PROPERTY (UW_E) FOR FUNCTIONS OF OPERATORS

Simi Thomas, T. Prasad and Shery Fernandez

Communicated by Harikrishnan Panackal

MSC 2010 Classifications: 47A10; 47A53; 47A55

Keywords and phrases: Property (UW_E) , function of operators, Toeplitz operator.

The authors would like to thank the reviewers for their constructive comments and valuable suggestions that improved the quality of our paper.

Simi Thomas is supported by Senior Research Fellowship of University Grants Commission, India.

Abstract In this paper, we study property (UW_E) for functions of operators on an infinite dimensional complex separable Hilbert space H . We show that if $T + K$ satisfies property (UW_F) for all $K \in K(\mathcal{H})$, then so does $f(T) + K$ where f is an injective function that is analytic in the neighborhood of $\sigma(T)$. In addition, we study functions of Toeplitz operators with nonconstant continuous symbols satisfying property (UW_E) .

1 Introduction and Preliminaries

Let $B(\mathcal{H})$ denote the algebra of all bounded linear operators on infinite dimensional complex separable Hilbert space H and $K(\mathcal{H})$ denotes the ideal of all compact operators on H. For an operator $T \in B(H)$, we denote T^* , $N(T)$, $R(T)$, $\alpha(T)$, and $\beta(T)$ for the adjoint, the kernel, the range, the nullity, and the defect respectively. If $\alpha(T) < \infty$ (resp., $\beta(T) < \infty$) and $R(T)$ is closed, then T is called an upper semi-Fredholm (resp., lower semi-Fredholm) operator. Let $\Phi_+(\mathcal{H})$ denote the class of all upper semi-Fredholm operators and $\Phi_-(\mathcal{H})$ denote the class of all lower semi-Fredholm operators. An operator T is called semi-Fredholm, $T \in SF$, if $T \in$ $\Phi_+(\mathcal{H}) \cup \Phi_-(\mathcal{H})$. Let $\Phi(\mathcal{H}) = \Phi_-(\mathcal{H}) \cap \Phi_+(\mathcal{H})$ denote the collection of all Fredholm operators. For $T \in SF$, the index of T denoted by $i(T) \in \mathbb{Z} \cup \{-\infty, \infty\}$ is defined as $i(T) = \alpha(T) - \beta(T)$. An operator $T \in B(H)$ is Weyl if it is Fredholm of index zero. Let $SF_+(\mathcal{H}) = \{T \in SF :$ $i(T) \leq 0$ and $SF_{-}(\mathcal{H}) = \{T \in SF : i(T) \geq 0\}$ be the collection of all upper semi-Weyl operators and the collection of all lower semi-Weyl operators respectively.

Ascent of an operator T is denoted by $p := p(T)$ is the smallest non-negative integer such that $p = \min\{n \in \mathbb{N} \cup \{\infty\} : N(T^n) = N(T^{n+1})\}.$ The descent of an operator T is denoted by $q := q(T)$ and is defined by $q = \min\{n \in \mathbb{N} \cup \{\infty\} : R(T^n) = R(T^{n+1})\}$. It is admitted that if ascent and descent are both finite, then $p(T) = q(T)$ [\[1\]](#page-5-1). If $p(T) = q(T) < \infty$, then the operator $T \in B(H)$ is said to be Drazin invertible. Let

 $DI(\mathcal{H}) = \{T \in B(\mathcal{H}) : T \text{ is Drazin invertible}\}.$

Drazin invertible operators can be written as the direct sum of an invertible and a nilpotent operator. The essential spectrum $\sigma_e(T)$, the Wolf spectrum $\sigma_{lre}(T)$, the Weyl spectrum $\sigma_w(T)$, the upper semi-Weyl spectrum $\sigma_{uw}(T)$, the lower semi-Weyl spectrum $\sigma_{lw}(T)$, and the Drazin invertible spectrum $\sigma_{dz}(T)$ of $T \in B(\mathcal{H})$ are given by

$$
\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin \Phi(\mathcal{H}) \},
$$

\n
$$
\sigma_{lre}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin SF(\mathcal{H}) \},
$$

\n
$$
\sigma_w(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \},
$$

$$
\sigma_{uw}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin SF_+(\mathcal{H}) \},
$$

\n
$$
\sigma_{lw}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin SF_-(\mathcal{H}) \},
$$

\n
$$
\sigma_{dz}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin DI(\mathcal{H}) \}.
$$

Let $\rho_{SF}(T)$ stand for the semi-Fredholm domain of T and is given by $\rho_{SF}(T) = \mathbb{C} \setminus \sigma_{Ire}(T)$ and let

$$
\rho_{SF}^+(T) := \{ \lambda \in \rho_{SF}(T) : i(T - \lambda I) > 0 \},
$$

\n
$$
\rho_{SF}^-(T) := \{ \lambda \in \rho_{SF}(T) : i(T - \lambda I) < 0 \},
$$

\n
$$
\rho_{SF}^0(T) := \{ \lambda \in \rho_{SF}(T) : i(T - \lambda I) = 0 \}.
$$

Obviously, $\sigma_w(T) = \mathbb{C} \setminus \rho_{SF}^0(T)$ and $\rho_{SF}(T) = \rho_{SF}^0(T) \cup \rho_{SF}^+(T) \cup \rho_{SF}^-(T)$. Let $\emptyset \neq \sigma \subseteq \sigma(T)$, where σ is a clopen subset. Then there exists an Ω such that $\sigma \subseteq \Omega$ and $[\sigma(T) \setminus \sigma] \cap \overline{\Omega} = \emptyset$, where Ω is an analytic Cauchy domain. Then the operator $E(\sigma;T)$ defined by

$$
E(\sigma;T) = \frac{1}{2\pi i} \int_{\Gamma} (T - \lambda I)^{-1} d\lambda,
$$

where $\Gamma = \partial \Omega$ positively oriented with respect to Ω . $E(\sigma, T)$ commutes with every operator that commutes with T often called Riesz idempotent operator. Let $H(\sigma; T) = R(E(\sigma; T))$. We simply write $H(\lambda;T)$ instead of $H(\{\lambda\};T)$. An isolated point λ of $\sigma(T)$ is called a normal eigenvalue of T if dim $H(\lambda; T) < \infty$. The set of all normal eigenvalues of T will be denoted as $\sigma_0(T)$. We denote $E(T)$, the set of all isolated eigenvalues and $E_0(T)$ the set of all points in $E(T)$ with finite multiplicity.

Hermann Weyl [\[14\]](#page-5-2) studied that the points λ in the spectrum of self-adjoint operator T on H but not in $\bigcap \{\sigma(T + K) : K \in K(\mathcal{H})\}\$ are precisely the points in $E_0(T)$. Coburn [\[7\]](#page-5-3) studied that this result remains holds for hyponormal operators. This remarkable result is known as Weyl's theorem. According to Coburn [\[7\]](#page-5-3), an operator $T \in B(\mathcal{H})$ is said to satisfy Weyl's theorem, $T \in (W)$, if

$$
\sigma(T) \setminus \sigma_w(T) = E_0(T).
$$

Weyl-type theorems and its variations are studied for many classes of operators on Hilbert spaces and Banach spaces [\[2,](#page-5-4) [3,](#page-5-5) [4,](#page-5-6) [5,](#page-5-7) [6,](#page-5-8) [10,](#page-5-9) [11,](#page-5-10) [12,](#page-5-11) [13,](#page-5-12) [15,](#page-5-13) [16,](#page-5-14) [17\]](#page-5-15). Li, Zhu, and Feng [\[11\]](#page-5-10) proved for any bounded linear operator T on H there is an arbitrary small compact perturbation of T satisfying Weyl's theorem. In [\[6\]](#page-5-8), Berkani and Kachad introduced and studied several variants of Weyl's theorem such as property (UW_E) , (W_π) , (UW_{π_a}) , and property (UW_π) . Operator $T \in B(\mathcal{H})$ is said to satisfy property (UW_E) if

$$
\sigma_a(T) \setminus E(T) = \sigma_{uw}(T).
$$

Berkani and Kachad [\[6\]](#page-5-8) studied the connection between property (UW_E) and other variations of Weyl-type theorems. In [\[13\]](#page-5-12) the authors studied stability of property (UW_E) under compact perturbation and proved that $T + K$ satisfies property (UW_E) for all $K \in K(\mathcal{H})$ if and only if isolated point of $\sigma_{lre}(T)$ is empty and $\sigma_{uw}(T)$ is simply connected. An operator $T \in B(H)$ is said to satisfy property (UW_π) [\[6\]](#page-5-8) if

$$
\sigma_a(T) \setminus \sigma_{uw}(T) = \sigma(T) \setminus \sigma_{dz}(T).
$$

Stablity of property (UW_{π}) under quasi-nilpotent and Riesz perturbations and the passage of property (UW_{π}) from T to $f(T)$ where f is an analytic function defined on the neighbourhood of $\sigma(T)$ is studied by Aiena and Kachad [\[3,](#page-5-5) [4\]](#page-5-6).

2 Results

Aiena and Kachad [\[3\]](#page-5-5) studied class of operators satisfying property (UW_{π}) . In a similar manner, we study it for property (UW_E) . If T is algebraic, then its spectrum is a finite set of poles and every pole is an eigenvalue. Then $\sigma_a(T) = \sigma(T) = E(T)$ and $\sigma_{uw}(T) \neq \emptyset$. Thus, every algebraic operator fails to satisfy property (UW_E) . It is evident that every finite-dimensional operator does not satisfy property (UW_E) . Also, quasi-nilpotent operators with empty point spectrum satisfies property (UW_E) . Let T be a non-injective operator and N be a nilpotent operator with $TN = NT$. If property (UW_E) is satisfied for $T, T+N$ satisfies property (UW_E) . In [\[3\]](#page-5-5), Aiena and Kachad proved that $\sigma(T)$ and $\sigma_{\alpha}(T)$ are invariant under commuting quasinilpotent perturbations and $\sigma_p(T + N) = \sigma_p(T)$. Hence $E(T + N) = E(T)$. Therefore, $T + N$ satisfies property (UW_E) . In [\[16\]](#page-5-14), Zhu, Li, and Zhou are given the necessary and sufficient condition for functions of operators satisfying property (w) and a-Weyl's theorem. Now we study stability of property (UW_E) for functions of operators. We start with the following result from [\[13\]](#page-5-12).

Lemma 2.1 ([\[13\]](#page-5-12), Theorem 2.9). Let $T \in B(H)$. Then, Property (UW_E) hold for T if and only *if*

(i) $\sigma(T)$ *is the union of* $\sigma_w(T)$ *and* $\sigma_0(T)$ *, (ii) all isolated eigenvalues are normal eigenvalues, and (iii) there exist no* $\lambda \in \sigma_p(T)$ *such that* $T - \lambda I$ *is semi-Fredholm with* $i(T) < 0$ *.*

Let iso σ denotes the collection of points in σ that are not accumulation points.

Lemma 2.2 ([\[8\]](#page-5-16), Chapter XI, Proposition 6.9). Let $T \in B(\mathcal{H})$ and $\lambda \in \text{iso } \sigma(T)$. Then, the *following statements are equivalent.*

 (i) $\lambda \in \rho_{SF}(T)$. (ii) $\lambda \in \rho_{SF}^0(T)$. (iii) $\lambda \in \sigma_0(T)$.

The upper semi-Weyl spectrum does not hold the spectral mapping theorem. However, if f is injective, we have the following result due to Aiena [\[5\]](#page-5-7).

Lemma 2.3 ([\[5\]](#page-5-7), Lemma 2.5). Let $T \in B(\mathcal{H})$ and suppose that f is injective on $\sigma(T)$. Then,

 $\sigma_{uw}(f(T)) = f(\sigma_{uw}(T))$ *and* $\sigma_{lw}(f(T)) = f(\sigma_{lw}(T))$ *.*

Let $Hol'(\sigma(T))$ denotes the collection of all analytic functions that are injective on any connected neighborhood of $\sigma(T)$. An operator $T \in B(\mathcal{H})$ is said to be isoloid if the isolated points of the spectrum are all eigenvalues.

Theorem 2.4. Let $T \in B(H)$, Then $f(T) \in (UW_E)$ for all $f \in Hol'(\sigma(T))$ if and only if the *following conditions hold* (i) $T \in (UW_E);$

(*ii*) If $\rho_{SF}^-(T) \neq \emptyset$, then $\sigma_0(T) = \emptyset$ and there exist no $\lambda \in \rho_{SF}(T)$ such that $0 < i(T - \lambda I) < \infty$; *(iii) If* $E(T) \neq \emptyset$ *, then T is isoloid.*

Proof. Assume that $f(T) \in (UW_E)$ for all $f \in Hol'(\sigma(T))$. If $f(\lambda) = \lambda$, then (i) follows. If (ii) does not hold, then we can choose an $\alpha \in \rho_{SF}^-(T)$ and $\beta \in \rho_{SF}(T) \cap \sigma_p(T)$ such that $0 \leq i(T - \beta I) < \infty$. We can choose $k \in \mathbb{N}$ such that $k.i(T - \alpha I) + i(T - \beta I) < 0$. Set $f_2(\lambda) = (\lambda - \alpha)^k (\lambda - \beta)$. Then, $f_2(T) = (T - \alpha I)^k (T - \beta I) \in SF$ and $i(f_2(T)) < 0$. Clearly, $N(f_2(T)) \geq N(T - \beta I) > 0$. Thus, $0 \in \rho_{SF}^-(f_2(T)) \cap \sigma_P(f_2(T))$. By Lemma [2.1,](#page-2-0) $f_2(T) \notin (UW_E)$, a contradiction. Thus (ii) holds. Suppose (iii) does not hold, then there exist $a \lambda_1 \in E(T)$ and $\lambda_2 \in \text{iso } \sigma(T)$ such that $\lambda_2 \notin \sigma_p(T)$. Then $\lambda_2 \in \sigma_{lre}(T)$, by Lemma [2.2.](#page-2-1) Put $f_3(T) = (T - \lambda_1 I)(T - \lambda_2 I)$ and so $0 \in \sigma_{lre}(f_3(T))$ and $N(f_3(T)) = N(T - \lambda_1 I) > 0$. Since $\lambda_1, \lambda_2 \in \text{iso } \sigma(T), 0 \in \text{iso } \sigma(f_3(T)).$ Hence $0 \in E(f_3(T))$. Then by Lemma [2.1,](#page-2-0) it follows that $f_3(T)$ does not satisfy property (UW_E) , a contradiction. Conversely, assume that (i),(ii) and (iii) holds. By a similar argument as in Theorem 1.2 [\[16\]](#page-5-14), we get $\sigma_a(f(T)) \setminus \sigma_{uw}(f(T)) \subseteq E(f(T))$. Now we prove $E(f(T)) \subseteq \sigma_a(f(T)) \setminus \sigma_{uw}(f(T))$. Let $\lambda \in E(f(T))$. Then

$$
f(T) - \lambda I = (T - \lambda_1)^{k_1} (T - \lambda_2)^{k_2}(T - \lambda_n)^{k_n} g(T),
$$

where $\lambda_i \neq \lambda_j$ for $i \neq j$ and $g(T)$ is invertible. Since $\lambda \in E(f(T))$, $\lambda \in \sigma(f(T))$. Also, $\lambda_i \in \sigma(T)$ for all i and there exist an i_0 such that $\lambda_{i_0} \in \sigma_p(T)$. Hence $\lambda_{i_0} \in E(T)$. By (iii), $\lambda_i \in E(T)$ for all i. Since $T \in (UW_E)$, we have $\lambda_i \notin \sigma_{uw}(T)$ for all i, which implies $f(\lambda_i) \neq \lambda$ for all i. Since $f \in Hol'(\sigma(T))$, $\lambda \notin f(\sigma_{uw}(T))$. Hence $\lambda \notin \sigma_{uw}(f(T))$. This gives $\lambda \in \sigma_a(f(T)) \setminus \sigma_{uw}(f(T)).$

In [\[13\]](#page-5-12), authors studied the stability of property (UW_F) under compact perturbation.

Theorem 2.5. *If* $T \in B(H)$ *and* $T + K \in (UW_E)$ *for all* $K \in K(H)$ *, then* $f(T) + K \in (UW_E)$ *for all* $K \in K(\mathcal{H})$ *and for every* $f \in Hol'(\sigma(T))$ *.*

Proof. By [\[13,](#page-5-12) Theorem 2.6], it is enough to prove $\mathbb{C}\setminus \sigma_{uw}(f(T))$ is connected and iso $\sigma_{lre}(f(T))$ = \emptyset . Suppose that $\mu_0 \in \text{iso } \sigma_{lre}(f(T))$ and

$$
f(T) - \mu_0 I = (T - \lambda_1)^{n_1} (T - \lambda_2)^{n_2} \dots (T - \lambda_k)^{n_k} g(T),
$$

where $g(T)$ is invertible and $\lambda_i \neq \lambda_j$ for $i \neq j$. If $\lambda_1^{(n)} \to \lambda_1$, then $f(\lambda_1^{(n)})$ $\mu_1^{(n)}$ $\rightarrow \mu_0$. Then,

$$
f(T) - f(\lambda_1^{(n)})I = (T - \lambda_1^{(n)})^m (T - \lambda_1')^{m_1} (T - \lambda_2')^{m_2} \dots (T - \lambda_n')^{m_n} h(T),
$$

where $h(T)$ is invertible and $\lambda'_i \neq \lambda'_j$ for $i \neq j$. Since $f(T) - f(\lambda_1^{(n)})$ $\binom{n}{1}$ $I \in SF$, $\lambda_1 \in \text{iso}$ $\sigma_{lre}(T) \cup$ $\rho_{SF}(T)$. Since iso $\sigma_{lre}(T) = \emptyset$, $\lambda_1 \in \rho_{SF}(T)$. In a similar manner, we can show that $\lambda_i \in$ $\rho_{SF}(T)$ for all i. This implies that $f(T) - \mu_0 I$ is semi-Fredholm, which is a contradiction. Therefore, iso $\sigma_{lre}(f(T)) = \emptyset$. Since f is injective, we have $\rho_{uw}(f(T))$ is connected by [\[5,](#page-5-7) Theorem 3.3]. \Box

The following example shows that Theorem [2.5](#page-3-0) may not hold for non-injective functions.

Example 2.6. Let $T: l^2 \to l^2$ given by $T(a_1, a_2, a_3, ...) := (a_2, a_3, a_4, ...)$. We have $\sigma_a(T) = \sigma_{uw}(T) = {\lambda \in \mathbb{C} : |\lambda| \le 1}$ and $\sigma_{lre}(T) = {\lambda \in \mathbb{C} : |\lambda| = 1}.$

Hence, $T \in (UW_F)$ for all $K \in K(\mathcal{H})$ by [\[13,](#page-5-12) Theorem 2.6]. But if we take f as the zero function on the closed unit disc, then $f(T)$ is the zero operator. This implies that $\sigma_a(f(T))$ $\sigma_{uw}(f(T)) = \emptyset$ and $E(f(T)) = \{0\}$. Consequently $f(T)$ does not satisfy property (UW_E) .

Yang and Cao [\[15\]](#page-5-13) studied property (UW_π) for functions of operators. Now we prove that if $T + K$ satisfies property (UW_{π}) for all $K \in K(\mathcal{H})$, then $f(T) + K$ satisfies property (UW_{π}) for all $K \in K(\mathcal{H})$ and for every $f \in Hol'(\sigma(T))$.

Lemma 2.7 ([\[15\]](#page-5-13), Theorem 1.5). Let $T \in B(H)$. Then, $T + K$ satisfies property (UW_π) and is *isoloid for all* $K \in K(\mathcal{H})$ *if and only if (i)* iso $\sigma_w(T) = \emptyset$ *(ii)* $\sigma_{uw}(T)$ *is simply connected.*

Theorem 2.8. Let $T \in B(H)$. If $T + K \in (UW_{\pi})$ and is isoloid for all $K \in K(H)$, then so does $f(T) + K \in (U W_\pi)$ and is isoloid for all $K \in K(\mathcal{H})$ and for every $f \in Hol'(\sigma(T))$.

Proof. Assume that $T + K \in (U W_{\pi})$ and is isoloid for all $K \in K(\mathcal{H})$. By Lemma [2.7,](#page-3-1) it is enough to prove $\mathbb{C} \setminus \sigma_{uw}(f(T))$ is connected and iso $\sigma_w(f(T)) = \emptyset$. If iso $\sigma_w(f(T)) \neq \emptyset$, then there exist a $\mu_0 \in \text{iso } \sigma_w(f(T))$ such that

$$
f(T) - \mu_0 I = (T - \lambda_1)^{n_1} (T - \lambda_2)^{n_2} \dots (T - \lambda_k)^{n_k} g(T) ,
$$

where $g(T)$ is invertible and $\lambda_i \neq \lambda_j$ for $i \neq j$. If $\lambda \to \lambda_1$, then $f(\lambda) \to \mu_0$. Then,

$$
f(T) - f(\lambda)I = (T - \lambda)^m (T - \lambda'_1)^{m_1} (T - \lambda'_2)^{m_2} \dots (T - \lambda'_n)^{m_n} h(T),
$$

where $h(T)$ is invertible and $\lambda'_i \neq \lambda'_j$ for $i \neq j$. Since $f(T) - f(\lambda)I$ is Weyl, $\lambda_1 \in \text{iso} \ \sigma_w(T) \cup$ $\rho_{SF}(T)$. Since iso $\sigma_w(T) = \emptyset$, $\lambda_1 \in \rho_{SF}(T)$. By a similar argument, we get $\lambda_i \in \rho_{SF}(T)$ for all *i*. Hence $f(T) - \mu_0 I$ is Weyl, a contradiction. Therefore, iso $\sigma_w(f(T)) = \emptyset$. By the same argument as in Theorem [2.5,](#page-3-0) we get $\rho_{uw}(f(T))$ is connected. This completes the proof. \Box

Hardy space of the unit circle $\mathbb T$ of the complex plane $\mathbb C$ is denoted by $H^2(\mathbb T)$. Let $L^{\infty}(\mathbb T)$ denote the set of all measurable functions that are essentially bounded on T. Toeplitz operator with symbol $\phi \in L^{\infty}(\mathbb{T})$ on $H^2(\mathbb{T})$ is given by $T_{\phi}(f) = P(\phi f)$, where $f \in H^2(\mathbb{T})$ and P is the orthogonal projection of $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. We denote $\mathbb{C}(\mathbb{T})$, the algebra of all continuous complex valued functions on T. Aiena [\[5\]](#page-5-7) studied some properties of spectra of Toeplitz operators. For $K \in K(\mathcal{H})$, $T_{\phi} + K$ satisfies a-Weyl's theorem if and only if ϕ is not constant and the winding number of ϕ with respect to each hole of Γ is negative, where $\Gamma = \phi(\mathbb{T})$ [\[9\]](#page-5-17). If the winding number of ϕ with respect to each hole of Γ is negative and ϕ is not constant, then we have iso $\sigma_{lre}(T_{\phi}) = \emptyset$ and $\mathbb{C} \setminus \sigma_{uw}(T_{\phi})$ is connected. Then, by [\[13,](#page-5-12) Theorem 2.6] property (UW_E) is invariant under compact perturbation of Toeplitz operators with nonconstant continuous symbol ϕ of winding number with respect to each hole of Γ is negative.

The following result shows that for continuous nonconstant symbol ϕ , the wolf spectrum of T_{ϕ} has no isolated points.

Lemma 2.9. *If* $\phi \in C(\mathbb{T})$ *. Then the following are equivalent.* (i) ϕ *is nonconstant, (ii)* iso $\sigma_{uw}(T_\phi) = \emptyset$, (iii) iso $\sigma_w(T_\phi) = \emptyset$ *, and* (iv) iso $\sigma_{lre}(T_{\phi}) = \emptyset$ *.*

Proof. If ϕ is constant, then $\sigma_{lre}(T_{\phi}) = {\mu}$. Therefore, iso $\sigma_{lre}(T_{\phi}) = \emptyset$. Thus, ϕ is nonconstant. If iso $\sigma_{lre}(T_{\phi}) \neq \emptyset$, then Γ is singleton since the essential spectrum is connected. Therefore, ϕ is constant. Equivalency of (i), (ii), (iii) follows from [\[5,](#page-5-7) Theorem 3.5]. \Box

Theorem 2.10. *Let* $\phi \in C(\mathbb{T})$ *be nonconstant. Then both* T_{ϕ} *and* T_{ϕ}^* *satisfy property* (*UW_E*).

Proof. From [\[5,](#page-5-7) Theorem 3.3] and Lemma [2.9,](#page-4-0) we have iso $\sigma_a(T_\phi) = \emptyset$. Thus, $E(T_\phi) = \emptyset$. Since $\sigma_a(T_\phi) = \sigma_{uw}(T_\phi)$, T_ϕ satisfies property (UW_E) . We have iso $\sigma_a(T_\phi^*) =$ iso $\sigma_{lw}(T_\phi) = \emptyset$ and so $E(T^*_{\phi}) = \emptyset$, $\sigma_a(T^*_{\phi}) = \sigma_{uw}(T^*_{\phi})$. Thus, T^*_{ϕ} satisfies property (UW_E) . \Box

Let $H_{nc}(\sigma(T_{\phi}))$ denotes the collection of analytic functions that are nonconstant on connected components of $\sigma(T)$.

Theorem 2.11. *Let* $\phi \in C(\mathbb{T})$ *and* $f \in H_{nc}(\sigma(T_{\phi}))$ *. Then the following are equivalent.* $(i) \sigma_a(T_{f \circ \phi}) = f(\sigma_a(T_{\phi})).$ *(ii)* $\sigma_{uw}(T_{f \circ \phi}) = f(\sigma_{uw}(T_{\phi}))$ *, and (iii)* $f(T_\phi)$ *has property* (UW_E) *.*

Proof. We see that (i) and (ii) are equivalent from [\[5,](#page-5-7) Theorem 4.5]. Assume (i) hold

iso
$$
\sigma_a(f(T_\phi)) = f(\text{iso }\sigma_a(T_\phi)) = \emptyset
$$
.

This shows that $E(f(T_\phi)) = \emptyset$. We have,

$$
\sigma_a(T_{f \circ \phi}) = f(\sigma_a(T_{\phi})) = \sigma_a(f(T_{\phi})) = \sigma_{uw}(f(T_{\phi})).
$$

Therefore, $f(T_{\phi})$ satisfies property (UW_E) . That is, (iii) holds. Now assume (iii). Clearly $E(f(T_\phi)) = \emptyset$. This shows that

$$
\sigma_a(f(T_\phi)) = \sigma_{uw}(f(T_\phi)) = \sigma_a(T_{f \circ \phi}).
$$

This implies $\sigma_a(T_{f \circ \phi}) = f(\sigma_a(T_{\phi}))$ and so (i) holds.

Corollary 2.12. *Let* $\phi \in C(\mathbb{T})$ *be nonconstant and* $f \in H_{nc}(\sigma(T_{\phi}))$ *. If* $\sigma_a(T_{f \circ \phi})$ *has no holes, then* $f(T_\phi)$ *satisfies property* (UW_E) *.*

Proof. We have $f(T_{\phi}) = T_{f \circ \phi} + K$, where K is a compact operator. Since $f \circ \phi$ is nonconstant, we have

$$
\emptyset = \text{iso } \sigma_{lre}(T_{f \circ \phi}) = \text{iso } \sigma_{uw}(T_{f \circ \phi}) = \text{iso } \sigma_a(T_{f \circ \phi}).
$$

Then, $f(T_{\phi})$ satisfies property (UW_E) .

Let $\{b_1, b_2, b_3, ...\}$ be an orthonormal basis of H. Then the unilateral weighted shift operator T on $\mathcal H$ is given by

$$
Tb_i = w_i b_{i+1},
$$

where $\{w_i\}_{i=1}^{\infty}$ is a sequence of complex numbers.

 \Box

 \Box

Corollary 2.13. Let T be a unilateral weighted shift operator with weights $\{w_i\}_{i=1}^{\infty}$. Then $T + K$ *satisfies property* (UW_E) *for all* $K \in K(\mathcal{H})$ *if and only if*

$$
\liminf_i |w_i| = 0 < r(T),
$$

where $r(T)$ *denotes the spectral radius of* T *.*

Proof. Suppose that T is a unilateral weighted shift operator with weights $\{w_i\}_{i=1}^{\infty}$. Then by $[10]$, we have

$$
\sigma(T) = \sigma_w(T) = \{ z \in \mathbb{C} : |z| \le r(T) \}.
$$

By triangulability of T^* , we have $\rho_{SF}^-(T^*) = \emptyset$. Since $\rho_{SF}^-(T^*) = \rho_{SF}^+(T)$, $\rho_{SF}^+(T) = \emptyset$. We have $\rho_{SF}^-(T) = \emptyset$ if and only if lim $\inf_i |w_i| = 0$. Therefore, $\sigma_{uw}(T) = \sigma_{lre}(T) = \sigma_w(T)$. Thus iso $\sigma_{lre}(T) = \emptyset$ and $\sigma_{uw}(T)$ is simply connected if and only if lim $\inf_i |w_i| = 0 < r(T)$. \Box

References

- [1] P. Aiena, *Fredholm and Local Spectral Theory, with Applications to Multipliers*, Kluwer Academic Publishers: Dordrecht, (2004).
- [2] P. Aiena, *Fredholm and Local Spectral Theory II, with Application to Weyl-type Theorems*, Lecture Notes in Mathematics, Springer, Vol. 2235, (2018).
- [3] P. Aiena and M. Kachad, *Property* (UW_{π}) *under perturbations*, Annals of Functional Analysis, 11(1), 29-46, (2020).
- [4] P. Aiena and M. Kachad, *Some new results on property* (UW_π) , Rend. Circ. Mat. Palermo Series 2, **72(1)**, 591–604, (2023).
- [5] P. Aiena, *On the spectral mapping theorem for Weyl spectra of Toeplitz operators*, Advances in Operator theory, 5(4), 1618 - 1634, (2020).
- [6] M. Berkani and M. Kachad, *New Browder and Weyl-type theorems*, Bull. Korean. Math. Soc., 52(2), 439-452, (2015).
- [7] L. A. Coburn, *Weyl's theorem for nonnormal operators*, Mich. Math. J., Vol. 13(3), 285–288, (1966).
- [8] J. B. Conway, *A course in functional analysis*, Graduate texts in Mathematics, 2nd edn. Springer-Verlag, Vol. 96, (1990).
- [9] B. Jia and Y. Feng, *Weyl-type theorems under compact perturbations*, Mediterr. J. Math., 15, 1-13, (2018).
- [10] B. Jia and Y. Feng, *Property* (R) *under compact perturbations*, Mediterr. J. Math., 17(2):73, (2020).
- [11] C. G. Li, S. Zhu and Y. L. Feng, *Weyl's theorem for functions of operators and approximation*, Integral Equ. Oper. Theory, Vol. 67(4), 481–497, (2010).
- [12] M.H.M.Rashid, Passage of property (t) from two operators to their tensor product, Palestine Journal of Mathematics, Vol. 11(3), 237–248, (2022).
- [13] T. Prasad, Simi Thomas and Shery Fernandez, Stability of property (UW_E) under compact perturbations, Rend. Circ. Mat. Palermo Series 2, 72, 3659–3664, (2023).
- [14] H. Weyl, *Uber beschrankte quadratische formen*, deren differenz, vollsteig ist. Rend. Circ. Mat. Palermo 27, 373–392, (1909).
- [15] L. Yang and X. Cao, *Property* (UWπ) *for Functions of Operators and Compact Perturbation*, Mediterr. J. Math, 19(4):163, (2022).
- [16] S. Zhu, C. G. Li and T. T. Zhou, *Weyl-type theorems for functions of operators*, Glasgow Math. J, 54(3), 493-505, (2012).
- [17] T. T. Zhou, C. G. Li and S. Zhu, *Generalized Weyl's theorem for functions of operators and compact perturbations*, Bull. Korean. Math. Soc. , 49(5), 899-910, (2012).

Author information

Simi Thomas, Department of Mathematics, Cochin University of Science and Technology, Kerala, India. E-mail: simimariumthomas@cusat.ac.in

T. Prasad, Department of Mathematics, University of Calicut, Kerala, India. E-mail: prasadvalapil@gmail.com

Shery Fernandez, Department of Mathematics, Cochin University of Science and Technology, Kerala, India. E-mail: sheryfernandez@cusat.ac.in

Received: 2023-05-22 Accepted: 2023-10-10