈ σuw(T ) for all i, which implies
f(λi) ̸= λ for all i. Since f ∈ Hol′(σ(T )), λ /∈ f(σuw(T )). Hence λ /∈ σuw(f(T )). This gives
λ ∈ σa(f(T )) \ σuw(f(T )).
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In [13], authors studied the stability of property (UWE) under compact perturbation.

Theorem 2.5. If T ∈ B(H) and T +K ∈ (UWE) for all K ∈ K(H), then f(T ) +K ∈ (UWE)
for all K ∈ K(H) and for every f ∈ Hol′(σ(T )).

Proof. By [13, Theorem 2.6], it is enough to prove C\σuw(f(T )) is connected and iso σlre(f(T )) =
∅ . Suppose that µ0 ∈ iso σlre(f(T )) and

f(T )− µ0I = (T − λ1)n1(T − λ2)n2 .....(T − λk)nkg(T ),

where g(T ) is invertible and λi ̸= λj for i ̸= j. If λ(n)
1 → λ1, then f(λ

(n)
1 ) → µ0. Then,

f(T )− f(λ
(n)
1 )I = (T − λ

(n)
1 )m(T − λ′

1)
m1(T − λ′

2)
m2 .....(T − λ′

n)
mnh(T ),

where h(T ) is invertible and λ′
i ̸= λ′

j for i ̸= j. Since f(T )−f(λ
(n)
1 )I ∈ SF , λ1 ∈ iso σlre(T )∪

ρSF (T ). Since iso σlre(T ) = ∅, λ1 ∈ ρSF (T ). In a similar manner, we can show that λi ∈
ρSF (T ) for all i. This implies that f(T ) − µ0I is semi-Fredholm, which is a contradiction.
Therefore, iso σlre(f(T )) = ∅. Since f is injective, we have ρuw(f(T )) is connected by [5,
Theorem 3.3].

The following example shows that Theorem 2.5 may not hold for non-injective functions.

Example 2.6. Let T : l2 → l2 given by T (a1, a2, a3, ...) := (a2, a3, a4, ...). We have

σa(T ) = σuw(T ) = {λ ∈ C : |λ| ≤ 1} and σlre(T ) = {λ ∈ C : |λ| = 1}.

Hence, T ∈ (UWE) for all K ∈ K(H) by [13, Theorem 2.6]. But if we take f as the zero
function on the closed unit disc, then f(T ) is the zero operator. This implies that σa(f(T )) \
σuw(f(T )) = ∅ and E(f(T )) = {0}. Consequently f(T ) does not satisfy property (UWE).

Yang and Cao [15] studied property (UWπ) for functions of operators. Now we prove that if
T +K satisfies property (UWπ) for all K ∈ K(H), then f(T )+K satisfies property (UWπ) for
all K ∈ K(H) and for every f ∈ Hol′(σ(T )).

Lemma 2.7 ([15], Theorem 1.5). Let T ∈ B(H). Then, T +K satisfies property (UWπ) and is
isoloid for all K ∈ K(H) if and only if
(i) iso σw(T ) = ∅
(ii) σuw(T ) is simply connected.

Theorem 2.8. Let T ∈ B(H). If T +K ∈ (UWπ) and is isoloid for all K ∈ K(H), then so does
f(T ) +K ∈ (UWπ) and is isoloid for all K ∈ K(H) and for every f ∈ Hol′(σ(T )).

Proof. Assume that T + K ∈ (UWπ) and is isoloid for all K ∈ K(H). By Lemma 2.7, it is
enough to prove C \ σuw(f(T )) is connected and iso σw(f(T )) = ∅. If iso σw(f(T )) ̸= ∅, then
there exist a µ0 ∈ iso σw(f(T )) such that

f(T )− µ0I = (T − λ1)n1(T − λ2)n2 .....(T − λk)nkg(T ) ,

where g(T ) is invertible and λi ̸= λj for i ̸= j. If λ → λ1, then f(λ) → µ0. Then,

f(T )− f(λ)I = (T − λ)m(T − λ′
1)

m1(T − λ′
2)

m2 .....(T − λ′
n)

mnh(T ),

where h(T ) is invertible and λ′
i ̸= λ′

j for i ̸= j. Since f(T )− f(λ)I is Weyl, λ1 ∈ iso σw(T ) ∪
ρSF (T ). Since iso σw(T ) = ∅, λ1 ∈ ρSF (T ). By a similar argument, we get λi ∈ ρSF (T ) for
all i. Hence f(T ) − µ0I is Weyl, a contradiction. Therefore, iso σw(f(T )) = ∅. By the same
argument as in Theorem 2.5, we get ρuw(f(T )) is connected. This completes the proof.

Hardy space of the unit circle T of the complex plane C is denoted by H2(T). Let L∞(T)
denote the set of all measurable functions that are essentially bounded on T. Toeplitz operator
with symbol ϕ ∈ L∞(T) on H2(T) is given by Tϕ(f) = P (ϕf), where f ∈ H2(T) and P is
the orthogonal projection of L2(T) onto H2(T). We denote C(T), the algebra of all continuous
complex valued functions on T. Aiena [5] studied some properties of spectra of Toeplitz oper-
ators. For K ∈ K(H), Tϕ + K satisfies a-Weyl’s theorem if and only if ϕ is not constant and
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the winding number of ϕ with respect to each hole of Γ is negative, where Γ = ϕ(T) [9]. If
the winding number of ϕ with respect to each hole of Γ is negative and ϕ is not constant, then
we have iso σlre(Tϕ) = ∅ and C \ σuw(Tϕ) is connected. Then, by [13, Theorem 2.6] property
(UWE) is invariant under compact perturbation of Toeplitz operators with nonconstant continu-
ous symbol ϕ of winding number with respect to each hole of Γ is negative.
The following result shows that for continuous nonconstant symbol ϕ, the wolf spectrum of Tϕ

has no isolated points.

Lemma 2.9. If ϕ ∈ C(T). Then the following are equivalent.
(i) ϕ is nonconstant,
(ii) iso σuw(Tϕ) = ∅,
(iii) iso σw(Tϕ) = ∅, and
(iv) iso σlre(Tϕ) = ∅.

Proof. If ϕ is constant, then σlre(Tϕ) = {µ}. Therefore, iso σlre(Tϕ) = ∅. Thus, ϕ is non-
constant. If iso σlre(Tϕ) ̸= ∅, then Γ is singleton since the essential spectrum is connected.
Therefore, ϕ is constant. Equivalency of (i), (ii), (iii) follows from [5, Theorem 3.5].

Theorem 2.10. Let ϕ ∈ C(T) be nonconstant. Then both Tϕ and T ∗
ϕ satisfy property (UWE).

Proof. From [5, Theorem 3.3] and Lemma 2.9, we have iso σa(Tϕ) = ∅. Thus, E(Tϕ) = ∅.
Since σa(Tϕ) = σuw(Tϕ), Tϕ satisfies property (UWE). We have iso σa(T ∗

ϕ) = iso σlw(Tϕ) = ∅
and so E(T ∗

ϕ) = ∅, σa(T ∗
ϕ) = σuw(T ∗

ϕ). Thus, T ∗
ϕ satisfies property (UWE).

Let Hnc(σ(Tϕ)) denotes the collection of analytic functions that are nonconstant on con-
nected components of σ(T ).

Theorem 2.11. Let ϕ ∈ C(T) and f ∈ Hnc(σ(Tϕ)). Then the following are equivalent.
(i) σa(Tf◦ϕ) = f(σa(Tϕ)).
(ii) σuw(Tf◦ϕ) = f(σuw(Tϕ)), and
(iii) f(Tϕ) has property (UWE).

Proof. We see that (i) and (ii) are equivalent from [5, Theorem 4.5]. Assume (i) hold

iso σa(f(Tϕ)) = f(iso σa(Tϕ)) = ∅.

This shows that E(f(Tϕ)) = ∅. We have,

σa(Tf◦ϕ) = f(σa(Tϕ)) = σa(f(Tϕ)) = σuw(f(Tϕ)).

Therefore, f(Tϕ) satisfies property (UWE). That is, (iii) holds.
Now assume (iii). Clearly E(f(Tϕ)) = ∅. This shows that

σa(f(Tϕ)) = σuw(f(Tϕ)) = σa(Tf◦ϕ).

This implies σa(Tf◦ϕ) = f(σa(Tϕ)) and so (i) holds.

Corollary 2.12. Let ϕ ∈ C(T) be nonconstant and f ∈ Hnc(σ(Tϕ)). If σa(Tf◦ϕ) has no holes,
then f(Tϕ) satisfies property (UWE).

Proof. We have f(Tϕ) = Tf◦ϕ +K, where K is a compact operator. Since f ◦ ϕ is nonconstant,
we have

∅ = iso σlre(Tf◦ϕ) = iso σuw(Tf◦ϕ) = iso σa(Tf◦ϕ).

Then, f(Tϕ) satisfies property (UWE).

Let {b1, b2, b3, ...} be an orthonormal basis of H. Then the unilateral weighted shift operator
T on H is given by

Tbi = wibi+1,

where {wi}∞i=1 is a sequence of complex numbers.
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Corollary 2.13. Let T be a unilateral weighted shift operator with weights {wi}∞i=1. Then T +K
satisfies property (UWE) for all K ∈ K(H) if and only if

lim infi|wi| = 0 < r(T ),

where r(T ) denotes the spectral radius of T .

Proof. Suppose that T is a unilateral weighted shift operator with weights {wi}∞i=1. Then by
[10], we have

σ(T ) = σw(T ) = {z ∈ C : |z| ≤ r(T )}.

By triangulability of T ∗, we have ρ−SF (T
∗) = ∅. Since ρ−SF (T

∗) = ρ+SF (T ), ρ
+
SF (T ) = ∅. We

have ρ−SF (T ) = ∅ if and only if lim infi|wi| = 0. Therefore, σuw(T ) = σlre(T ) = σw(T ). Thus
iso σlre(T ) = ∅ and σuw(T ) is simply connected if and only if lim infi|wi| = 0 < r(T ).
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