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Abstract This paper focuses on the study of MS-Lipschitz p-summing operators, which were
initially defined by the authors in [1]. Our objective is to establish relationships between T and its
linearizations, namely T̂ and T̃ . Additionally, we extend our investigation by introducing a new
definition in the category of Lipschitz mappings defined on metric spaces, known as MS-Cohen
Lipschitz p-summing. We provide several results and characterizations for this new concept.

1 Introduction and preliminaries

The theory of p-summing operators has undergone several stages of development. It originated
in the 1950s with Grothendieck’s pioneering work [9], where he introduced the concept of 1-
summing operators. In 1967 [12], Pietsch made a significant contribution by defining p-summing
operators for all positive values of p. His most notable result in this theory is the Pietsch Fac-
torization Theorem, which provides an integral characterization. Since then, this theory has
witnessed substantial advancements. Researchers have expanded this theory in various direc-
tions, including the sublinear, multilinear, and more recently, the Lipschitz case. Let X be a
pointed metric space and E be a Banach space. We denote by Lip0(X,E) the Banach space of
all Lipschitz functions f : X −→ E which vanish at 0 under the Lipschitz norm given by

Lip (f) = sup
{
‖f (x)− f (y)‖

d (x, y)
: x, y ∈ X,x 6= y

}
.

If E = R, we simply denote by Lip0(X)
(
= X#

)
. We consider the evaluation functionals δx ∈

Lip0(X)∗ for x ∈ X such that δx (f) = f (x) for f ∈ Lip0(X). The Lipschitz-free space
F (X) is the closed space generated by these evaluation functionals. For the general theory of
free Banach spaces, see [7, 8, 11, 18, 19]. We have X# = F (X)

∗ holds isometrically via the
application

QX (f) (m) = m (f) , for every f ∈ X# and m ∈ F (X) .

Every Lipschitz mapping T : X → E induces a unique linear operator T̂ : F (X) −→ E such
that

T̂ ◦ δX = T,

where δX : X → F (X) is the canonical embedding so that δX (x) = δx for x ∈ X. In this case,
the identification

Lip0 (X,E) = B (F (X) , E) , (1.1)

holds isometrically. It is well-known that if a Lipschitz map T : X → E is p-summing, its
linearization T̂ is not necessarily p-summing. In [16], the author has introduced the concept of
strictly Lipschitz p-summing for which the relation between T and its linearization T̂ for the
concept of p-summing is well established. Now, let X and Y be two pointed metric spaces, we
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can associate to every Lipschitz operator T : X → Y another linear operator T̃ : F (X) −→
F (Y ) such that

T̃ ◦ δX = δY ◦ T.
Note that (see [8, p. 124]) it is not difficult to check that

T̃ ∗ = T #, (1.2)

where T # : Y # → X# is the linear map, celled Lipschitz adjoint, defined by T # (g) = g ◦ T. The
objective of this study is to examine the relationship between T and its linearization operators
T̃ and T # within various summability concepts. In a previous work [1], the authors introduced
the notion of M-strictly Lipschitz p-summing (MS-Lipschitz p-summing) operators defined on
pointed metric spaces and established a significant connection between T and its linearization
T̃ . This paper focuses on presenting novel findings concerning strictly Lipschitz p-summing and
MS-Lipschitz p-summing operators. We further extend this idea by introducing a new definition,
termed MS-Cohen Lipschitz p-summing, within the category of Lipschitz mappings defined on
metric spaces. Additionally, we provide results and explore the relationships between T and its
linearizations T̃ and T # based on this new concept.

The structure of the paper is as follows:
Section 1 provides a brief review of the standard notations that will be employed throughout

the paper. Section 2 is dedicated to the examination of various characterizations of MS-Lipschitz
p-summing operators defined between metric spaces. In Section 3, we introduce the definition
of MS-Lipschitz p-nuclear operators. These operators exhibit remarkable properties, particularly
their associations with linearization operators. Furthermore, we present a Pietsch Domination
Theorem that applies specifically to this class of operators.

Now, we recall briefly some basic notations and terminology which we need in the sequel.
Throughout this paper, the letters E,F will denote Banach spaces and X,Y will denote metric
spaces with a distinguished point (pointed metric spaces) which we denote by 0. Let X be a
pointed metric space, E be a Banach space and Lip0 (X,E) be the Banach space of all Lipschitz
functions (Lipschitz operators) T : X → E such that T (0) = 0 with pointwise addition and Lip-
schitz norm. Note that for any T ∈ Lip0 (X,E) , there exists a unique linear map (linearization
of T ) T̂ : F (X) −→ E such that T̂ ◦ δX = T and

∥∥∥T̂∥∥∥ = Lip (T ) , i.e., the following diagram
commutes

X
T−→ E

δX ↓ ↗ T̂

F (X)

where δX is the canonical embedding so that 〈δX (x) , f〉 = δ(x,0) (f) = f (x) for f ∈ X#. See
[2, 6, 10, 15] for more details about the properties of Lipschitz operators. If X is a Banach space
and T : X → E is a linear operator, then the corresponding linear operator T̂ is given by

T̂ = T ◦ βX ,

where βX : F (X) → X is a linear quotient map which verifies βX ◦ δX = idX and ‖βX‖ ≤ 1,
see [8, p. 124] for more details about the operator βX . Let X,Y be two metric spaces. Let
T : X → Y be a Lipschitz operator, then there is a unique linear operator T̃ such that the
following diagram commutes

X T−→ Y

↓ δX ↓ δY
F (X) T̃−→ F (Y )

i.e., T̃ ◦ δX = δY ◦ T . The Lipschitz adjoint map T # : Y # → X# of T is defined as follows

T # (g) (x) = g (T (x)) , for every g ∈ Y # and x ∈ X.

Let X be a metric space and E be a Banach space, by X � E we denote the Lipschitz tensor
product of X and E. This is the vector space spanned by the linear functional δ(x,y) � e on
Lip0 (X,E∗) defined by

δ(x,y) � e (f) = 〈f (x)− f (y) , e〉 .
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If m ∈ F (X) such that m =
∑n

i=1 δ(xi,yi), we have

〈m, f〉 =
n∑

i=1

(f(xi)− f(yi)) .

See [2] for more details about the properties of the space X �E. Now, let E be a Banach space,
then BE denotes its closed unit ball and E∗ its (topological) dual. Consider 1 ≤ p ≤ ∞ and
n ∈ N∗. We denote by `np (E) the Banach space of all sequences (xi)

n
i=1 in E with the norm∥∥(xi)i∥∥`np (E)

= (
∑n

i=1 ‖xi‖
p)

1
p ,

and by `n,wp (E) the Banach space of all sequences (xi)
n
i=1 in E with the norm∥∥(xi)i∥∥`n,w

p (E)
= sup

x∗∈BE∗

(
∑n

i=1 |〈xi, x∗〉|
p)

1
p .

If E = K, we simply write `np and `n,wp . In particular, if (mi)
n1
i=1 ∈ F (X) such that mi =∑n2

j=1 δ(xj
i ,y

j
i )
, (1 ≤ i ≤ n1) we have

∥∥(mi)i
∥∥
`
n1,w
p (F(X))

= sup
f∈B

X#

(
n1∑
i=1

|〈mi, f〉|p)
1
p

= sup
f∈B

X#

(
n1∑
i=1

∣∣∣∣∣∣
n2∑
j=1

f(xji )− f(y
j
i )

∣∣∣∣∣∣
p

)
1
p .

Let us recall the following concepts:
- The linear operator L : E → F is p-summing if there exists a constant C > 0 such that, for

any (xi)
n
i=1 ⊂ E, we have

(
n∑

i=1

‖L (xi)‖p)
1
p ≤ C

∥∥(xi)i∥∥`n,w
p (E)

. (1.3)

The class of p-summing linear operators from E into F , which is denoted by Πp(E,F ), is a Ba-
nach space for the norm πp(u), i.e., the smallest constant C such that the inequality (1.3) holds.

- The linear operator L is (Cohen) strongly p-summing if there exists a constant C > 0 such
that, for any (xi)

n
i=1 ⊂ E, and any (y∗i )

n
i=1 ⊂ F ∗, we have

n∑
i=1

|〈L (xi) , y
∗
i 〉| ≤ C

∥∥(xi)i∥∥`np (E)

∥∥(y∗i )i∥∥`n,w
p∗ (F∗)

. (1.4)

The class of Cohen strongly p-summing operators fromE into F , which is denoted byDp(E,F ),
is a Banach space for the norm dp(L), i.e., the smallest constant C such that the inequality (1.4)
holds.

- The linear operator L is Cohen p-nuclear if there exists a constant C > 0 such that, for any
(xi)

n
i=1 ⊂ E, and any (y∗i )

n
i=1 ⊂ F ∗, we have

n∑
i=1

|〈L (xi) , y
∗
i 〉| ≤ C

∥∥(xi)i∥∥`n,w
p (E)

∥∥(y∗i )i∥∥`n,w
p∗ (F∗)

. (1.5)

The class of Cohen p-nuclear linear operators from E into F , which is denoted by Np(E,F ), is
a Banach space for the norm np(L), i.e., the smallest constant C such that the inequality (1.5)
holds.
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2 M-strictly Lipschitz p-summing operators

Let X be a pointed metric space and E be a Banach space. The concept of Lipschitz tensor
product, denoted by X � E, was introduced by Cabrera-Padilla et al. [2]. An element u in
X � E can be represented as u =

∑l
k=1 δ(xk,yk) � ek and can be viewed as a linear functional

on Lip0 (X,E∗). The action of this linear functional is defined by

l∑
k=1

δ(xk,yk) � ek (f) =
l∑

k=1

(f (xk)− f (yk)) ek for every f ∈ Lip0 (X,E
∗) .

The relationship between X � E and F (X) ⊗ E is straightforward, where X � E is a vector
subspace of F (X)⊗E. Given an element u ∈ X �E, we can define the set Au as the set of all
representations of u in F (X)⊗ E, that is,

Au :=

{
((mi)

n
i=1 , (ei)

n
i=1) : n ∈ N∗, mi ∈ F (X) , ei ∈ E : u =

n∑
i=1

mi ⊗ ei

}
. (2.1)

Let α be a tensor norm defined on Banach spaces. According to [16, Theorem 3.1], there exists
a corresponding Lipschitz cross-norm, denoted as αL, which is defined on the Lipschitz tensor
product X � E as follows:

αL(
l∑

k=1

δ(xk,yk) � ek) = α(
l∑

k=1

δ(xk,yk) ⊗ ek). (2.2)

where
∑l

k=1 δ(xk,yk)⊗ek ∈ F (X)⊗E. Before presenting the following definition, it is necessary
to recall the norms of Chevet-Saphar dp and gp [3, 13, 14, 17], which are defined on two Banach
spaces E and F

dp (u) = inf
{∥∥(xi)i∥∥`n,w

p∗ (E)

∥∥(yi)i∥∥`np (F )

}
and gp (u) = inf

{∥∥(xi)i∥∥`n
p∗ (E)

∥∥(yi)i∥∥`n,w
p (F )

}
where the infimum is taken over all representations of u in the form of u =

∑n
i=1 xi⊗yi ∈ E⊗F.

It is worth noting that we can utilize the Chevet-Saphar norms to provide equivalent definitions
for (1.3) and (1.4) (see [14, p. 140]). Specifically, the linear operator L : E → F is said to be
p-summing if there exists a constant C > 0 such that for any u =

∑n
i=1 xi ⊗ y∗i ∈ E ⊗ F ∗, the

following inequality holds: ∣∣∣∣∣
n∑

i=1

〈L (xi) , y
∗
i 〉

∣∣∣∣∣ ≤ Cdp (u) .
If we replace dp (u) with gp (u), we obtain the definition of strongly p-summing. In [16], the
Lipschitz cross-norm dLp is defined as follows:

dLp (u) = dp(
l∑

k=1

δ(xk,yk) ⊗ sk) = inf
((mi)

n
i=1,(ei)

n
i=1)∈Au

{
‖(mi)i‖`n,w

p (F(X))

∥∥(ei)i∥∥`n
p∗ (E)

}
.

Most definitions of summability for Lipschitz mappings are typically defined from a metric
space to a Banach space. However, in the following definition of MS-Lipschitz p-summing, we
consider Lipschitz operators defined on metric spaces. This new perspective allows us to estab-
lish a meaningful relationship between T and its linearization T̃ . Before proceeding, let us recall
the following definition introduced in [16].

Definition 2.1. [16] Let 1 ≤ p ≤ ∞. Let X be a metric space and E be a Banach space. A
Lipschitz operator T : X → E is said to be strictly Lipschitz p-summing if there exists a positive
constant C such that for every xk, yk ∈ X and e∗k ∈ E∗ (1 ≤ k ≤ l) we have∣∣∣∣∣

l∑
k=1

〈T (xk)− T (yk) , e
∗
k〉

∣∣∣∣∣ ≤ CdLp (u), (2.3)
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where u =
∑l

k=1 δ(xk,yk) � e∗k ∈ X � E∗.

Building upon the aforementioned idea, we have introduced the concept of MS-Lipschitz p-
summing operators [1]. In contrast to considering elements from the dual space of E, we now
focus on elements from its Lipschitz space E#.

Definition 2.2. [1] Let 1 ≤ p ≤ ∞. Let X and Y be two metric spaces. A Lipschitz operator
T : X → Y is said to be MS-Lipschitz p-summing if there exists a positive constant C such that
for every xk, yk ∈ X and gk ∈ Y # (1 ≤ k ≤ l) we have∣∣∣∣∣

l∑
k=1

gk (T (xk))− gk (T (yk))

∣∣∣∣∣ ≤ CdLp (u), (2.4)

where u =
∑l

k=1 δ(xk,yk)�gk ∈ X�Y #.We denote by ΠMSL
p (X,Y ) the set of all MS-Lipschitz

p-summing operators from X into Y and by πMSL
p (T ) the smallest constant C satisfying (2.4).

If Y is a Banach space, we note that ΠMSL
p (X,Y ) does not have the structure of a vector space.

Proposition 2.3. Let 1 ≤ p ≤ ∞. Every MS-Lipschitz p-summing operator from a pointed
metric space X into a Banach space E is strictly Lipschitz p-summing.

Proof. Let T : X → E be a MS-Lipschitz p-summing operator. Let xk, yk ∈ X and e∗k ∈ E∗
(1 ≤ k ≤ l) , then∣∣∣∣∣

l∑
k=1

〈T (xk)− T (yk) , e
∗
k〉

∣∣∣∣∣ =

∣∣∣∣∣
l∑

k=1

e∗k (T (xk))− e∗k (T (yk))

∣∣∣∣∣
≤ CdLp (u),

where u =
∑l

k=1 δ(xk,yk) � e∗k ∈ X �E#. So, as X �E∗ ⊂ X �E#, the definition of dLp (u) on
X � E# is smaller than on X � E∗, consequently, the condition (2.3) is verified. �

Remark 2.4. In the context where E and F are Banach spaces, it is well-known that the
definitions of strictly Lipschitz p-summing, Lipschitz p-summing, and p-summing coincide for
linear operators from E to F (see [16, Proposition 3.8]). Furthermore, in our specific case, the
definition of MS-Lipschitz p-summing implies p-summing; however, the converse is not true,
as illustrated in the following example: Consider the identity operator idE : E → E. It can be
easily demonstrated that ĩdE = idF(E), indicating that the following diagram is commutative

E idE−→ E

↓ δE ↓ δE
F (E) idF(E)−−−−→

F (E)

If E is a finite-dimensional space, then idE is indeed p-summing, and consequently, it is also
strictly Lipschitz p-summing. However, idF(E) cannot be p-summing since F (E) is not finite-
dimensional. Therefore, idE is not MS-Lipschitz p-summing.

The following statement presents the main result of this section.

Theorem 2.5. Let 1 ≤ p ≤ ∞. Let X and Y be two metric spaces. Let T : X → Y be a
Lipschitz operator. The following properties are equivalent.
1) T is MS-Lipschitz p-summing.
2) T̃ : F (X)→ F (Y ) is p-summing.
3) δY ◦ T : X → F (Y ) is strictly Lipschitz p-summing.

4) There is a constant C > 0 such that for every
(
xji

)n1

i=1
,
(
yji

)n1

i=1
in X; (1 ≤ j ≤ n2) and
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n1, n2 ∈ N∗, we have

(
n1∑
i=1

∥∥∥∥∥∥
n2∑
j=1

δY ◦ T (xji )− δY ◦ T (y
j
i )

∥∥∥∥∥∥
p

)
1
p ≤ C sup

f∈B
X#

(
n1∑
i=1

∣∣∣∣∣∣
n2∑
j=1

f(xji )− f(y
j
i )

∣∣∣∣∣∣
p

)
1
p . (2.5)

Proof. 1)⇔ 2) See [1, Proposition 2.4.].
2)⇒ 3) : Suppose that T̃ is p-summing. Then

n1∑
i=1

(

∥∥∥∥∥∥
n2∑
j=1

δY ◦ T (xji )− δY ◦ T (y
j
i )

∥∥∥∥∥∥
p

)
1
p = (

n1∑
i=1

∥∥∥T̃ (mi)
∥∥∥p) 1

p

≤ πp

(
T̃
)

sup
f∈B

X#

(
n1∑
i=1

|f (mi)|p)
1
p

≤ πp

(
T̃
)

sup
f∈B

X#

(
n1∑
i=1

∣∣∣∣∣∣
n2∑
j=1

f(xji )− f(y
j
i )

∣∣∣∣∣∣
p

)
1
p

3)⇒ 2) : We have

(
n1∑
i=1

∥∥∥T̃ (mi)
∥∥∥p) 1

p = (
n1∑
i=1

∥∥∥∥∥∥
n2∑
j=1

δY ◦ T
(
xji

)
− δY ◦ T

(
yji

)∥∥∥∥∥∥
p

)
1
p

≤ C sup
f∈B

X#

(
n1∑
i=1

∣∣∣∣∣∣
n2∑
j=1

f(xji )− f(y
j
i )

∣∣∣∣∣∣
p

)
1
p ≤ C sup

f∈B
X#

(
n1∑
i=1

|f (mi)|p)
1
p

Then T̃ is p-summing and by [5, Theorem 2.12] we obtain the result.
3)⇔ 4) It is immediate. �

By setting n2 = 1 in formula (2.5) and considering the isometric property of δY , we arrive at
the precise formulation of Lipschitz p-summing as originally defined by Farmer [6], indeed

(
n1∑
i=1

‖δY ◦ T (xi)− δY ◦ T (yi)‖p)
1
p = (

n1∑
i=1

d (T (xi), T (yi))
p
)

1
p

≤ C sup
f∈B

X#

(
n1∑
i=1

|f(xi)− f(yi)|p)
1
p .

Corollary 2.6. Let T : X → Y be a Lipschitz operator between metric spaces. The following
properties are equivalent.
1) T is MS-Lipschitz p-summing.
2) The Lipschitz adjoint T # : Y # → X# is strongly p∗-summing.

Proof. According to (1.2), the dual operator of T̃ is T #. To establish this equivalence, we can
easily utilize the result mentioned in [4, Theorem 2.2.2]. �

Proposition 2.7. Let T : X → Y be a Lipschitz mapping between pointed metric spaces such
that X or Y is finite, then T is MS-Lipschitz p-summing.

Proof. Suppose that X is finite. By [18, Example 2.3.6], F (X) is finite dimensional, then
T̃ : F (X) → F (Y ) is p-summing. Consequently T : X → Y is MS-Lipschitz p-summing.
�

The Pietsch domination theorem is an intriguing characterization that is satisfied by the class
of MS-Lipschitz p-nuclear operators.
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Theorem 2.8. Let X and Y be two pointed metric spaces. Let T : X → Y be a Lipschitz
operator. The following properties are equivalent.
1) T is MS-Lipschitz p-summing.
2) There exist a constant C > 0, a Radon probability µ onBX# such that for every (xj)nj=1 , (y

j)
n

j=1 ⊂
X, we have∥∥∥∥∥∥

n∑
j=1

δY ◦ T (xj)− δY ◦ T (yj)

∥∥∥∥∥∥ ≤ C(
∫
B

X#

∣∣∣∣∣∣
n∑

j=1

f
(
xj
)
− f

(
yj
)∣∣∣∣∣∣

p

dµ (f))
1
p . (2.6)

In this case, we have
πMSL
p (T ) = inf {C : verifying (2.6)} .

Proof. 1) ⇒ 2) : Since T is MS-Lipschitz p-summing, then T̃ : F (X) → F (Y ) is p-
summing. By Pietsch domination theorem for p-summing linear operator [5, Theorem 2.12], we
have ∥∥∥∥∥∥T̃

 n∑
j=1

δ(xj ,yj)

∥∥∥∥∥∥ ≤ πp

(
T̃
)
(

∫
B

X#

∣∣∣∣∣∣
〈

n∑
j=1

δ(xj ,yj), f

〉∣∣∣∣∣∣
p

dµ (f))
1
p

≤ πp

(
T̃
)
(

∫
B

X#

∣∣∣∣∣∣
n∑

j=1

f
(
xj
)
− f

(
yj
)∣∣∣∣∣∣

p

dµ (f))
1
p .

On the other hand,∥∥∥∥∥∥T̃
 n∑

j=1

δ(xj ,yj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑

j=1

T̃
(
δ(xj ,yj)

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
n∑

j=1

T̃ ◦ δX
(
xj
)
− T̃ ◦ δX

(
yj
)∥∥∥∥∥∥

=

∥∥∥∥∥∥
n∑

j=1

δY ◦ T (xj)− δY ◦ T (yj)

∥∥∥∥∥∥
Therefore, we have obtained the desired result.

2)⇒ 1) : Similarly, we can apply the same argument. �

We conclude this section with a result concerning Lipschitz operators that have a finite im-
age. The following Lemma establishes a relationship between the free space of T (X) and the
image T̃ (F (X)).

Lemma 2.9. Let X and Y be pointed metric spaces. Consider a Lipschitz operator T : X →
Y , where T (X) is a closed subset of Y . Then, we have the following

T̃ (F (X)) = F (T (X)) .

Proof. By [18, Theorem 2.2.6] we have

F (T (X)) = span
{
δT (x) : x ∈ X

}
= span {δY (T (x)) : x ∈ X}

= span
{
T̃ (δx) : x ∈ X

}
= T̃ (F (X)) . �

Corollary 2.10. Let X and Y be pointed metric spaces. Suppose that T : X → Y is a
Lipschitz operator such that T (X) is a finite set. Then, the linearization T̃ has finite rank. As a
consequence, every finite Lipschitz operator is MS-Lipschitz p-summing.
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3 Cohen MS-Lipschitz p-nuclear operators

In [4], Cohen introduced the concepts of strongly p-summing and p-nuclear operators in the con-
text of linear operators. Since then, many authors have explored and extended these notions in
various directions, including multilinear, sublinear, and Lipschitz cases. Building upon this line
of thought, we will further extend these concepts using a similar approach to the one presented
in the previous section.

Definition 3.1. Let 1 ≤ p ≤ ∞. A Lipschitz operator T : X → Y is said to be MS-strongly
Lipschitz p-summing if there exists a positive constant C such that for every xk, yk ∈ X and
gk ∈ Y # (1 ≤ k ≤ l) we have∣∣∣∣∣

l∑
k=1

gk (T (xk))− gk (T (yk))

∣∣∣∣∣ ≤ CgLp (u), (3.1)

where u =
∑l

k=1 δ(xk,yk)�gk ∈ X�Y #. We denote by DMSL
p (X,Y ) the set of all MS-strongly

Lipschitz p-summing operators from X into Y and by dMSL
p (T ) is the smallest constant C ver-

ifying (3.1). Note that DMSL
p (X,Y ) does not have a structure of a vector space.

Theorem 3.2. Let 1 ≤ p ≤ ∞. Let X and Y be two metric spaces. Let T : X → Y be a
Lipschitz operator. The following properties are equivalent.
1) T is MS-strongly Lipschitz p-summing.
2) There exists a positive constant C such that for every (xi)

n
i=1 , (yi)

n
i=1 in X and (gi)

n
i=1in Y #;

(n ∈ N∗), ∣∣∣∣∣
n∑

i=1

gi (T (xi))− gi (T (yi))

∣∣∣∣∣ ≤ C(
n∑

i=1

d (xi, yi)
p
)

1
p

∥∥(gi)ni=1

∥∥
`n,w
p∗ (Y #)

. (3.2)

3) δY ◦ T : X → F (Y ) is strongly Lipschitz p-summing.
4) T̃ : F (X)→ F (Y ) is strongly p-summing.

Proof. 1)⇒ 2) : Let T be a MS-strongly Lipschitz p-summing operator. Let (xi)
n
i=1 , (yi)

n
i=1

in X and (gi)
n
i=1 ⊂ Y #. We have∣∣∣∣∣

n∑
i=1

gi (T (xi))− gi (T (yi))

∣∣∣∣∣ ≤ dMSL
p (T ) gLp (u),

where u =
∑n

i=1 δ(xi,yi) � gi ∈ X � Y #. Then∣∣∣∣∣
n∑

i=1

gi (T (xi))− gi (T (yi))

∣∣∣∣∣ ≤ dMSL
p (T ) (

n∑
i=1

∥∥δ(xi,yi)

∥∥p) 1
p

∥∥(gi)ni=1

∥∥
`n,w
p∗ (Y #)

≤ dMSL
p (T ) (

n∑
i=1

d (xi, yi)
p
)

1
p

∥∥(gi)ni=1

∥∥
`n,w
p∗ (Y #)

.

2) ⇒ 3) : We will prove that δY ◦ T : X → F (Y ) is strongly Lipschitz p-summing. Let
(xi)

n
i=1 , (yi)

n
i=1 in X and (gi)

n
i=1 ⊂ Y #

(
= F (Y )

∗)
. Then∣∣∣∣∣

n∑
i=1

〈δY ◦ T (xi)− δY ◦ T (yi), gi〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

gi (δY ◦ T (xi))− gi (δY ◦ T (yi))

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

gi (T (xi))− gi (T (yi))

∣∣∣∣∣
≤ C(

n∑
i=1

d (xi, yi)
p
)

1
p

∥∥(gi)ni=1

∥∥
`n,w
p∗ (Y #)

.
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Then δY ◦ T is strongly Lipschitz p-summing.
3)⇒ 4) : We know that

δ̂Y ◦ T = T̃ .

Furthermore, according to [15, Proposition 3.1], the linearization δ̂Y ◦ T is strongly p-summing,
which implies that T̃ is also strongly p-summing.
4) ⇒ 1) : Assuming that T̃ is strongly p-summing, we can deduce from [14, Proposition 6.12]
that T̃ satisfies the following ∣∣∣∣∣

n∑
i=1

〈
T̃ (mi) , gi

〉∣∣∣∣∣ ≤ Cgp(u)
where u =

∑n
i=1 mi ⊗ gi ∈ F (X)� Y #. If we put mi = δ(xi,yi), we find∣∣∣∣∣

n∑
i=1

〈
T̃
(
δ(xi,yi)

)
, gi

〉∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

gi (T (xi))− gi (T (yi))

∣∣∣∣∣
≤ Cgp(u) = CgLp (u)

where u =
∑n

i=1 δ(xi,yi) ⊗ gi ∈ F (X)� Y #. �

Using the same reasoning as in Corollary 2.6, we can establish the following result.

Corollary 3.3. Let T : X → Y be a Lipschitz operator between metric spaces. The following
properties are equivalent.
1) T is MS-strongly Lipschitz p-summing.
2) The Lipschitz adjoint T # : Y # → X# is p∗-summing.

The following integral characterization is an adaptation of the linear case. To prove it, we
rely on the fact that T # is p∗-summing or T̃ is strongly p-summing.

Theorem 3.4. Let 1 ≤ p ≤ ∞.Let X and Y be two metric spaces. Let T : X → Y be a
Lipschitz operator. The following properties are equivalent.
1) T is MS-strongly Lipschitz p-summing.
2) There exist a constant C > 0 and a Radon probability µ on BLip0(Y )∗ such that for every
x, y ∈ X and g ∈ Y #, we have

|g (T (x))− g (T (y))| ≤ Cd (x, y)

(∫
BLip0(Y )∗

|〈g,m〉|p
∗
dµ (m)

) 1
p∗

.

Let us now recall the definition of the tensor norm wp on the product of two Banach spaces
E ⊗ F , which has been studied in [14, p. 180]. Let p ∈ [1,∞] we have

wp (u) = inf
{∥∥(xi)i∥∥`n,w

p (E)

∥∥(yi)i∥∥`n,w
p∗ (F )

}
,

where the infimum is taken over all representations of u of the form u =
∑n

i=1 xi ⊗ yi ∈ E ⊗ F.

Definition 3.5. Let 1 ≤ p ≤ ∞. Let X and Y be two metric spaces. A Lipschitz operator
T : X → Y is said to be Cohen MS-Lipschitz p-nuclear if there is a constant C > 0 such that
such that for every xk, yk ∈ X and gk ∈ Y # (1 ≤ k ≤ l) we have∣∣∣∣∣

l∑
k=1

gk (T (xk))− gk (T (yk))

∣∣∣∣∣ ≤ CwL
p (u), (3.3)

where u =
∑l

k=1 δ(xk,yk) � gk ∈ X � Y #. We denote by NMSL
p (X,Y ) the set of all Cohen

MS-Lipschitz p-nuclear operators from X into Y and by nMSL
p (T ) is the smallest constant C
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verifying (3.3). Again, we note that NMSL
p (X,Y ) does not have a structure of a vector space.

Theorem 3.6. Let T : X → Y be a Lipschitz operator. The following properties are equiva-
lent.
1) T is Cohen MS-Lipschitz p-nuclear.
2) There is a constant C > 0 such that for every

(
xji

)n1

i=1
,
(
yji

)n1

i=1
inX, (gi)

n1
i=1 ⊂ Y #; (1 ≤ j ≤ n2)

and n1, n2 ∈ N∗, we have∣∣∣∣∣∣
n1∑
i=1

n2∑
j=1

gi

(
T (xji )

)
− gi

(
T (yji )

)∣∣∣∣∣∣ ≤ C sup
f∈B

X#

(
n1∑
i=1

∣∣∣∣∣∣
n2∑
j=1

f(xji )− f(y
j
i )

∣∣∣∣∣∣
p

)
1
p

∥∥(gi)n1
i=1

∥∥
`
n1,w
p∗ (Y #)

.

(3.4)
3) T̃ : F (X)→ F (Y ) is Cohen p-nuclear.

Proof.
1) ⇒ 2) : Let T be a Cohen MS-Lipschitz p-nuclear operator. Let

(
xji

)n1

i=1
,
(
yji

)n1

i=1
in X and

(gi)
n1
i=1 in Y #; (1 ≤ j ≤ n2), we have∣∣∣∣∣∣

n1∑
i=1

n2∑
j=1

gi

(
T (xji )

)
− gi

(
T (yji )

)∣∣∣∣∣∣ ≤ CgLp (u),
where u =

∑n1
i=1
∑n2

j=1 δ(xj
i ,y

j
i )

� gi ∈ X � Y #. Then∣∣∣∣∣∣
n1∑
i=1

n2∑
j=1

gi

(
T (xji )

)
− gi

(
T (yji )

)∣∣∣∣∣∣
≤ nMSL

p (T ) sup
f∈B

X#

(
n1∑
i=1

∣∣∣∣∣∣f(
n2∑
j=1

δ(xj
i ,y

j
i )
)

∣∣∣∣∣∣
p

)
1
p

∥∥(gi)n1
i=1

∥∥
`
n1,w
p∗ (Y #)

≤ nMSL
p (T ) sup

f∈B
X#

(
n1∑
i=1

∣∣∣∣∣∣
n2∑
j=1

f(xji )− f(y
j
i )

∣∣∣∣∣∣
p

)
1
p

∥∥(gi)n1
i=1

∥∥
`
n1,w
p∗ (Y #)

.

2)⇒ 3) : Let (mi)
n1
i=1 ⊂ F (X) and (gi)

n1
i=1 ⊂ Y # such that

mi =
n2∑
j=1

δ(xj
i ,y

j
i )
∈ F (X) , (1 ≤ i ≤ n1) .

Then

(
n1∑
i=1

∣∣∣〈T̃ (mi) , gi
〉∣∣∣p) 1

p = (
n1∑
i=1

∣∣∣∣∣∣
〈

n2∑
j=1

(
δY ◦ T

(
xji

)
− δY ◦ T

(
xji

))
, gi

〉∣∣∣∣∣∣
p

)
1
p

=
n1∑
i=1

(

∣∣∣∣∣∣
n2∑
j=1

gi

(
T (xji )

)
− gi

(
T (yji )

)∣∣∣∣∣∣
p

)
1
p

≤ C sup
f∈B

X#

(
n1∑
i=1

∣∣∣∣∣∣
n2∑
j=1

f(xji )− f(y
j
i )

∣∣∣∣∣∣
p

)
1
p

∥∥(gi)n1
i=1

∥∥
`
n1,w
p∗ (Y #)

≤ C sup
f∈B

X#

(
n1∑
i=1

∣∣∣∣∣∣f(
n2∑
j=1

δ(xj
i ,y

j
i )
)

∣∣∣∣∣∣
p

)
1
p

∥∥(gi)n1
i=1

∥∥
`
n1,w
p∗ (Y #)

≤ C sup
f∈B

X#

(
n1∑
i=1

|f (mi)|p)
1
p

∥∥(gi)n1
i=1

∥∥
`
n1,w
p∗ (Y #)

.
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Then T̃ is p-nuclear.
3)⇒ 1) : Suppose that T̃ is Cohen p-nuclear. Let xk, yk ∈ X and gk ∈ Y # (1 ≤ k ≤ l) we have∣∣∣∣∣

l∑
k=1

gk (T (xk))− gk (T (yk))

∣∣∣∣∣ =

∣∣∣∣∣
l∑

k=1

〈δY ◦ T (xk)− δY ◦ T (yk) , gk〉

∣∣∣∣∣
=

∣∣∣∣∣
l∑

k=1

〈
T̂
(
δ(xk,yk)

)
, gk

〉∣∣∣∣∣
≤ np

(
T̃
)
wp(u) = np

(
T̃
)
wL

p (u),

where u =
∑l

k=1 δ(xk,yk) � gk ∈ X � Y #. Finally, T is Cohen MS-Lipschitz p-nuclear and we
have

nMSL
p (T ) ≤ np

(
T̃
)
. �

By utilizing the result presented in [4, Theorem 2.2.4], we can establish the following rela-
tionship between T and its Lipschitz adjoint T #.

Corollary 3.7. Let T : X → Y be a Lipschitz operator between metric spaces. The following
properties are equivalent.
1) T is Cohen MS-Lipschitz p-nuclear.
2) The Lipschitz adjoint T # : Y # → X# is Cohen p∗-nuclear.

The following integral characterization is an adaptation of the linear case. Its proof will be
omitted.

Theorem 3.8. Let 1 ≤ p ≤ ∞.Let X and Y be two metric spaces. Let T : X → Y be a
Lipschitz operator. The following properties are equivalent.
1) T is Cohen MS-Lipschitz p-nuclear.
2) There exist a constant C > 0, a Radon probability µ on BX# and η ∈ BLip0(Y )∗ such that for
every (xj)

n

j=1 , (y
j)

n

j=1 in X and g ∈ Y #, we have

∣∣∣∣∣∣
n∑

j=1

g
(
T (xj)

)
− g

(
T (xj)

)∣∣∣∣∣∣ ≤ C(

∫
B

X#

∣∣∣∣∣∣
n∑

j=1

f(xj)− f(yj)

∣∣∣∣∣∣
p

dµ (f))
1
p ×

(

∫
BLip0(Y )∗

|〈g,m〉|p
∗
dη (m))

1
p∗ .

Theorem 3.9. Let X,Y and Z be three pointed metric spaces. Let u : X → Z be a MS-
Lipschitz p-summing operator and v : Z → Y be a MS-strongly Lipschitz p-summing operator.
Then T = v ◦ u is Cohen MS-Lipschitz p-nuclear.

Proof. By [8, p. 124] we have

T̃ = ṽ ◦ ũ.

According to a result due to Cohen [4], the linear operator ũ being p-summing and ṽ being
strongly p-summing imply that T̃ is Cohen p-nuclear. Consequently, T is also MS-Lipschitz
p-nuclear. �

Remark 3.10.
In the linear case, the converse of the previous statement is true. However, in our case, it is

unknown whether every Cohen MS-Lipschitz p-nuclear operator can be expressed as the product
of an MS-Lipschitz p-summing operator and an MS-strongly p-summing operator.
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