
Palestine Journal of Mathematics

Vol 13(4)(2024) , 382–395 © Palestine Polytechnic University-PPU 2024

SOLVABILITY FOR SOLUTION FOR DIFFUSION
FRACTIONAL NONLINEAR PARABOLIC DIRICHLET

PROBLEMS

A.Bourabta, T.E. Oussaeif and I.Rezzoug

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 35R11;35A01 Secondary 35A02.

Keywords and phrases: Fractional Partial differential equation, existence , uniqueness, Energy-Inequality.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that

improved the quality of our paper.

Praveen Agarwal was very thankful to the NBHM (project 02011/12/ 2020NBHM(R.P)/R&D II/7867) for their necessary

support and facility.

Abstract Through our investigation into the initial boundary value diffusion fractionnaire
spatio-temporal (STFDE) parabolic problem class, we establish that a unique weak solution ex-
ists within a functional weighted Sobolev space, By utilizing a priori estimate and an iterative
process, we demonstrate the validity of our results, which are based on previous findings regard-
ing the linear problem.

1 Introduction

In recent times, researchers have shown significant interest in fractional differential equations
(FDEs) and their diverse applications. These equations involve extending the conventional in-
teger order derivative to an arbitrary order, specifying relationships in time and space through
a power law memory kernel of nonlocal nature. This generalization proves to be a potent tool
for characterizing the memory aspects of various substances and the inheritance properties. The
exploration of FDEs spans multiple domains, giving rise to a burgeoning field of scientific re-
search. This encompasses new theoretical analyses and applications in a wide array of areas such
as viscoelasticity, electrochemistry, signal processing, electromagnetics, porous media, electrical
networks, electromagnetic theory, probability, signal and image processing, as well as numerical
methods for fractional order dynamical systems. The applications of FDEs extend to diverse
physical processes, reflecting their versatility and significance in contemporary scientific inves-
tigations.

The past few years have seen a lot of progress in the study of fractional differential equa-
tions.This development can be attributed to the numerous recent papers and monographs that
have explored this field. More information can be found in the Kilbas monographs [8], and
other works in the theory of fractional differential equations(see e.g. [9], [10],[11] ,[12],[13],
[18],[25, 26],[27],[28],[32],[33],). The general references in Baleanu et al.[34],Additionally, the
included references in those works have also been influential in this area of research.Nonetheless,
there are various phenomena that can be more accurately described using the conditions of
Dirichlet .

The use of conditions of Dirichlet type has proven effective in addressing numerous complex
issues, including those encountered in porous media, electromagnetic, and environmental sci-
ence. The application of classical theories and methods to the examine the fractional paroles and
hyperbolic problems is a difficult domain, resulting in a few publications in this field. There-
fore, the current work aims to the demonstration of the existence and unique solvability of the
solutions to Dirichlet fractional problems, this area that has not received much.
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2 Preliminaries

Let the interval ∆ = [0;T ] be a bounded and closed . For any 0 < α < 1 the Caputo and
Riemann Liouville derivative are, defined in the following manner :

To define the left and right Caputo fractional derivatives of order α we have the following
notation :

CDα
t µ(x, t) =

1
Γ(1 − α)

t∫
0

∂µ(x, s)

∂s

1
(t− s)α

ds (2.1)

and

C
t D

αµ(x, t) =
−1

Γ(1 − α)

T∫
t

∂µ(x, s)

∂s

1
(s− t)α

ds (2.2)

The left and right fractional derivatives of Riemann-Liouville of order α are given in the
following form :

RDα
t µ(x, t) =

1
Γ(1 − α)

∂

∂t

t∫
0

µ(x, s)

(t− s)α
ds (2.3)

and

R
t D

αµ(x, t) =
−1

Γ(1 − α)

∂

∂t

T∫
t

µ(x, s)

(s− t)α
ds (2.4)

According to several authors, Caputo version of the equation is considered more natu-
ral since it enables simpler handling inhomogeneous initial conditions.Then the two definitions
(2.1) and (2.3) are linked by the following relationship is possible to check this by performing a
simple calculation :

R
a D

α
t µ(x, t) =

C
a Dα

t µ(x, t) +
µ(x, 0)

Γ(1 − α)tα
(2.5)

2.1 Definition 1 :[41]

For any real θ > 0 and finite interval Ω = [a, b] of the real axis R,We establish the definition of
the semi-norm as follows :

|µ|2lHθ(Ω) =
∥∥RDθ

tµ
∥∥2
L2(Ω)

and norm :

∥µ∥2
lHθ(Ω) = ∥µ∥2

L2(Ω) + |µ|2lHθ(Ω) (2.6)

After that, we define the space: lHθ(Ω) the closure of C∞
0 (Ω) regarding to the next norm,

we define ∥.∥lHθ(Ω) .

2.2 Definition 2 [41]:

For any real θ > 0 and finite interval Ω = [a, b] of the real axis R ,we define the semi-norm :

|µ|2rHθ(Ω) =
∥∥R
t D

θµ
∥∥2
L2(Ω)

and norm :

∥µ∥2
rHθ(Ω) = ∥µ∥2

L2(Ω) + |µ|2rHθ(Ω) (2.7)

we then define lHθ(Ω) as the closure of C∞
0 (Ω) with respect to the norm ∥.∥lHθ(Ω) .
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2.3 Definition 3 :

For any real θ > 0 and finite interval Ω = [a, b] of the real axis R,we define the semi-norm :

|µ|2cHθ(Ω) =

∣∣∣∣∣(RDθ
tµ,

R
t Dθµ)L2(Ω)

cos (θπ)

∣∣∣∣∣
and norm:

∥µ∥2
cHθ(Ω) = ∥µ∥2

L2(Ω) + |µ|2cHθ(Ω) (2.8)

2.4 Lemma 1 :[36, 41]

For any real θ ∈ R+, if u ∈ lHθ(Ω) and v ∈ C∞
0 (Ω) ,then :

(RDθ
tµ (t) , ξ (t))L2(Ω) = (µ(t),Rt Dθξ(t))L2(Ω)

2.5 Lemma 2 :[36, 41]

for 0 < θ < 2 , θ ̸= 1 and u ∈ H
θ
2

0 (Ω) ,then :

RDθ
t ξ (t) =

R D
θ
2
t ξ

RD
θ
2
t ξ (t)

2.6 Lemma 3 :[36, 41]

For any real θ ∈ R+and θ ̸= n + 1
2 , the semi norms :|.|lHθ(Ω) ,|.|rHθ(Ω) and |.|cHθ(Ω) are

equivalent :
|.|lHθ(Ω)

∼= |.|rHθ(Ω)
∼= |.|cHθ(Ω)

2.7 Lemma 4 :[36, 41]

For any real θ > 0 the space RHθ
0 (Ω) With regards to the norm (1,7) is complete.

2.8 Definition 4 :

Let us indicate L2(0, T, L2(0, 1)) = L2 (Q) The space consisting of functions that are square-
integrable in the Bochner sense, with the scalar product :

(µ, ξ)L2(0,T,L2(0,1)) =

∫ T

0
((µ, .), (ξ, .))L2(0,1) dt (2.9)

3 Determining the solvability of fractional diffusion Dirichlet problems

3.1 Presenting of the problem

Let T ≥ 0, Σ ⊂ R and

Q = Σ × I with Σ = (−1; 1) and I = (0;T )

We consider the nonlinear fractional problem
RDα

t u(x, t)− p1.
RDβ

xu(x, t)− p2.
R
xD

βu(x, t) + a(x, t)u(x, t) = f(x, t, u,R Dβ
xu),∀(x, t) ∈ Q

u(x, 0) = 0 ∀x ∈ (−1, 1),
u(−1, t) = u(1, t) = 0 ∀t ∈ (0, T ).

(P1)

where p1, p2 let there be two constants that satisfy:
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p1 + p2 = 1 and 0 < p1, p2 < 1

where the function a(x, t)

a0 < a(x, t) < a1; a0, a1 ∈ R+
∗ and ∀(x, t) ∈ Q

4 Our study of the associated linear problem

In this part,We establish the existence and uniqueness of a strong solution to the linear problem
by means of an a priori estimate and the density of the set of values produced by the operator
generated by the problem.


RDα

t u(x, t)− p1.
RDβ

xu(x, t)− p2.
R
xD

βu(x, t) + a(x, t)u(x, t) = f(x, t),∀(x, t) ∈ Q

u(x, 0) = 0 ∀x ∈ (−1, 1),
u(−1, t) = u(1, t) = 0 ∀t ∈ (0, T ).

(P1)
Whose diffusion problem is represented as follows

£u =R Dα
t u(x, t)− pR1 D

β
xu(x, t)− p2.

R
xD

βu(x, t) + a(x, t)u(x, t) = f(x, t) (4.1)

with the initial condition

lu = u(x, 0) = 0 ∀x ∈ [−1, 1] (4.2)

the Dirichlet boundary conditions

u(−1, t) = u(1, t) = 0 ∀t ∈ [0, T ] (4.3)

where f(x, t)The given functions, with α and β satisfy the following assumptions:
0 ≤ α ≤ 1, 0 ≤ β < 1, (x, t) ∈ Q̄.

5 A priori estimate

The operator L acts from E to F defined as follows. The Banach space E consists of all functions
u(x, t) with the finite norm

∥u∥2
E =

∥∥∥RD α
2
t u

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ ∥u∥2
L2(Q) . (5.1)

The Hilbert space F consists of the vector valued functions F = f with the norm

∥ξ∥2
F = ∥f∥2

L2(Q) (5.2)

5.1 A priori bound of linear problem

Theorem 5.1. If the assumptions A1 are satisfied then for any function u ∈ D(L), there exists a
positive constant c independent of u such that∥∥∥RD α

2
t u

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ ∥u∥2
L2(Q) ≤ k

(
∥f∥2

L2(Q)

)
, (5.3)

and D(L) is the domain of definition of the operator L defined by

D(L) = {u ∈ L2(Q) / RD
α
2
t u,R D

β
2
x u ∈ L2(Q)},

satisfying conditions (4.3).
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Proof. Taking the scalar product in L2(Q) of Eq. (4.1) and the operator

Mu = u,

where Qτ = Σ × (0, T ), we have

(£u,Mu)L2(Qτ ) =
(
RDα

t u, u
)
L2Qτ−p1

(
RDα

xu, u
)
L2Qτ−p2

(
R
xD

αu, u
)
L2Qτ+(a, u)L2(Qτ ) =

(
f̃ , u

)
L2(Qτ )

,

(5.4)
Successive integration by parts can be applied to the integrals on the right-hand side of the equa-
tion (5.4), yields

(
RDα

xu, u
)
L2(Qτ )

=
(
RD

α
2
x u,Rx D

α
2 u

)
L2(Q)

= cos
(απ

2

)
|u|2

CH
β
2 (Q)

= cos
(απ

2

)∥∥∥RD α
2
x u

∥∥∥2

L2(Q)
, (5.5)

and

−p1
(
RDβ

xu, u
)
L2(Qτ )

=

(
RD

β
2
x u,Rx D

β
2 u

)
L2(Q)

= −p1 cos
(
βπ

2

)
|u|2

CH
β
2 (Q)

= −p1 cos
(
βπ

2

)∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

, (5.6)

−p2
(
R
xD

βu, u
)
L2(Qτ )

=

(
R
xD

β
2 u,R D

β
2
x u

)
L2(Q)

= −p2 cos
(
βπ

2

)
|u|2

CH
β
2 (Q)

= −p2 cos
(
βπ

2

)∥∥∥RxD β
2 u

∥∥∥2

L2(Q)

= −p2 cos
(
βπ

2

)∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

(5.7)

Substituting (5.5), (5.6)and (5.7) into (5.4),

cos
(απ

2

)∥∥∥RD α
2
t u

∥∥∥2

L2(Q)
− (p1 + p2) cos

(
βπ

2

)∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ (a, u)L2(Qτ ) ≤
(
f̃ , u

)
, (5.8)

estimate the last term on the right-hand side of (5.8) by applying Cauchy inequality with ε,

(|ab| ≤ a2

2ε
+

εb2

2
), then we get

cos
(απ

2

)∥∥∥RD α
2
t u

∥∥∥2

L2(Q)
− (p1 + p2) cos

(
βπ

2

)∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ a0 ∥u∥2
L2(Q)

≤ 1
2ε

∥f∥2
L2(Q) +

ε

2
∥u∥2

L2(Q) , (5.9)
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Then the estimate (5.9) becomes∥∥∥RD α
2
t u

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ ∥u∥2
L2(Q)

≤ 1

2εmin{cos
(
απ
2

)
,−(p1 + p2) cos

(
βπ
2

)
,
(
a0 − ε

2

)
}
∥f∥2

L2(Q) ,

So, finally we get ∥∥∥RD α
2
t u

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ ∥u∥2
L2(Q)

≤ k ∥f∥2
L2(Q) ,

Where
k =

1

2εmin{cos
(
απ
2

)
,−(p1 + p2) cos

(
βπ
2

)
,
(
a0 − ε

2

)
}

So, we have
∥u∥E ≤ k ∥Lu∥F (5.10)

Let R(L) be the range of the operator L. However, given the lack of information pertaining to
R(L), except that R(L) ⊂ F , It is essential to expand L, so that estimate (5.10) The statement is
valid for the extension, and its range encompasses the entire space F . We first state the following
proposition.

Proposition 5.2. The operator L : E −→ F has a closure

Proof. let (un)n∈N ⊂ D (L) a sequence where :

un −→ 0 in E

and
Lun −→

(
f̃ ; 0

)
in F (5.11)

we must proof that
f ≡ 0 .

The convergence of un to 0 in E drives :

un −→ 0 in D′ (Q) . (5.12)

Based on the continuity of the derivative of D′ (Q) in D′ (Q) . The relation (5.12) involved

un −→ 0 in D′ (Q) , (5.13)

Moreover, The convergence of un to f in L2 (Q) give

un −→ f in D′ (Q) (5.14)

As we have the the uniqueness of the limit in D′ (Q) , we conclude from (5.13) and (5.14) that

f = 0.

Then, we get L the operator is closable, with the domain of definition D(L).

Definition 5.3. A solution of the operator equation

L̄u = F

A solution is deemed strong for problems (4.1)− (4.2).The a priori estimate (4.3) the solutions
are capable of being extended to strong solutions, i.e., we have the estimate∥∥∥RD α

2
t u

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ ∥u∥2
L2(Q)

≤ k ∥f∥2
L2(Q) , (5.15)
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We deduce from the estimate (5.15) :

Corollary 5.4. The range R(L̄) of the operator L̄ is closed in F and the operator is equal to its
closure R(L) of R(L), that is R(L̄) = R(L).

Proof. Let ϑ ∈ R(L), so there is a cauchy sequence (ϑn)n∈Nin F Consisting of the elements
within the set R(L) such as

lim
n−→+∞

ϑn = ϑ.

This leads to the creation of a corresponding sequence un ∈ D(L) such as

ϑn = Lun.

The estimate 5.15 we get

∥up − uq∥E ≤ C ∥Lup − Luq∥F → 0, (5.16)

Where p, q As the value approaches infinity, we can conclude that (un)n∈Nis a cauchy sequence
in E, so like E is a Banach space, it exists u ∈ E such as

lim
n−→+∞

un = u in E.

According to the definition of L̄ ( lim
n−→+∞

un = u in E ; If lim
n−→+∞

Lun = lim
n−→+∞

ϑn = ϑ, then

lim
n−→+∞

L̄un = ϑ as like L̄ and is closed, so L̄u = ϑ), the function u check :

v ∈ D
(
L̄
)
, L̄v = ϑ.

Then ϑ ∈ R(L̄), so
R(L) ⊂ R(L̄)

Therefore, we can infer that R(L̄)The operator is a closed set due to being Banach ( any complete
subspace of a metric space not necessarily complete is closed). It remains to show the reverse
inclusion. Either ϑ ∈ R(L̄) then it exists a cauchy sequence (ϑn)n∈Nin F constituted of the
elements of the set R(L̄) such that

lim
n−→+∞

ϑn = ϑ

or ϑ ∈ R(L̄) , because R(L̄) is a closed subset a completed F, So R(L̄) is complet. There is then
a corresponding sequence un ∈ D(L̄) such that

L̄un = ϑn.

We get from (5.13):
∥up − uq∥E ≤ C

∥∥L̄up − L̄uq

∥∥
F
→ 0, (5.17)

Where p, q as the value approaches infinity, we can conclude that (un)n∈Nis a cauchy sequence
in E, so like E is a Banach space, it exists u ∈ E such as

lim
n−→+∞

un = u in E.

Once more, a related sequence arises (Lun)n∈N ⊂ R(L) such as

L̄un = Lun on R (L) ,∀n ∈ N.

So
lim

n−→+∞
Lun = ϑ,

Consequently ϑ ∈ R (L), From this, we can deduce that :

R
(
L̄
)
⊂ R (L).
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5.2 Existence of solution

Theorem 5.5. Let the assumptions A1 be satisfied. Then for all F = (f, 0) ∈ F , there exists a
unique strong solution u = L̄−1 = L−1 of the problem (4.1)-(4.2).

Proof. We have

(Lu, λ)F =

∫
Q

lu.γdxdt (5.18)

Where
λ = (γ, 0) .

Si for γ ∈ L2 (Q) and and for all u ∈ D0(L) = {u, u ∈ D (L) : ℓu = 0} , we have∫
Q

lu.γdxdt = 0

By putting w = u, Applying the same estimation of the section 1, we obtain

cos
(απ

2

)∥∥∥RD α
2
t u

∥∥∥2

L2(Q)
− (p1 + p2) cos

(
βπ

2

)∥∥∥∥RD β
2
x u

∥∥∥∥2

L2(Q)

+ a0 ∥u∥2
L2(Q) = 0,

we get
∥u∥ ≤ 0 ⇒ u = 0 .

So, it’s give u = γ = 0.

Corollary 5.6. If for any function u ∈ D(L), we have the following estimate:

∥u∥E ≤ C ∥∥F ,

Then the solution of the problem (P1) if it exists, it is unique.

Proof. Let u1 and u2 two possible remedies to the problem (P1){
Lu1 =

Lu2 =
=⇒ Lu1 − Lu2 = 0,

and as L is linear we then obtain
L (u1 − u2) = 0,

according to (5.17) :
∥u1 − u2∥2

E ≤ c ∥0∥2
F = 0,

Which give
u1 = u2.

6 The solvability of the nonlinear problem through a weak solution

The focus of this section is to demonstrate the existence and uniqueness of the solution to the
nonlinear problem (Pr) :

RDα
t u(x, t)− p1.

RDβ
xu(x, t)− p2.

R
xD

βu(x, t) + a(x, t)u(x, t) = f(x, t, u,R Dβ
xu),∀(x, t) ∈ Q

u(x, 0) = 0 ∀x ∈ (−1, 1),
u(−1, t) = u(1, t) = 0 ∀t ∈ (0, T ).

(P2)
Putting

u = χ

The following nonlocal linear problem can be solved by using χ as a solution. :
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In addition, the following nonlocal and nonlinear problem is satisfied by the solution.

£χ =R Dα
t χ(x, t)−p1.

RDβ
xχ(x, t)−p2.

R
xD

βχ(x, t)+a(x, t)χ(x, t) = f(x, t, χ,R Dβ
xχ) (6.1)

χ(x, 0) = 0, ∀x ∈ (−1, 1) , (6.2)

χ(0, t) = χ (1, t) = 0 ∀t ∈ (0, T ) . (6.3)

Since f is Lipchitzian, there exists a positive constant k , that satisfies

∥ f
(
x, t, u1,

R Dβ
xu1

)
−f

(
x, t, u2,

R Dβ
xu2

)
∥L2(Q)≤ k

(
∥u1 − u2∥L2(Q) +

∥∥RDβ
xu1 −R Dβ

xu2
∥∥
L2(Q)

)
.

(6.4)
Forming a repeating sequence that begins with χ(0) = 0.
The sequence

(
χ(n)

)
n∈N the following definition characterizes: given the element χ(n−1),

then for n = 1, 2, 3, ..., our objective is to find a solution to the following problem.:
RDα

t χ
n − p1.

RDβ
xχ

n − p2.
R
xD

βχn + a(x, t)χn = f(x, t, χ(n−1),R Dα
xχ

(n−1))

χ(n) (x, 0) = 0
χ(n)(0, t) = χ(n)(1, t) = 0.

, (P3)

As established in the study of the linear problem prior to this one, fixing n to a constant value
leads to the problem (P5) admits a unique solution χ(n) (x, t).

By postulating
z(n) (x, t) = χ(n+1) (x, t)− χ(n) (x, t) ,

Therefore, a new problem must be tackled:
RDα

t z
n − p1.

RDβ
xz

n − p2.
R
xD

βzn + a(x, t)zn = ζ(n−1)(x, t)

z(n) (x.0) = 0
z(n) (0, t) = z(n)(1, t) = 0.

, (P4)

Or
ζ(n−1)(x, t) = f

(
x, t, χ(n),R Dα

xχ
(n−1)

)
− f

(
x, t, χ(n−1),R Dα

xχ
(n−1)

)
.

Multiply
RDα

t z
n − p1.

RDβ
xz

n − p2.
R
xD

βzn + a(x, t)zn = ζ(n−1)(x, t)

by z(n),and integrate it on Q we get :∫
Q

(RDα
t z

(n)z(n))dxdt− p1

∫
Q

(RDβ
xz

(n)z(n))dxdt− p2

∫
Q

(RxD
βz(n)z(n))dxdt+ a0

∫
Q

z(n)z(n)dxdt

⪯
∫
Q

ζ(n−1)z(n)dxdt.

By employing integration by parts and considering the initial and boundary conditions, a solution
can be obtained, which is given by :

cos(απ2 )
∥∥∥CD α

2
t z(n)

∥∥∥2

L2(Q)
− p1 cos

(
βπ
2

)∥∥∥∥RD β
2
x z(n)

∥∥∥∥2

L2(Q)

− p2 cos
(

βπ
2

)∥∥∥RxD β
2 z(n)

∥∥∥2

L2(Q)

+a0
∥∥z(n)∥∥2

L2(Q)
⪯

∫
Qτ

ζ(n−1)(x, t) · z(n) (x, t) dxdt.
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After applying the Cauchy Schwarz inequality to the second part of the equation, we obtain the
following result:∫

Q

ζ(n−1)(x, t) · z(n) (x, t) dxdt

⩽
1
2ε

∫
Qτ

| ζ(n−1)(x, t) |2 dxdt+
ε

2

∫
Qτ

(
z(n) (x, t)

)2
dxdt,

⩽
1
2ε

∫
Q

| f
(
x, t, χ(n),R Dβ

xχ
(n)

)
− f

(
x, t, χ(n−1),R Dβ

xχ
(n−1)

)
|2 dxdt+

ε

2

∫
Q

(
z(n) (x, t)

)2
dxdt

Like f Lipschtizienne, we find :

⩽
k2

2ε
(

∫
Q

(| χ(n) − χ(n−1) |)2dxdt+

∫
Q

(|R Dβ
xχ

(n) −R Dβ
xχ

(n−1) |)2dxdt) +
ε

2

∫
Q

(
z(n) (x, t)

)2
dxdt,

⩽
k2

2ε
(

∫
Q

(| z(n−1) |)2dxdt+

∫
Q

(|R Dβ
xz

(n−1) |)2dxdt) +
ε

2

∫
Q

(
z(n) (x, t)

)2
dxdt,

⩽
k2

ε
(

∫
Q

(| z(n−1) |)2dxdt+

∫
Q

(|R Dβ
xz

(n−1) |)2dxdt)) +
ε

2

∫
Qτ

(
z(n) (x, t)

)2
dxdt,

⩽
k2

ε

∥∥∥z(n−1)
∥∥∥2

L2(Q)
+

k2

ε
cos(

απ

2
)
∥∥∥CD α

2
x z(n−1)

∥∥∥2

L2(Q)
+

ε

2

∥∥∥z(n)∥∥∥2

L2(Q)

we get :

cos(
απ

2
)
∥∥∥CD α

2
t z(n)

∥∥∥2

L2(Q)
− (p1 + p2) cos

(
βπ

2

)∥∥∥∥RD β
2
x z(n)

∥∥∥∥2

L2(Q)

+ a0

∥∥∥z(n)∥∥∥2

L2(Q)

⩽
k2

ε

∥∥∥z(n−1)
∥∥∥2

L2(Q)
+

k2

ε
cos(

απ

2
)

∥∥∥∥RD β
2
x z(n−1)

∥∥∥∥2

L2(Q)

+
ε

2

∥∥∥z(n)∥∥∥2

L2(Q)
,

We integrate on t, we obtain :

cos(
απ

2
)
∥∥∥CD α

2
t z(n)

∥∥∥2

L2(Q)
− (p1 + p2) cos

(
βπ

2

)∥∥∥∥RD β
2
x z(n)

∥∥∥∥2

L2(Q)

+ (a0 −
ε

2
)
∥∥∥z(n)∥∥∥2

L2(Q)

⩽
k2

ε
(
∥∥∥z(n−1)

∥∥∥
L2

(Q)

+ cos(
βπ

2
)

∥∥∥∥RD β
2
x z(n−1)

∥∥∥∥2

L2(Q)

)

Then, we obtain

∥∥∥CD α
2
t z(n)

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x z(n)

∥∥∥∥2

L2(Q)

+
∥∥∥z(n)∥∥∥2

L2(Q)

⩽
k2 cos(βπ2 )

εmin{cos(απ2 ),−(p1 + p2) cos
(

βπ
2

)
, (a0 − ε

2 )}
(
∥∥∥z(n−1)

∥∥∥
L2

(Q)

+

∥∥∥∥RD β
2
x z(n−1)

∥∥∥∥2

L2(Q)

)

So, we obtain∥∥∥CD α
2
t z(n)

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x z(n)

∥∥∥∥2

L2(Q)

+
∥∥∥z(n)∥∥∥2

L2(Q)

⩽
k2 cos(βπ2 )

εmin{cos(απ2 ),−(p1 + p2) cos(βπ2 ), (a0 − ε
2 )
(
∥∥∥CD α

2
t z(n−1)

∥∥∥2

L2(Q)
+

∥∥∥∥RD β
2
x z(n−1)

∥∥∥∥2

L2(Q)

+
∥∥∥z(n−1)

∥∥∥2

L2(Q)
)
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(6.6)

Putting :

c = max

{
1,

k2 cos(βπ2 )

εmin{cos(απ2 ),−(p1 + p2) cos(βπ2 ), (a0 − ε
2 )

}
.

So, we get : ∥∥∥z(n)∥∥∥2

L2(Q)
⩽ c

∥∥∥z(n−1)
∥∥∥2

L2(Q)

As we have :
n−1∑
i=1

z(i) = χ(n)

Based on the convergence criterion of the series, we can conclude that the series S =
∞∑
n=1

z(n)

converges if |c| < 1, which implies :∣∣∣ k2 cos( βπ
2 )

ε min{cos(απ
2 ),−(p1+p2) cos( βπ

2 ),(a0− ε
2 )

∣∣∣ < 1

k <
√
εmin{cos(απ2 ),−(p1 + p2) cos(βπ2 ), (a0 − ε

2 ) < 1

then χ(n) converges on an element of V , we call χ. We will show that in L2(Q) :

lim
n−→∞

χ(n)(x, t) = χ(x, t)

is a solution to the problem (P4) showing that χ chacket :

A (χ, v) =

∫
Q

f(x, t, χ,R Dα
t χ) · v(x, t)dxdt ∀ v ∈ O.

Where
O =

{
v ∈ C1(Q), v(0.t) = v(1.t) = 0,∀t ∈ (0.T )

}
,

and

A(χn, v) = (RD
α
2
t χn(x, t),Rt D

α
2 v(x, t))L2(Q) − p1(

RD
β
é
x χn(x, t),Rx D

β
2 v(x, t))L2(Q)

− p2(
R
xD

β
2 χn(x, t),R D

β
2
x v(x, t))L2(Q) +

∫
Q

a(x, t)χn(x, t) · vx(x, t)dxdt

(6.7)

we have :

A
(
χ(n) − χ, v

)
=

(RD
α
é
t (χn − χ)(x, t),Rt D

α
2 v(x, t))L2(Q) − p1(

RD
β
é
x (χn − χ)(x, t),Rx D

β
2 v(x, t))L2(Q)

− p2(
R
xD

β
é (χn − χ)(x, t),R D

β
2
x v(x, t))L2(Q) +

∫
Q

a(x, t)(χn − χ)(x, t) · vx(x, t)

We apply the Cauchy Schwartz inequality, we find :

A(χ(n) − χ, v) ≤ ∥v∥V
∥∥∥(χ(n) − χ

)
t

∥∥∥
V
+ ∥v∥V

∥∥∥(χ(n) − χ
)
x

∥∥∥
V
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On the other hand, as
χ(n) −→ χ in V,

So

χ(n) −→ χ in L2 (Q) ,

χ
(n)
t −→ χt in L2 (Q) ,

χ(n)
x −→ χx in L2 (Q) ,

Let’s go to the limit when n −→ +χ, we get :limn−→+χ A(χ(n) − χ, v) = 0
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