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Abstract The main aim of this paper is the numerical study of a generalized model of frac-
tional polymer aqueous solutions and Navier-Stokes equations using a fully discrete fractional
semi-implicit FEM scheme which is developed to study this type of equations. The studied
model describes an incompressible fluid flow that takes into account the relaxation properties
with a fractional time derivative of Caputo. The Existence and uniqueness results were obtained
for the weak discrete solution and with the help of a newly introduced trilinear form. The con-
vergence and stability of the developed numerical scheme are demonstrated for certain criteria
and time step limits are obtained. Numerical simulations are developed and the effects of var-
ious parameters of the discrete system are studied. The results obtained are analysed and the
application to the lid-driven cavity problem in a complex geometry is presented.

1 Introduction

1.1 Mathematical formulation & main results

Many real fluids, such as blood, cornstarch, paint, and aqueous polymer solutions, cannot be
described by the Navier-Stokes equations and are known as non-Newtonian fluids. In this work,
we numerically study an initial-boundary value problem that models the unsteady flow of a
new type of fluid model that generalizes the fractional Navier-Stokes equations by using Caputo
fractional temporal derivatives, defined as follows :

Let Q C R? be a bounded domain with regular boundary 9. We denote Q7 the cylinder Q x
(0,T) (T > 0). The studied model is giving as following

DP(u — aAu) — vAu +uV(u — mAu) + Vp=f  in 2,
diviu)=0 inQr,
(P) (1.1
u=20 on 0Qr,

u(0) =uy in 2,

where
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et € (0,7) denotes time and = € Q denotes space.

e 1 > ( is the viscosity coefficient, o; > 0 is the relaxation times and «; > 0 is the relaxation viscosity.
e u = (uy, up) represents the velocity field.

e p is the pressure.

o f is the external forces field.

. . . 0. 0.
V denotes the gradient with respect to the space variables x such as V. = ((97, 87)
1 2
o . . . 0.
o div is the divergence operator such as div. = — + —
8m1 8%2
0> 0%
e A is the laplacien operator suchas A. = — + —
Oxy  Ox;

. Df (.) denotes the VO (in time, t) fractional time-derivatives in Caputo’s sense, which is defined
by Coimbra in [1] by :

B _ 1 i f'(7) -
th(t)_l“(n—,@)/o (t—r)ﬁd’ 0< g < 1, (1.2)

where I'(.) is the gamma function. Using the fractional derivative instead the ordinary one is
to describe the rate of change of a function with respect to a non-integer power of time. It is
particularly useful in modelling fluids dynamic with a complex structure such as viscoelasticity,
it allows us to understand how a system evolves over time in more nuanced way than what
traditional calculus can offer.

If 3 =1 and a1 = ay, this CO(constant order) fractional derivatives is reduced to the ordinary
df

time-derivative because D] f = e The problem (P) will be written as follow

%(u—aAu) —vAu+uV(u—aAu)+Vp=~f in 7,
u=0 ondQr,

u(0) =uy in .

. This model has been experimentally established by L.I Sedov in (1966)[2] and generously
studied by A.P.Oskolkov(1977)[3], in a series of papers, see ([4],[5],[6],[7]), and by Azoug et
al.(2018)[8]. In this articles, A.P.Oskolkov, has been interested to the uniqueness and global
solvability of different models of aqueous solutions of polymers. The stationary model was
studied by C. Amrouche and EH. Ouazar in(2008)[9] where they proved the existence of a week
solution in two dimension. In (2022)[10], they studied the same model with a damping term in
a bounded domain, they proved that the solution of the problem (NSV) converges to a solution
of the steady-state damped Navier-Stokes system as «; tends to zero.

When a1 = ap = 0, the system (P) is reduced to the fractional Navier-Stokes equations.

DP(u) —vAu4uV(u)+Vp=Ff inQ2x(0,7T),

divim)=0 in2x(0,7),
(FNSE) (1.4)
u=0 ondN2x(0,7),

u(0) =wy in .
Lions(1959), in [11] has obtained priori estimates for fractional order derivative in time. Also, for
the numerical study we can cite the article [12](2018) by J. Zhang and J Wang, where they used

a finite difference approach in fractional derivative and Legendre-spectral method approxima-
tions in space and they have concluded that the scheme is unconditionally stable. In (2014)[13]
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they studied the Navier-Stokes equations with a time-fractional derivative in a tube, using the
coupling of Adomian decomposition method and Laplace transform method. using the tech-
nique of a domain decomposition and the Laplace transform method, for some related study see
[14],[15],[16],[17], [18].

In the case where a, = 0, the problem is reduced to a system of partial differential equations
introduced by W. Voigt (1892)[19] which is called the Kelvin-Voigt equations describing the mo-
tion of certain viscoelastic incompressible fluids. This model has been studied by many authors,
in (2016)[20] they studied the well-posedness of the system on L?(Q) were Q is a bounded do-
main in R™ (n > 2). Also, Baranovskii (2020)[21] has been studied the existence of the strong
solution by using Faedo-Galerkin method with a special basis, where a; > 0 a length scale pa-
rameter characterizing the elasticity of the fluid.

DY (u—ajAu) —vAu+uV(u) +Vp=f in 2 x (0,T),
div(u) =0 in 2 x (0,7),
(FKV) iv (u) in 2 x (0,7) (L.5)
u=0 ondN?x(0,7),
u(0) =wy in .

The system reduces to the aqueous solution of polymer when «; = «,, we get the following
system
DY (u— aAu) — vAu +uV(u — aAu) + Vp = f 2 x(0,7),
div(u) =0 2 x(0,7),
(FASP) ) 0.7) (1.6)
u=0 0012 x (0,7),
u(0) =ug € 2.

The model (FASP) was investigated by Azoug et al(2020)[22]. In this paper they presented a
fully discrete fractional semi-implicit FEM-scheme to study numerically the model which de-
scribes the non-Newtonian fluid flow of polymer aqueous solutions.

Let the final time 7" > 0 be fixed. Let us introduce the following spaces used in the paper :

We use the standard notation for the Lebesgue spaces LP(€) with the norm ||.|| 1 (q), if p = 2
we denote its usual norm by |[.|o.

We introduce also the Sobolev spaces

H™(Q) def W™*(Q), m e N,
equipped by the semi-norms and norms |.|,, ||.|/m-

Set
X = (HY(Q))? N (H)(Q))? and Y = L}(Q)

Let V' an Hilbert space defined by
v ={veH@)? ave (IXQ)? div(v) =0ppinQ v=0on0Q}  (17)
equipped with the scalar product

((uv))v = (Vu, V) 12q) + (Au, AV) 12
The bilinear forms a(.,.) , b(.,.) in X are defined by :

a(u,v) = y/ VuVvdz; u,v € X, (1.8)
Q
b(u,q) = —/ gdiv(u)dz; u e X, g€, (1.9)
Q

We also introduce the following trilinear form in X by :

N
C(w,z,v) = Z /Qwigijvjdx; wv,we X. (1.10)

i,j=1
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For the sake of simplicity, let us assume that f is independent on time and u is zero at the edges,
the domain Q € R? is assumed polygonal and convex. We denote by X;, C X and Y}, C Y sub
finite dimensional spaces and are such that the form b satisfies the condition inf-sup discrete. In
the next steps a semi implicit scheme in time will be presented and the stability and convergence
will be studied. We denote At > 0 the time step discretization with At = T'/n,n € N* and we
consider uf (z) the approximation of u, uf (z) € X, with t* = k.At, k > 0 and pf(z) € Y}, is
the approximation of p(z, t*).

1.2 Modified trilinear form

For stability reasons, the modified trilinear form C(., ., .) is introduced as follow, see Azoug et
al. [8], [22]

Definition 1.1.

[C(w,z,v)—C(W,v, z)]—% [C(W,Az,v)—C(W,v,Az)—C(W,Az,2)+C(W,z,Az)]
(1.11)

N —

C(w,z,v) =

The trilinear forms C and C(., .,.) have some properties, hereafter some ones that will be
used in the next sections.
Properties 1.1. For all w, z in X and v in V we have
1. C(w,w,v) =C(w,w,v),
2. C(w,z,z) =0,
3. C(w,z,v) = 1[C(w,z,v) — C(w,v,2)], for ap = 0.
PROOF. see Azoug et al. [8], [22]

Estimation of C, C

In this subsection, the obtained and proved results given in Azoug et al.(2020)[22] for the esti-
mation of C(., ., .) are recalled. The first and the second estimations of C(., .,.) are gathered in
the following lemmas :

Lemma 1.2. The form C(., ., .) is trilinear continuous on [H'(Q)]* and

Clw,z,v) < ol wlg* [ wih' [z 1 vl o]/ (1.12)
Lemma 1.3. C(., ., .) verifies :
Cwzv)<clwl[vhlzh+az [Azli (v +[z]1)], (1.13)
forallwy € [H'(Q)]? and z € [H*(Q)]*.
Particularly, for o = 0, we have
Cw,z,v) <c|whl|vhlzl, (1.14)

forallw, z, v € [H'(Q)].
Lemma 1.4. C(., ., .) verifies :
Cw.29) < clwllo [1 9 1 (el (g + a2A2lwr = (@) + alzlws< 1Az )] - (1.15)

forall z, Az € [Wh>°(Q)]%, v € [HY(Q)]?,w € [L*(Q)]%.
Particularly, for ay = 0, we have

Cw,z,v) <clwlo [v 1 2w~ (1.16)
forallz € [W'=(Q)R, v € [H(Q)]2,w € [LA(Q).
PROOF. see Azoug et al. [22]
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1.3 Energy estimate

For the energy estimate, let us take v = u in the weak formulation and thanks to the C(.,.,.)
properties one gets the following :

1 «@
5 DY [u®]5 + =D [ Va®)|[§ + v @[5 < [[£]o]uct)]o- (1.17)

Multiplying by 2 and using the propriety of Caputo’s fractional derivative defined by (see
Coimbra (2003))[1]

D7D f(t) = f(t) - £(0), (1.18)

one obtains the following energy estimate.

Lemma 1.5. For all u in [L*(Q))? the following energy estimate is obtained :

@[5 — 10§ + o (| Vu@|5 — [|Vu(0)[I3) + 2vD; | Vu@|§ < [floD; °llu@llo. (1.19)

PROOF. see Azoug et al. [22]

2 Discritization scheme with Fractional derivative in time

For numerical solution of the nonlinear steady state problem (1.1) a combination of the finite
element method in space and a fractional derivative scheme in time is used. More precisely, let
u) € X, be given. We seek for (uf,p¥), k =1,..,m suchas:

Df(uﬁ — alAuh — uh '+ Au Vi) +a (uh,vh) + C( u’,;,vh) + b(vh,ph) i
Vv, € Xh,
b(u), q,) = 0;

th €y;.
(2.1)
Using the following formula for the fractional derivative discretisation (see Zhuang et al. (2009))[23]

(Pn)

n+1 ’rH—] k n—k
D (w(t™)) = 2 ﬁ Z er(w — w7, (2.2)
where ¢, = (k+ 1)'7% — (k)!=P. Using the proposed semi-implicit scheme, the fully discrete
problem (2.1) leads to a hnear problem to be solved in the variables u’“+l and p’“rl only for each

time step t**!. In the following sections the proposed numerical scheme will be analyzed and
the existence and the uniqueness of the time-discrete solution will be demonstrated.

3 Existence and uniqueness results

The existence and uniqueness results for the time-discrete problem (Py) can be resumed from
the following theorem.

Theorem 1. Let X, and Y}, satisfy the discrete “Inf-Sup” condition, then for u¥ given, the prob-
lem (P;,) has a unique solution (u} ™! 7pZ“) € (X x Yp).

PROOF. For a given u¥ and for all u, v in X, we define the following bilinear form a(., .)

-B
a(u,v) = (F(A;—/B)(u — ajAu, V)) +a(u,v) + C(uf " u,v)
Thus, we have
-8B
i(u,u) = (F(AZtﬂ)(u - alAu,u)) +a(u,u) + C(uf™" u,u)
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By integrating by parts one obtain :

At=F ) At=F 5
a(u,a) = <7) ullp + (7041 +l/) uli. 3.1
Hence, the form a(., .) is continuous and coercive on X x X According to the Lax-Milgram’s
lemma, the existence and uniqueness results are obtained in X. In the case of a; = 0, the

existence and uniqueness results are then obtained in [H] (Q)]?

At=8
r2-p)

But with C'(u, v,w) = C and the result in [H} ()]? is then obtained.

a(u,u) = ( Yul+v [l (32)

4 Stability

It is assumed that the triangulation 7, is uniformly regular and the initial data u} is such that
[[uf [l g1 ()2 is bounded independently of h and At and f is bounded in L*(Q).

Theorem 4.1. (Stability) The semi discrete scheme (Py) is unconditionally stable, for all n with
1<n<M-1

n+1
a5 + (2ves + an)[Vap G < llup 1§ + aa | Vug|I§ + ces Z Il

7=1

with cg = At°T'(2 — B)

PROOF. Taking v, = u} in equation (P}), one gets :

At—8 —s s— s—
T 5){(uh arAuf —uf o Au) T uﬁ)—l—ch(ulfL —a Ay T o A ) )
ta (uhauh)+c( “Z7Uh)+b(“haph) (f, uj)
Vllﬁ € Xy,
with ¢y = (s +1)177 — (s)!78
We multiply by cg
k—1
(u,’j—alAuﬁ—u’fb_]+a]Auﬁ_1,uﬁ)+ch(u T Auy T —ub T g A )
s=1
+ cpa(ug, up) + s C(uy™ ! uf, up) +c5 b(ug;, pfy) = cp(f,uf)
0 0
Vllﬁ € Xy,
k-1
(uZ—alAu’ﬁ—u’,ffl+a1AuZ*1,uﬁ)+Z(CS)(uf* —aAuy 7 —uf T g Auy o )

s=1
+ 05a(u2,u2) = Cﬁ(fv llﬁ)
vui € X,
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k-1
(uf — ajAuf,uf) — (™! —aAuf T uf) + Z cs(Wf ™% — A5 uf)

s=1
k—1
=D e — AT )+ cpa(uf uf) = ea(Fuf)
s=1
Vllﬁ e Xy,

By integrating by parts and multiply by (2) to obtain :

k—1
2uf —uf " uf) + 200 (Vuf — Vub !l vab) +2) e (uft —uf o k)

1

S

k—1
+ 2a; Z cs(Vur™ — vui =71 wuf) + 2cza(uf, uf) = 2¢s(f, uf)
s=1

Vlll]z c Xy,
Cauchy Schwarz inequality :
k—1
20w —wy k) 2.0 [ug [F 42 et - wpm )
s=1
k—1
+ 20 ch(Vuﬁfs —Vui T vay) + 2csv | uf 3K 2¢ | £ o) uf o +2aq [uf T i uf |y
s=1
Vllﬁ e Xy,
for n=1,

2(u' —ud, ') + 201 (Vu® — Vu®, va') + 2¢5v | uf 3= 2¢5(f',u')
Using the following identity :

2 2 2

2(u—v,u) = |lullg — [|vI[g + [la = V|5
ko ok—1 ok 2 k—1)2 k—12
2w —wp = ug) = [Jug§ — G+ (Jug —wi G

Jut|3+{u" w3+’ 3+ (| u' [} = [u® [+ [u'—u® [})+2csv [u' f< cov | u! [f+ees | £
That is
[ul|f + ai | u' [} +(csv +an) [u' F< [0)F + a1 [u [} +ees [ £

We assume :

k
k115 + (2ves + an) | Vui[§ < Wl I + a1 [ VUl +ccs Y IFIG, k= 1,....n.
j=1

Fork =n + 1, we have

n—1
20w 3 + 2(ves + o) [Vup B =2 [ Y (e — i)+ cpuld, !
j=0

n—1
+ 2 Z(Cj — i)V e, vl vt | 4 205 (£ upt)
=0
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2/l 2 (ves+an) [ Vap g < Z cj—cia) (lug 7 [+ lup 1 1E)+en (| |5+ up 1 15)

7=0
+ay Z cir) (W B+t D rarea(Ju) B+ [upt ) bees It +ves | Va3
n—1 k .
20t 3+ (vepta) [Vup I3 < O (ej—cj)+en) [ NURIF + ar [Vl 13+ ces > IF113
Jj=0 J=1
n—I1 k
] 1
+ar(D (e — i) +en) [ NQ1R) + eal|Vuf 1§+ cca D IF IS | + ceall €13
7=0 7=1

Note that E;:OI (¢j —cjr1) +en =1

n+1
1 12 012 0112 j 112
20§ + (ves + an) I Vup G < ([ufl§ + ar[Vul 5+ ces Y I1F]5:
j=1

For the case a; = a; = 0, we obtain the stability results for the fractional Navier-stokes
model (FNSE) in Zhang and Wang (2018)[12], and for the case a; = «;, we obtain the stability
results for the fractional aqueuse solution of polymer(FASP) model in Azoug et al. (2020)[22].

Theorem 4.2. (FNSE) The semi discrete scheme (Py) is uncondition stable, for all n with
1<n<M-1

n+1
ey ™[5 + Ques) [ Vag tIG < lup 5 + ccs Z 7115,

with cg = At°T(2 - B).
Theorem 4.3. (FASP) The semi discrete scheme (Py) is uncondition stable, for all n with
1<n<M-1

n+1
a3 + (2ves + )| Vup R < R + | Va3 + ces S 1,

7=1

with cg = At°T(2 — B).

5 Convergence
We assume that the exact solution (u, p) of system equations (FM) is regular, such that
u e %[0, 7], [W>(Q)] 0 X) N C2([0, 7], [H*(Q)]*) N H2([0, T]: [L*(Q))%)

and
pe HY([0,T], H'(Q)NY)

Theorem 5.1. (Convergence)

If:
Bo <« ; v . v . V(Zal - Oéz)
S (SF(Z “B) 2+ a1+ ar 1202202 — B)
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1— 20041y, 2 _
h<C\/( i a2§a1>%;’/2 2 4a22 T
i 2 a3 +4(1 — =)

then we have forallk > 1 :

and

ek — () o < (| ul —u(t®) |y +h° + AP + AT + (218 — 1At
+ Vas(h? + AT + At + AT+ aph 4 JagAtT)  (5.1)
with ¢, ¢" are independant of h and At and By = Min(8,8'), 8+ 8’ = 1.

PROOF.
‘We denote :

wh = uf — T u(t"), n¥ = T u(t*) — u(t*)

wh = p" —IGp(t"), 3 = I p(t") — p(t")
To simply establish an estimate for w¥, we can write the following :

k—1 k—1
(wh —whtv,) + ch(w‘f —wihv) — ar(AWF — AWET ) — o ch(Awf —Aw; T vy)

s=1 s=1

(5.2)

E

-1
+ Cga(Wlf, Vi) + 05b(vh,w§) = (u’“ — uk_',vh) — (Hu(t"’) — Hu(tk_l)wh) + cs(uf — u8*17vh)

1
s=1

—1 k—1 k—1
=Y e (Tu(t®) — Ma(t*~ 1), vy) — o ch(Au‘f —AwiT ) 4 ay Z co(ATTu(t*) — ATTu(t*~"), v1,)

s=1 s=1 s=1
+ cga(Tla(t*), vy) + cga(ul, vi) + csb(vi, p*) — csb(vp, Ip(t*)) — i (Auf — Au’;_] V)
+ oy (ATTu(t*) — ATTu(t*=1), v,)

‘We have :
k—1 k—1
(uf w1 va) — o (Auf — A= va) + (o]~ vi) —on D e (Aug - Aui vy
s=1 s=1

+ caa(uZ,Vh) + cBb(Vh,pk) =cg(f,vp) — 05C(u’f;17uﬁ,vh) (5.3)

Eq.(5.3) is inserted in (5.2) to obtain :

E

:CQ(f,Vh)—CQC‘(Uffl,uZ,Uh)—(Hu(tk)—Hu(tk_l),vh)— 3 cs(TTa(t®) —Tu(t*~ 1), vs)

s=1

—cga(TIa(t*), vi,)—cab(vy, TIp(t*))+ay (ATa(t*) —ATTu(t* 1), v;, )+, i: cs(ATTu(t%) —ATTu(t*~1), v;,)

s=1
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= —cg(—(f, Vh,)—i-a(Hu(tk),Vh)fb(vh,Hp(tk))—cﬂé’(u’,j_l,uf;,vh)—(Hu(tk)—Hu(tk’l),Vh)
— _lcs(Hu(tS)—Hu(ts_l),Vh)+a1(AHu(tk)—AHu(tk_l),vh)+a1 kz_:lcS(AHu(tS)—AHu(ts_'),vh)
1 s=1

E

S

Using this equality :

a(TTa(t®), v,) + b(vi, Op(tF) — (£, vi) = =C(u(t*),u(t*), v;) — (Df(u(tk) —ajAu(th)), vy)

= c(C(u(t*), u(t*), va)+ (D7 (u(t*)—aiAu(t)), va)) —esCuf " uf, vp)— (Tu(*) ~Tu(t* ), v,)
—1 k—1
= eo(Mu(t*)—Tu(t*~"), vi)+o (ATu(t*) = ATlu(t* 1), vi)+ar > co(ATTu(t*) —ATu(t*~ ), v,)

s=1 s=1

We have :

—(Mu(t*) — Tu(t*=1), v;) = —(Ma(tF) —u(t*), vp,) + (M) —a@* =1, vi) + (@t 1) —u(t®), vi)
—(Mu(t*) = Tu(t*="), v4) = —(nf — =", vi) + (@) —u(t*), va)

By replacing in (5.2) one obtains :

k-1 k-1
(wh —wh=1v,) + ch(wf —wiml v — al(AWF — AWFT ) + oy ch(AW§ —Aws vy

s=1 s=1

cpa(Wr, Vi) + cab(vi, Wh) = ca(C(u(t), u(t®), vy) + (D} (u(t*) — a1Au(t")), v1,)) — csClup =" uf, vy)
—(F =0y ve) 4 () —a(tF), vy) - Y cs(TTu(t*) — Tu(t*~"), vy

s=1
k—1
+ o (ATTu(t") — ATTu (1), vi) + 1 Y co(ATTu(t*) — ATTu(t*~"), v)

s=1

We take v, = wh then : b(wF, wh) = 0.
Indeed :

b(W’f, W12€) = b(llﬁ, WIZC) - b(Hu(tk>v Wéc)
b(uf, wh) =0 since wh €V},
b(TTu(t*), w5) = b(u(t*), w5) =0

Integrating by parts and multiplying by 2 one gets :
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2(wh —wi=! wh —0—2205 wi —wihwh) + 20, (Vwh — Vwi ! vw)
k—1

+2a; ZCS(VWf — VWL UWE) + 2cga(wh, wh) = 2¢5(C(u(th), u(t®), wh)
s=1

+2(D7 (u(t*) — crAu(t)), wh)) — 2¢5C (up ™" uil, wi) = 2(nF — i, vi)

k—1
+2(u(th1) —u(th), wh) — ZZ co(Tu(t®) — Mu(t*~1), wh) — 2a; (VITu(t*) — VITu(t*~1), vwk)
s=1
k—1
— a1 Y cs(VIu(t*) — VIu(t* "), Vw})
s=1
The following identities will be used :

2(u —v,u) = uf§ — [V[§ + [[u—vi{

20w —v,w) = [[u[§ — VI + W = v[§ — lw—ull§

WG — WG + IwE = Wi 5+ an (| wi [§ = [ wy ™" [+ | wi = wi ™t )

WS l5 = Wi G+ leswt = Wi TG — [leswt — Wi 7)
s=1

oy (Wi = Iwy T feaw Wi fewh - wie )

+ 2cga(wi, wh) = 2(D (u(t*) — arAu(th)), wr)) = 2(nf — i~ wh) + 2(u(t* ") — u(t*), wh)
k—1
—2) e (T —TMu(t*~ "), wi) — 20 (VITu(t*) — VITu(t*1), vwh)
s=1
k—1
—2q ch (VITu(¢*) VI_Iu(tsfl)7 lef) + 2cpep
s=1

with :
Cr = —C(uy =" ug, wi) 4+ C(u(t"), u(t*), wy)
Wil — Wi G+ wh = wi G+ (| wi [T — [wi™ [+ [ wi—wi™' 7))

k—1
3 (w15 = Wi G+ leswt = Wi IG — [leswt — Wi 7)
s=1

+aIZ|w TR W R oWl = Wi T = oWl — Wi ) A 2ueg | wh [

2[lni — 771'_1 lolwillo + 2(1Df (w(*) — crdu(t®)) ollwillo + 2cur | Tu(t*) — Mu(t*~") [1] wy |3
k—1 k—1

+2 e Mu(t*) = Tu(e ") [lol|willo + 21 ) e | Tu(t*) = Tu(t*~") |i| Wi |1 +2¢5C
s=1 s=1
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Other formulations of C}, :
Cr = C(u(th) —u®, u(t®), wh) + C(u* —u*~! u(t®), wh) + C(u* 1 u(t*) —u* wh) (5.4)
‘We have
Wi+t =u" —u(t*)

wh —wh! = (uf — ub~!) - (TTu(h) — Mu(F1))

Cx = —C(wi+ni,u(t*), wh)+C(wi —wy ™ u(t®), wh)+C (Mu(t") ("), u(t"), wi)
+ O u(t?) — uf, wh)
since C'(u*~!, wF, wk) = 0 then
C Lt wi) = C ! —u(t™ 1), nf, wi) + Cla(t* 1), o7, wh) (5.5)
By replacing in (5.4) one has
Cre == C(W} +nf,u(th), wh) + C(wi — wi™h u(t*), wi) + C(Iu(t") — Mu(t*~"), u(t), wy)
= Cwi™ ol wi) = Cu(E ), mf, wi)

Estimation of C),

()
C(Wi + a7, u(t?), wr) < e(IwWF + a7 llo) (| wi [1 (14 a2) + a2)
C(wi +nf,u(th), wr) < e([IwFllo + [[nfllo) (| Wi i (1+ @a2) + az)
Cwi +ntu(t®), w) < c([willo+27)(| wi 1 (14 a2) 4+ a2)
(i)
C(wi —wy~hu(t®), wr) <e(lwy —wi™Hlo)(| wi |1 (1+ a2) + az)
(ii1)
C(Tu(t*) — T ("), u(t"), wi) < o([Tu(t*) — (o) (| wi [1 (1 + a2) + a2)
C(Mu(t*) — ("), u(t*), wh) < ¢(C3 VAL (| Wh |1 (1 4 a2) + o)
(iv)
Cowy™ =L, wh) e wi™ ot~ 10 af 1 wi o 4az [ Ang [ (LWE 1+ | af 1)
Comy™" =t wh) < e wi ™" o+ [t~ 10t L W [ 4ao [ Ang [0 (| wE 1+ |t [1)
Cwy™ Lt wi) < e(| Wyt [ +R2) (7 + a2) | W 1 +azh?)
Ok, wE) = S(elu(t™1),nf,wh) — (=), wh o)) — S (e(u(e ), Anf, wh)

- c(u(tk_l)7 WIIC7A77{€) - c(u(tk_l)a A’?f 77{6) + C(u(tk_l)a 77{6’ Anf))

~ _ _ (8% _
Cu(t*h),nf, wi) = —c(u(t® 1),Wf,nf)—72(0(l1(tk D), Ang, wi)

- c(u(tk_l)7 wlfa AU{C) - c(u(tk_l)7 Anﬁ 77{6) + C(u(tk_l)v vaAUf))
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Clu(t* "), nf,wh) <c|wi i [Infllo + 2 (| wi |1 A9l

+c|wi HAnfllo+0 | Ant |1 g llo + ¢ It L [[AnY o)
The summation leads to :
Clut™ 1), nf, wi) < (B> + azh) | WY |1 +aa(h + h* + b))

Finally, one obtains the following :

Oy <c((1+ a2)|[[Whllo + b+ h* + h? + ha + (1 4 a2)||wh — wi=Hjo + (a2 + B2) | Wi
+ (14 2)C3 VAL | WY |1 +eanl W) — Wi lo + caz|[wi o + cazh® | wy™! s
+ can (B3 + h% 4+ h) + Cs 1 VAL(1 + o)

Estimation of :||7f — 1!
We have the following :

12 (w—Thu(e)) o < k(| 2

s + 12 an@y)

and

k—1

It — 771 g = / /t —u(t)))dt |* do

I =k < o [ qng (MTu() - u(0)

0 —nf o < C1pVALR,

where () , are chosen such that :

tk
_ 3’171
k k—1
- = —)dt
771 771 /t ( at )

m

Z(Cl k) X C(” ot ||L2 01,1 ) T || ”L’ ()TH‘(Q))) (5.6)
k=1

Estimation of :||TTu(¢*) — TTu(t*~!||o
Let us note that

tk‘
Tu(t*) — Mu(t*~! = O 1t a(t)dt = / m 280
ko1 Ot k— ot

p ou(t)
h ot

tk
IMu(e) - Tu( o < [ 0, 25 o

ou(t
() - Mo < VAT 24 )

and also that :

I 220 gy < g 28O 1 g
I 220 gy < 2122 sy 1 220 ) + 122
220y < 022 sy 122 )

_ p
() T o < evAE0 2 v+ 122 s, )

[TTu(tF) — Mu(t*'lo < Csx VAL,
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where (5 j; are chosen such that :

k=m
du ,
(G5, k) <cll4; ot ||L2 or,m Q) T || ||L2 0,T HI(Q))) (5.7
k=1

Estimation of :| [Tu(t*) — ITu(t*~') |,
we know that

th tk
Mu(t) — mu@") = [ 2 (ta(e))yar = / (2 ug))at
ko1 Ot w1 Ot
tk 8 tk 8
| Thu(#%) — Ta(#1) |, g/ 112 (u(t)) |s dt < \/Kt(/ 12 u(t) )2,
th—1 ot th—1 ot
Nevertheless :
ou ou Ou ou

‘Hath\‘nat *\1+|*|1

\ H* h<c (|| ||3 + || || )+ | |

\H |2\c(|| H3+|| || )

) _ ou Op
| Mu(t*) — Tu(t* ") [} < eVAH(|| &, ot I 22(1,, m3(0)) + ||§||L2(1k,ﬂl(g)))

| TTu(t*) — Ta(t* 1) |; < eVAtCyp,
where Cy , are chosen such that

m 6“
2(04 k) <4, ot ||L2 0,7, H3(Q +” ||L20TH1 )) (5.8)
k=1

We are now able to estimate w’f. From (5.2) and all the previous estimates, we obtain :
2 k=12 -1 2 E—1 |2
IWElG = w5+ wh = Wi 5+ ar (| wi 7 — [wi™" [+ [ wi—wi™' )

(w5 = Wi G+ leswt = Wi G — [leowh — Wi 7)
s=1

+Oélz‘w _‘ ]f5*1|%+‘cswl_wll<:s1‘2_‘Csw]1€_wlfs|%)

+2veg | wi T< 20t =0t lollwillo + 2] D7 (u(#*) — andu(*)) o] o
k—1
+2a1 | Tu(t*) —Thu(t* ") 1| wi |1 +2 ) e[ TTu(”) — Tu(e ") follwillo
s=1
k—1
+ 2 ch | Tu(t*) — TTu(t*~Y) |1 Wi |1 +2¢5Cy

s=1
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IWEIIG — w55+ lwh = wi G e (| Wi [ = [ Wi+ [ wh —wi™t [])
+Z TG = WY TG A lleswd = Wi TS — leswi — wyCIG)

s=1
+a12|wk SR Wi R A few! —wi T = eow! —wi |

+2veg | WE 3 < 20k VALR3 |WE o + 2A8 P (1 4 @) Co i [|WF o + 2con VALCy g, | WE |

- k—1
—|—ZCZcSvAth s|[W o + 2ca chfcus | wh |y +2¢5Cy
= s=1

We have the following inequations :

_ C .
2c(ar + 1)egllwy — wi™lo | Wi |1 < illwf —wi TG+ enes | wh T

2
QpCRC
—L | wi —wi T [} +anencs | wh [
€12
ca ko ook—1 <% 2 22
2callWi = Wi lo < = | Wi — Wi [} Fancch

cacp

CcC
2c(an + Degllwillo | wi |1 < 51'8 IWiII§ +e1es | wh [T + W[5 + e2caes | Wi

_ C _
2ccg(on + h*) [ wi™ [ wi |1 < CQZ;Z | Wi erocson | WE I

h4cﬂ k=112 k2
+c B | Wi [T +eocs | WY I

cs(h® 4+ h% 4+ h + hay)?
€8

2c5(h* + h* + h+ hay) | Wh |1 < +escs | Wi [

2
cganh _
L2t cranesh® [ Wi

cpVA 3k

205h2a2 | W]f_l ‘1 <

265037]@\/At(1 + OéQ) | W]f I <

+Oé28/3\/7to37k

€6

1
Z(Clykh3 + 01C3’k)\/BHWIfH() < ;\/E(CL]J; + 0103,]@)2 + 613@ | W’f |%

+esVAtes | Wi [

+ 04286VAtC/3 ‘ WllC |%

alAtl_B

2a1(C4,kAt% + ch’4_,kAt%)At% | w’f I < (Car + ch4,k)2 + ezaics | w’f |%

1
2M81 0 C (14 an)|[wilo < eadt! P05 (1 +041)+;At1_ﬁ(1+041)”wlf”3
4
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By replacing
— Cp

w15 — w113 + ( —j)l\wl - wi I3

k—1

+ > (IWE 115 = [IwE 71 IG + lleswd = Wi Y g — fleswi — wi™*|5)

s=1
2

(6%) OQCBC

TR - G- ) W - wi )
€12

+ o (| wh |7 —|W

+Oé1z |W —*
+Cg((€1 + €8+ €9 +€11) + \/At(€5 +€13) +O¢2(52 +€10+€12) + &30 + g2V ) ‘ Wi |2

1 1
T (=AU 4 ) + cp(— + =) IwhI3
Eq €1 &2

I
cg(h® 4+ h? 4+ h 4 hay)?
ﬁ( 2) —‘1-0[20%012,
€8

= 1w Leawi = Wi T = [ eawi = wi ™" ) + 2ves | Wi 7 <

h4
+ 05(% + = + e70nh?) | wf

/ h2
C (C] kh + 0103 k) + %Atliﬂcik €692 +
€3 &7

cgVALC? azrcgVALC?
pYT sk 20 2 e PO (1 an)
6

+azeg(h® + B2 + 1) + cp(1 + az)\/ﬂcwc +

Taking values for epsilons :
14
fl=& =8 =en =g

v
522310:512:8

v

€5 =¢&13 =~

4

v

&3 =& = 5

3

67:1

54:21/
>0,At <1, By = Min(B,1 - B)

We take ( —@) >0, (a; — % —
By replacing each value of epsilon and minoration of positive terms leads to :

D

6a2cgc )

24+ o1 + ) : _
(1 - et BFOEOD,)gip it (| wh |l

k—1
D UWEo 16 = W55 + lleswh — Wi MG — [leswi — Wi |3)
s=1
TR = fewi =W )

=W+ [ eawh —w

+CYIZ|W -
VAL

200 + n* A
Frea(l = =220 [wh < ea(S2 4+ © - aal?) | Wi 4 (Gl e G’
h? h2 h+h
+ %Atl’ﬁcik + Cgazhz + (" + : + haa)” + azcéc?) + a20g(h3 + h? 4 h)
csVALC? eV ALC?
sk | 2 | =93, (1 + o)
3 :

+ Cﬁ(l + OQ)\/A*tC&k +

The summation on k=2 to m and minorations of positive terms leads to
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2+O¢1 +042 m m
(1 et 2D d 4200 i i )

2 h? h*
+cg (y(l—a2+a1)—az——a2h2) |w’f %g e (m++azh2> |w% |%
v v v
m m

2
+ <CAtﬁO(—’_a]—i_a2> E ||W] HO +C O[lAtl B E C4k + \/ hﬁ E C]Zk + \/ C] E Of;k
k=1

m

+ ((h* + B2 + h)? + h2a3 ZM + (14 a)APVALY " C3 ) + (ah? + A + ap(h? + h* + h)
k=1

m

+ VAL(1 + ) ZM +(1+ oAty "3,

k=1

Using the majoration on ), C7, leads to
2
(1 car 2ESLEDY k4200w i )

200 + ay a, h? 2 a R 2 12
e T e S N & § <es (2+% 1 aonm
+cp (u( ) ) | wh 1< cs | + > + ap [ wi |3

2
+ (cAtBU(JrO”Jraz) Z [WE (13 4 (a1 At =P + VALh® + VAL + (b3 + h? + h)? + h2a3)

+(1+a2)At"f+(a2h2+azAtﬂ+az(h3+h2+h)+f( + @) + (14 ar)At'=?)

Let us introduce these inequations :

_ Bo (2 tar+ OQ) 1
1 — cAt 2 > ok
2 h?
n—v(lfﬂ)—%f—fazh2> 0,
3 v
and also
805
1- == 0
(1-°%) >0,
2
a;  baacpe,
-2 0
(a1 =3 )
These conditions holds if :
. v v v(2an — ag)
AP < M
= <8F(2 —B) 24 a1+ oy 120,202 — ﬁ)) ’

h< \/(1 — 2o )? — o

Qo V

o> 4&2
N\ 2 +4(1 — 2y’

1

1 (2+011—|-042 —
i ||o+m2\w1 F<clw i+ (car w13
k=2

c ((h3 AP + AP+ an (B3 + AP + VAL + APVAL) + AVAL+ (a2)*h? + a]Atﬁ’)
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Based with lemma of Gronwall discreet, the following inequation is resulted :
1 . m
SIWPIR+ > [ wh <
k=2
c (| wi [} +(B3 + AP + AP+ an (B + AP + VAL + APVAL) + EVAL + o3h? + alAtﬁ/)

6 Numerical results

The study of the flow of this new fluid model involves the integration of various physical and
fluid variables that influence the fluid velocity and pressure. The following numerical solutions
are obtained by implementing the procedure described in this article, introduced in the open
source finite element software FreeFEM++ with the use of the P2-P3 libraries. To show the
effectiveness of the proposed numerical scheme, the comparison of the numerically obtained
results with the available exact ones is first done. Then, the famous lid-driven cavity of polymer
aqueous solutions is studied. The obtained results are analyzed graphically.

6.1 Exact solution

Fore the sake of comparison with an analytically exact solution of the main problem (1.1) we
introduce the following components of the velocity

wi(z,y,t) = —2*(x — 1)%y(y — 1)(2y — 1)t,

up(x,y,t) = v*(y — 1)?ax(z — 1)(2z — 1)t,
p(z,y,t) = (z —0.5)(y — 0.5).

Figure 1. Uniform regular triangulation of the square domaine with h=1/32

These velocities satisfy the two conditions of (1.1). By substituting into equation (1.1), the
following right-hand sides f=(f;, f») are obtained and will be used in the numerical scheme.
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-0.00141205
-0.0012607

-0.00120036
-0.00125301
-0.00120666
-0.00115531

-0.000049024
-0.000803577
-0.00034723

-0.000795682
-0, 000744525
-0, 000603 188
-0.000641941
-0.000580453
-0.000539 146
-0.000437795
-0.000436453
-0.000385104
-0.000333757
-0.00025241

W-0.000231063
W-0.000170715
W-0.000123368
M- 770200005
M- 256756205
Wz 56736005

Figure 2. Steamlines of the exact solution for v = 100, At = 2—15, h = 2%, B8 =05a =a =
0.01

TsoValue
W-0.00107623
W -0.0010240
W-0.00187357

W-0.0014116
W -0.00136026
W -0.00120802
W -0.00125%
W -0.00120637
W-0.00115404

-0.00094961%
-0.000803385
-0.000840957
-0.000793626
-0.0007 44206
-0.000603065
-0.000841624
-0.000580303
-0.000539973
-0.000457642
-0.000436311
-0.00035498

-0.00033365

-0.000253319
-0.000230968
-0.000179655
-0.000129327
-7.600610-05
-2 56654005
2 56654 -05

|

Figure 3. Steamlines of the numerical solution for v = 100, At = 2—15, h=4,8=05uq =
ap; = 0.01

Fig.1 represents the regular and uniform mesh used to solve the problem in a square domain,
respecting the conditions taken into account to preserve stability and convergence results. In
Figure 9, we present the resulting errors of velocity by comparing the exact solution to the
approximated ones using the L? norm for different values of spatial and temporal discretizations
h and At with v = 100, oy = 0.02, ap, = 0.01, 8 = 0.5. It can be clearly observed from Fig.9 that
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Tso¥alue
W-0.0131570
W001315Te
W0 03847
W0 0557605

0.197365
0223684
0.25
0.276316
0.302657
0.328047
0.35526%
0.381570
0.407805
0424211
0.460576
0450847
0513158
0530474
0565760
0502105
0618421
0644757
0671053
0657365
0723654
075
0776316
0.802652
0.828947
0.255262
0.221570
0007805
0024211
0060526
0.026847
101316

Figure 4. Pressure contours of the exact solution for v = 100, At = 2% h = 2—15 B8 =0.50 =
ar = 0.01

PRty
Moo1m6e
Mo .0zzz930
Mo 064704

0196205

W0

Figure 5. Pressure contours of the numerical solution for v = 100, At = 2—15, h = 2%, 8 =

0.5,a1 = (0 = 0.01

the scheme converges perfectly to the exact solution when the time step At is decreased. Figures
4,5, 2, 3, show, respectively, the streamlines and pressure contours obtained from the exact and
numerical solutions of the problem for fixed values of a and h. It is clearly demonstrated that
the streamlines are almost the same and the numerical scheme converges to the exact solution
presented below.

To validate the stability criterion, Figure 16 represents the error variation of the velocity over
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0.00020 T T
'dt=0.1' ——
0.00018
0.00016 -
0.00014 ~
0.00012 -

0.00010

Error in L2 norm

0.00008 ~

0.00006 - M

0.00004 A+

0.00002 !
0 0.5 1 1.5 2 2.5 3 3.5

time step

Figure 6. *
(a)
0.00004 ﬁ/+,4,k+#4—k+4—F4—F4—F4—F4——Q—F—Fﬂ&F=J6. T
/
/
/
f

0.00004 -

0.00003 -

0.00003

Error in L2 norm

0.00002 |

0.05 0.1 0.15 0.2 0.25 0.3 0.35
time step

0.00002 I I I I I I
0

Figure 7. *
(b)

4x107 ‘ T
dt=0.001, £——

3.5x10
3x10°
2.5x10
2x10°

1.5x10°

Error in L2 norm

1x1075

5x10°6 1

0 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

time step

Figure 8. *
(©)

Figure 9. Error L? for (a) At = 0.1, (b) At = 0.01, (c)At = 0.001, with v = 100, a; =
0.02, a, =0.01,6=05,h = 2%
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0.0000055 . . . . . . . .
'Beta=0,2' -+
0.0000050 |- '‘Beta=0,4'] X
'Beta=0,6'
0.0000045 'Beta=0.8' -
0.0000040 - .
E 0.0000035 | -
=
™ 0.0000030 T
= +
= 0.0000025 - + & X s
2 % X
I 0.0000020 | X X .
;k
0.0000015 |- x * .
% *
0.0000010 4 = = -

0‘0000005 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
time step

Figure 10. Errors at variatious 3 with respect to time iterations for v = 100, At = 2% h = 5%
a1 =0.02, ap =0.01

0.0006 T T T T T T T T T
‘alphal=10" +
‘alpha1=0.01", >
0.0005 + 'alphral=ﬁ.1' -
+ + 'alphal=1"
_|_
+
+
£ 0.0004 + + -
5 +
< +
™~
- 0.0003 + -
=
§ +
i 0.0002 -
0.0001 -
0 £ | e | I R | o Sl iy 1 e | L | S e
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
time step
Figure 11. Errors at variatious o with respect to time iterations for v = 100, At = 2%, h = 21—5,

B8=05,00 =02

time for different values of the fractional order 3. To show non-stability, Figure 20represents the
error variation with respect to time for fixed values of viscosity and time step and for various
values of the fractional order 3 that do not follow the stability condition. When v — oo and
a1 >> ap, we obtain that the scheme is unconditionally stable for 0 < At < oo and for all h, see
Figure 12 as well as for a; ~ 0. The error is minimal for 5 = 0.4 £ ¢ see Fig. 10, and in Figure
11, allow us tu deduce that when «; — 0 the error tends to zero.



A NEW MODEL OF FLUID FLOW 375

0.00014 T T T

0.00012

0.0001

8x107

6x103

Error in L2 norm

4x107

2x107 | g

0] 0.05 0.1 0.15 0.2 0.25 03 0.35

time step

Figure 12. Errors at variatious viscosity with respect to time iterations for At = 0.01, h = 2%
B8=0.5,a1 =0.02, ap = 0.01
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Figure 23. *
(b)

Figure 24. Streamlines (a) and pressure contour (b) of the numerical solution for the lid-driven cavity
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Figure 16. Error L? for a.3 = 0.2,
b.s = 0.5, ¢.8 = 0.8, with v = 0.01,
At =0.001, h = 715, a; =0.02, ap =
0.01

Figure 25. *
(a) (b)

Figure 28. (P)Streamlines for, (a) 8 = 0.1, (b) 8 = 0.5, (c)8 = 0.9, with v = 0.01, a; = 1, ap = 0.01, At = 0.001,

_ 1
h= 3

Figure 26. *

(c)

Figure 27. *

30
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Figure 20. Error L? for a.3 = 0.2,
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Figure 29. *
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Figure 32.
At =0.001, h = 2%

Figure 30. *
(b) (c)

Figure 31. *

(FKYV) Streamlines for, (a) 8 = 0.1, (b) 8 = 0.5, (¢)8 = 0.9, with v = 0.01, a; = 0.01, o = O,
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Figure 21. Non-regular triangulation of the complex two-d

Figure 34. * Figure 35. *

Figure 33. *
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Figure 36. (FAQS)Streamlines for, (a) 8 = 0.1, (b) 8 = 0.5, (¢)8 = 0.9, with v = 0.01, a; = ap = 0.01, At = 0.001,

g
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Figure 37. *

(c)
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(

(a)
Figure 40. (FNSE) Streamlines for, (a) 8 = 0.1, (b) 8

0.5,
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Figure 41. * Figure 42. * Figure 43. *
(@) (b) (c)

Figure 44. (o) < ) Streamlines for, (a) 8 = 0.1, (b) 8 = 0.5, (¢)8 = 0.9, with v = 0.01, o = 0.01, a = 1,
At =0.001,h = %

6.2 Application : Lid-driven cavity

As an application to a real problem, we consider the well-known lid-driven cavity problem.
This example allows to test the effectiveness of the numerical scheme elaborated in this paper.
The scheme has been applied with the following conditions: At = 0.001 as time step and h =
0.0707 as the maximum triangle size of the domain mesh. Figure 24 present streamlines and
pressure contours numerically obtained. It is clearly shown that the flow behavior is different
from one fluid to another and it is observed that the flow creates parallel rolls. The flow is
similar for, Fractional Aqueuse Solution of Polymers (FASP), Fractional Kelvin Voigt (FKV)
and Fractional Navier-Stokes Equations (FNSE), but they differ in the position of the center of
the rolls. Additionally, higher pressure values occur near the end of the cavity and low values
appear at the entrance of the cavity. It is clearly observed from these figures that the fractional
parameter /3 has a strong effect on the dynamic fluid flow. An increase of the value of 3 slows
down the flow in which the center of the fluid circulation tends to the center of the domain slowly,
see Figs. 32,40,28,36. Instability is observed when the condition (o > %) is not satisfied, see
Fig.44.

7 Conclusion

A mathematical model has been elaborated to study the dynamic behavior of new model of fluid
flow. A semi-implicit numerical scheme with fractional derivative order is introduced and ana-
lyzed. The effects of various geometric and fluid parameters on the problem are studied. The
stability and convergence results of the presented scheme were demonstrated. A finite element
numerical code has been elaborated based on the open source software FreeFEM-++. An appli-
cation to the case of a lid-driven cavity is made to study the influence of the fractional parameter
3 on the flow. The obtained main results are summarized as follows : — A new form c of the
nonlinear term is given. This new form enabled us to obtain the coercivity and to be able to
prove the existence and uniqueness in the discrete case, — to satisfy the convergence, we need to
reserve the following conditions :

At? < miin( 8F<2”7 52 T 122522%}(2%)@)’ (7.1)
and
h< \/(1 e (1.2)
v
y>\/ag+4(fcf2a2;a])7 (1.3)
> (7.4)

2
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We can clearly see that in condition (7.4) of the figure (44), there is no convergence.
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