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Abstract A radio labeling technique in graph theory is used to maximize the number of
channels in a pre-established spectrum bandwidth. A radio labeling of a connected graph G =
(V,E) with diameter d is an injection φ : V (G) → N such that |φ (x)− φ(y)| + d (x, y) ≥
1 + d ∀x, y ∈ V (G). The maximum number assigned to any vertex of G under the mapping φ
is called the radio number of φ, denoted by rn (φ). The minimum value of rn (φ) that is taken
over all radio labeling φ of G is called the radio number of G, which is denoted by rn(G). As the
distance between two proteins in a protein-protein interaction network and the effects of radio
frequency radiation on proteins play a vital role in the study of DNA damage, in this paper, the
radio numbers for chemical structures such as chain oxides, chain silicates, cyclic oxides and
cyclic silicates are fully investigated.

1 Introduction

The connection between chemistry and graph theory has been fruitful and active for more than
the past 150 years. However, many early chemists have used unconsciously graph-theoretical
concepts without realizing it. In chemistry, graph theory is significant because of the notion of
isomerism that is rationalized by the chemical structure theory [1]. The foremost application of
graph theory in chemistry was the representation of individual molecules by graphs [2]. They
constructed the chemical graph by fixing the atoms of the molecule as vertices and the valence
bonds between a pair of atoms as an edge. Johnson [3] presented a graph-theoretical method
to represent structural changes in chemical compounds by a labeled chemical graph. In the
computer analysis of chemical compounds, chemical structures are usually represented as graph
structured data. These chemical graphs are used to develop efficient algorithms for a number
of graph theory problems, especially in the fields of telecommunication engineering [4, 5] and
computational fluid dynamics [6, 7].

In 2001, Chartrand et al. [8] was motivated by the application of graph labeling in radio
telecommunication [9] and presented a graph labeling technique called radio labeling. It is used
to maximize the number of channels for frequency modulation (FM) radio stations in a prede-
fined bandwidth. The foremost job here is to allocate FM radio channels between radio transmit-
ters in the pre-defined geographical area in such a way that there is no co-channel interference
between them. The key constraints for the co-channel interference in FM radio stations are
the frequency differences and distance between the transmitters. Using these two constraints,
Chartrand et al. [8] defined radio labeling as follows: A radio labeling of a connected graph
G = (V,E) with diameter d is an injection φ : V (G) → N such that |φ (x)− φ(y)|+ d (x, y) ≥
1 + d ∀x, y ∈ V (G). The maximum number assigned to any vertex of G under the mapping φ is
called the radio number of φ, denoted by rn (φ). The minimum value of rn (φ) taken over all
radio labeling φ of G is called the radio number of G, denoted by rn(G). Due to the extensive
use of telecommunications in the modern era, the humans are facing a lot of health risks related
with exposure to radio frequencies. Many recent studies confirmed the effects of radio frequency
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on DNA damage [10] proteins in epithelial cells [11], proliferation [12], etc. In order study the
protein-protein interaction networks [13], the distance between the proteins plays a vital role.
Thus, the distance between the proteins and the effect of radio frequencies between two cells put
together to study the radio labeling problem for this real-life problem. Fotakis et al. [14] showed
that even for graphs with diameter 2, the problem is NP-hard. Bharati et al. [15] provided a
lower bound for the radio number of any simple connected graph in terms of eccentricities. Liu
et al. [16, 17] investigated the radio number for paths, trees and cycles. Laxman [18] attained
the lower bound for general trees. Yenoke [19]] found the radio number certain graphs with
extended wheels. Niranjan et al. [20] determined the radio number for corona of cycles and
paths. Devsi [21] investigated the same problem for middle graph of paths. Recently, Yenoke et
al. [22], has completely studied the radio labeling problem for nano tree dendrimers.

In chemistry, the radio frequency and radiolabeling methods are used to study the protein
absorption in single component or competitive absorption of a blood or plasma. As of the pro-
cedures presently available, radiolabeling is perhaps the most sensitive and accurate method for
calculating the quantity of protein adsorbed [23, 24]. Due to the planar property, uniform growth
and transmission of information is very fast in chemical graphs (networks), in this research
work, we have focused on studying the radio labeling problem for certain chemical graphs such
as single-chain oxides and silicates, cyclic oxides and cyclic silicates. Moreover, because of
the NP-hardness of this channel assignment problem, we have investigated the upper and lower
bounds for the radio number of such chemical graphs.

2 Poly-Oxide and Poly-Silicate structures

Poly-Oxide and Poly-Silicate structures are widely studied in [25, 26, 27, 28]. By fusing metal
carbonates or metal oxides with sand, the silicates are formed. Fundamentally all the silicates
comprise SiO4 tetrahedron. In chemistry the center node of SiO4 tetrahedron signify silicon
ion and the corner nodes signifies the oxygen ions. In graph theoretical approach, the center
vertex is named as silicon node and the corner vertices are named as oxygen nodes. Different
minerals are obtained by continuously fusing oxygen ions of two tetrahedra of different silicates.
The different types of silicate structures are formed according to the way of arrangement of these
tetrahedra. If they exist, then they are in the form of 1-dimension chains, 2-dimensional sheets
or as 3-dimensional frameworks. They are called as pyro silicates, orthosilicates, chain silicates,
sheet silicates and cyclic silicates.

2.1 Chain Silicates and Oxides

During the polymerization of silicate anions, an oxygen atom is shared with a neighbor-
ing tetrahedron. If each of the tetrahedron share two of its oxygen atoms and forming a long
chain structure, then such a structure is called a single-chain silicate structure. It is denoted by
SL (1, ξ) , where ξ is the number of 4 arranged linearly in the chain. It contains 3 ξ + 1 vertices
and 6 ξ edges. Also, its diameter and radius are ξ and

⌈
ξ
2

⌉
, respectively. If we delete all the sili-

con nodes from a single-chain silicate structure, a new structure formed is called a single-chain
oxide structure and it is denoted by OX (1, ξ). It contains 2 ξ+1 vertices and 3 ξ edges. Further,
the diameter and radius of OX (1, ξ) are same as SL (1, ξ).

2.2 Cyclic Silicates and Oxides

In the chain silicate SL (1, ξ), if the 1st and ξth tetrahedrons share two of its oxygen atoms,
then the structure formed is called cyclic silicates. It is denoted by SLc (ξ). Also, |V (SLc (ξ) )| =
3ξ and |E(SLc (ξ) )| = 6 ξ. As in chain- oxides, if we remove all the silicon vertices from
SLc (ξ), the resulting structure obtained is called cyclic-oxide structure and it’s denoted by
OXc (ξ). In addition, the diameter for both SLc (ξ) and OXc (ξ) is

⌊
ξ
2

⌋
+1.
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Figure 1. .A single chain oxide structures OX (1, 6) and OX(1, 7) and its radio labeling.

3 Main Results

As the silicates are usually stable and well-characterized, in this section, we discuss the upper
and lower bounds for the radio number of OX (1, ξ) and SL (1, ξ) separately. In addition, we
have estimated the upper bounds for SLc (ξ) and OXc (ξ) separately.

In order to obtain the lower bounds, we need the concept of eccentricity of vertices in a graph.
Let G be a connected graph and let v be a vertex of G. The eccentricity e(v) of a vertex v in a
connected graph G = (V,E) is the farthest vertex from v to any other vertex in the graph. That
is, e (v) = max{d (u, v)∀u ∈ V (G)}. The diameter of G, denoted by diam(G) is the maximum
eccentricity of the vertices of G. Also, the minimum eccentricity of the vertices of G is called
the radius of G, denoted by rad (G) .

3.1 Bounds for Chain Oxide Structures
In this subsection, we have determined the upper and lower bounds for the radio number of
chain oxide structure.

Theorem 3.1. Radio number of single chain oxide structure satisfies

rn(OX(1, ξ) ≤


3ξ2

2 − 5ξ
2 + 5, ξ is even

ξ2 − 3ξ +
⌈
ξ
2

⌉
+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ 9, ξ is odd

.

Proof . First we name the vertices of the row line or horizontal line (path of length ξ) as
u1, u2 . . . uξ+1, then naming the vertices above and below of the centre line from left to right as
v1, v2 . . . v⌊ ξ

2 ⌋ and w1, w2 . . . w⌈ ξ
2 ⌉ respectively.

Case 1. ξ is even.
Define an injection φ : V (OX (1, ξ)) → N as follows: φ (u1) = 1, φ (uξ+1) = 2, φ (vi) =

ξ + (i− 1) (ξ − 2) , i = 1, 2 . . . ξ
2 , φ (wi) = ξ2

2 − ξ + 3 + (i− 1) (ξ − 2) , i = 1, 2 . . . ξ
2 ,

φ (ui+1) = ξ2 − 3ξ + 8 + (i− 1) (ξ + 3) , i = 1, 2 . . . ξ
2 , φ

(
u ξ

2 +i

)
= ξ2 − 3ξ + ξ

2 + 9 +

(i− 1) (ξ + 3) , i = 1, 2 . . . ξ
2 − 1. See Figure 1(a).

Next, we claim that |φ (x)− φ(y)|+ d (x, y) ≥ 1 + ξ ∀x, y ∈ V (OX (1, ξ)).
Let x, y ∈ V (OX (1, ξ)).
Case 1.1. Suppose x and y are of the form vl and vm, then φ (x) = ξ + (l − 1) (ξ − 2) and
φ (y) = ξ + (m− 1) (ξ − 2) , 1 ≤ l ̸= m ≤ ξ

2 . Also, d (x, y) ≥ 3. Hence, |φ (x)− φ(y)| +
d (x, y) ≥ |(l −m) (ξ − 2)|+ 3 ≥ ξ + 1, l ̸= m.
Case 1.2. If x = wl and y = wm then d (x, y) ≥ 3 and |φ (x)− φ (y)|
=

∣∣∣( ξ2

2 − ξ + 3 + (l − 1) (ξ − 2)
)
−
(

ξ2

2 − ξ + 3 + (m− 1) (ξ − 2)
)∣∣∣ = |(l −m) (ξ − 2)| ,

where 1 ≤ l ̸= m ≤ ξ
2 . Since l ̸= m, we get, |φ (x)− φ (y)|+ d (x, y) ≥ ξ + 1.

Case 1.3. Assume that x = ul+1 and y = um+1, 1 ≤ l ̸= m ≤ ξ
2 . Then d (x, y) ≥ 1 and

φ (ul+1)= ξ2 − 3ξ + 8 + (l − 1) (ξ + 3), φ (um+1)= ξ2 − 3ξ + 8 + (m− 1) (ξ + 3).
Therefore, |φ (x)− φ(y)|+ d (x, y) ≥ |(l −m) (ξ + 3)|+ 1 > ξ + 1 , l ̸= m.
Case 1.4. Take x and y in the row line such that x = u ξ

2 +l and y = u ξ
2 +m.

1 ≤ l ̸= m ≤ ξ
2 − 1, respectively. Here, φ

(
u ξ

2 +l

)
= ξ2 − 3ξ + ξ

2 + 9 + (l − 1) (ξ + 3),

φ
(
u ξ

2 +m

)
= ξ2 −3ξ+ ξ

2 +9+(m− 1) (ξ + 3) and d (x, y) ≥ 1. So, |φ (x)− φ(y)|+d (x, y) ≥
|(l −m) (ξ + 3)|+ 1 > ξ + 1 , l ̸= m.
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Case 1.5. Suppose x = vl and y = wm, then φ (x) = ξ + (l − 1) (ξ − 2) and φ (y) = ξ2

2 −
ξ + 3 + (m− 1) (ξ − 2) , 1 ≤ l,m ≤ ξ

2 . Also, d (x, y) ≥ 2. Hence, |φ (x)− φ(y)|+ d (x, y) ≥∣∣∣(ξ + (l − 1) (ξ − 2))−
(

ξ2

2 − ξ + 3 + (m− 1) (ξ − 2)
)∣∣∣+ 2 > ξ + 1.

Case 1.6. If x and y are mapped to ξ+(l − 1) (ξ − 2) and ξ2 − 3ξ+ 8+(m− 1) (ξ + 3) , 1 ≤
l,m ≤ ξ

2 , then d (x, y) ≥ 1, where x = vl and y = um+1 . Consequently, |φ (x)− φ(y)| +
d (x, y) > ξ + 1.
Case 1.7. Let x = vl and y = u ξ

2 +m, 1 ≤ l ≤ ξ
2 , 1 ≤ m ≤ ξ

2−1. Then φ (vl) and φ
(
u ξ

2 +m

)
are

ξ+(l − 1) (ξ − 2) and ξ2 −3ξ+ ξ
2 +9+(m− 1) (ξ + 3) respectively. Also, d

(
vl, u ξ

2 +m

)
≥ 1.

So, |φ (x)− φ(y)|+ d (x, y) > ξ + 1.
Case 1.8. Pick x = wl and y = um+1, 1 ≤ l,m ≤ ξ

2 . Then φ (x) = ( ξ
2

2 − ξ+3+(l − 1) (ξ − 2),
φ (y) = ξ2 − 3ξ + 8 + (m− 1) (ξ + 3) and d (wl, um+1) ≥ 1. Therefore, |φ (x)− φ(y)| +
d (x, y) > ξ + 1.
Case 1.9. Let x = wl and y = u ξ

2 +m, 1 ≤ l ≤ ξ
2 , 1 ≤ m ≤ ξ

2 − 1. Then φ (wl) and φ
(
u ξ

2 +m

)
are mapped to ξ2

2 − ξ+ 3+ (l − 1) (ξ − 2) and ξ2 − 3ξ+ ξ
2 + 9+ (m− 1) (ξ + 3) respectively.

In addition, d
(
wl+1, u ξ

2 +m

)
≥ 1. Hence, |φ (x)− φ(y)|+ d (x, y) > ξ + 1.

Case 1.10. Suppose x = ul+1 and y = u ξ
2 +m, 1 ≤ l ≤ ξ

2 , 1 ≤ m ≤ ξ
2 − 1, then φ (ul) =

ξ2 − 3ξ + 8 + (l − 1) (ξ + 3) and φ
(
u ξ

2 +m

)
= ξ2 − 3ξ + ξ

2 + 9 + (m− 1) (ξ + 3).

If l = m, then
∣∣∣φ (ul+1)− φ

(
u ξ

2 +m

)∣∣∣ = ξ
2 + 1 and d

(
ul+1, u ξ

2 +m

)
= ξ

2 .

Also, if

l = m+1, then
∣∣∣φ (ul+1)− φ

(
u ξ

2 +m

)∣∣∣ = ∣∣∣∣−1 − ξ

2
+ ξ + 3

∣∣∣∣ = ξ

2
+2 and d

(
ul+1, u ξ

2 +m

)
=

ξ

2
−1.

Otherwise,
∣∣∣φ (ul+1)− φ

(
u ξ

2 +m

)∣∣∣ ≥ ξ.

Hence for all the possibilities in this case,
∣∣∣φ (ul+1)− φ

(
u ξ

2 +m

)∣∣∣ + d
(
ul+1, u ξ

2 +m

)
> ξ + 1.

Otherwise,
∣∣∣φ (ul+1)− φ

(
u ξ

2 +m

)∣∣∣ ≥ ξ.

Hence for all the possibilities in this case,
∣∣∣φ (ul+1)− φ

(
u ξ

2 +m

)∣∣∣+ d
(
ul+1, u ξ

2 +m

)
> ξ + 1.

Case 1.11. Suppose x = u1 and y = uξ+1, then |φ (x)− φ(y)| = 1 and d (x, y) = ξ. Again,
if x ∈ {u1, uξ+1} and y is any other vertex in OX(1, ξ), it is easy to verify the condition
|φ (x)− φ(y)| + d (x, y) > ξ + 1 is true. Further, the vertex u ξ

2 +1 attains the maximum

value ξ2 − 3ξ + 8 +
(

ξ
2 − 1

)
(ξ + 3) = 3ξ2

2 − 5ξ
2 + 5. Hence rn (φ) = 3ξ2

2 − 5ξ
2 + 5. There-

fore, we have attained the result rn(OX(1, ξ)) ≤ 3ξ2

2 − 5ξ
2 + 5, ξ is even.

Case 2. ξ is odd.
Define a 1-1 mapping φ : V (OX (1, ξ)) → N as follows: φ (u1) = 1, φ (uξ+1) = 2, φ (vi) =

ξ+(i− 1) (ξ − 2) , i = 1, 2 . . .
⌊
ξ
2

⌋
, φ (wi) =

⌊
ξ
2

⌋
(ξ − 2)+4+(i− 1) (ξ − 2) , i = 1, 2 . . .

⌈
ξ
2

⌉
,

φ (ui+1) = ξ2 − 3ξ+ 8+(i− 1)
(

2
⌈
ξ
2

⌉
+ 3

)
, i = 1, 2 . . .

⌊
ξ
2

⌋
, φ

(
u⌈ ξ

2 ⌉+i

)
= ξ2 − 3ξ+

⌈
ξ
2

⌉
+

9 + (i− 1)
(

2
⌈
ξ
2

⌉
+ 3

)
, i = 1, 2 . . .

⌊
ξ
2

⌋
. Refer Figure 1(b).

Here the vertex uξ attains the maximum value ξ2 − 3ξ +
⌈
ξ
2

⌉
+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ 9

which is the radio number of φ. Since the remaining part of the proof is similar to case 1, we
omit the proof.

To investigate the lower bound, we use the following result which was proved by Bharati et
al. [15].

Theorem 3.2. (As Theorem 2 in [15]]. ): Let G be a simple connected graph of order n. Let
α0, α1 . . . αk be the number of vertices having eccentricities e0, e1 . . . ek, where diam (G) = e0 >
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e1 > · · · > ek = rad(G).Then

rn (G) ≥

{
n− 2 (d− ek) +

∑k
i=1 2 (d− ei)αi, if αk > 1

n− (d− ek)− (d− ek−1) +
∑k

i=1 2 (d− ei)αi, if αk = 1
.

Lemma 3.1. Let e0, e1 . . . e ξ
2

be the eccentricities of the vertices of OX(1, ξ), where ξ is an

even natural number. If ek > ek+1, k = 0, 1, 2 . . . ξ
2 − 1, then the number of vertices with

eccentricity ek is 4, 0 ≤ k ≤ ξ
2 − 1 and e ξ

2
is 1.

Proof . It is easy to verify that only the vertices u1 and w1 are diametrically opposite to uξ+1 and
v⌊ ξ

2 ⌋ in OX(1, ξ). Therefore, the number of vertices with eccentricity e0 is 4. Similarly, the four
vertices u2, v1, uξ and w⌊ ξ

2 ⌋ are having the eccentricity e1. If we proceed like this, we are able
to identify the vertices having eccentricity up to e ξ

2 −1 as 4. In addition, the middle vertex u ξ
2 +1of

the horizontal line alone is of eccentricity e ξ
2
= rad(OX (1, ξ)). Hence, we conclude that the

number of vertices with eccentricity ek is 4, 0 ≤ k ≤ ξ
2 − 1 and e ξ

2
is 1.

Theorem 3.3. If e0 > e1 > · · · > e ξ
2

be the ξ
2 + 1 eccentricities of the vertices of OX(1, ξ),

where ξ is an even natural number, then rn (OX(1, ξ), ) ≥ 2 (ξ + 1) + 8
∑ ξ

2 −1
i=1 (ξ − i) .

Proof. The eccentricities of vertices are given by e0 = ξ, e1 = ξ−1 . . . e ξ
2 −1 =

ξ
2 +1, e ξ

2
= ξ

2 .

Using Lemma 3.1 in Theorem 3.2, we have αi = 4, i = 0, 1 . . . ξ
2 − 1 and α ξ

2
= 1. Since,

αk = α ξ
2
= 1, we must apply the second part of the result in Theorem 4.2 and obtained,

rn (G) ≥ 2ξ+1−
(
ξ − ξ

2

)
− (ξ− ξ

2 −1)+
∑ ξ

2
i=1 2 (ξ − i)αi = 2 (ξ + 1) + 8

∑ ξ
2 −1
i=1 (ξ − i) .

Lemma 3.2. Let e0, e1 . . . e⌊ ξ
2 ⌋ be the eccentricities of the vertices of OX(1, ξ), where ξ is

an odd natural number. If ek > ek+1, k = 0, 1, 2 . . .
⌊
ξ
2

⌋
, then the number of vertices with

eccentricity ek is 4, 0 ≤ k ≤
⌊
ξ
2

⌋
− 1 and e⌊ ξ

2 ⌋ is 3.

Proof . It is easy to realize that the vertices in the sets
{
u1, w1, uξ+1, w⌈ ξ

2 ⌉
}

,
{
u2, v1, uξ, w⌊ ξ

2 ⌋
}

. . .
{
u⌊ ξ

2 ⌋, w⌈ ξ
4 ⌉, u⌈ ξ

2 ⌉+2, w⌊ ξ
4 ⌋+1

}
having eccentricities e0, e1 . . . e⌊ ξ

2 ⌋−1

and
{
u⌈ ξ

2 ⌉, u⌈ ξ
2 ⌉+1, v⌈ ξ

4 ⌉

}
having eccentricity e⌊ ξ

2 ⌋. Hence, the number of vertices with eccen-

tricity ek is 4, 0 ≤ k ≤
⌊
ξ
2

⌋
− 1 and e⌊ ξ

2 ⌋ is 3.

Theorem 3.4. If e0 > e1 > · · · > e⌊ ξ
2 ⌋ be the

⌈
ξ
2

⌉
eccentricities of the vertices of OX (1, ξ),

where ξ is an odd natural number, then rn (OX (1, ξ)) ≥ 6ξ − 4
⌈
ξ
2

⌉
+ 1 + 8

∑⌊ ξ
2 ⌋−1

i=1 (ξ − i) .

Proof. The eccentricities of vertices are given by e0 = ξ, e1 = ξ − 1 . . . e⌊ ξ
2 ⌋−1 =

⌈
ξ
2

⌉
+

1, e⌊ ξ
2 ⌋ =

⌈
ξ
2

⌉
. Using Lemma 3.2 in Theorem 3.2, we have αi = 4, i = 0, 1 . . .

⌊
ξ
2

⌋
− 1 and

α⌊ ξ
2 ⌋ = 3. Since, αk = α⌊ ξ

2 ⌋ = 3, we must apply the first part of the result in Theorem 4.2 gives,

rn (G) ≥ 2
⌈
ξ
2

⌉
+1+

∑⌊ ξ
2 ⌋−1

i=1 2 (ξ − i) 4 + 2
(
ξ −

⌊
ξ
2

⌋)
3 = 6ξ − 4

⌈
ξ
2

⌉
+ 1 + 8

∑⌊ ξ
2 ⌋−1

i=1 (ξ − i) .

Combining Theorems 3.1, 3.2 and 3.3 yields the following results.

Theorem 3.5. Let ξ be odd. Then, 6ξ − 4
⌈
ξ
2

⌉
+ 1 + 8

∑⌊ ξ
2 ⌋−1

i=1 (ξ − i) ≤ rn (OX (1, ξ)) ≤

ξ2 − 3ξ +
⌈
ξ
2

⌉
+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ 9.

Theorem 3.6. Let ξ be even. Then, 2 (ξ + 1)+8
∑ ξ

2 −1
i=1 (ξ − i) ≤ rn (OX (1, ξ)) ≤ 3ξ2

2 − 5ξ
2 +5.
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Figure 2. A radio labeling of a single-chain silicate structure SL (1, 7) which attains the bound.

3.2 Bounds for Chain Silicate Structures

In this subsection, we have estimated the upper and lower bounds for the radio number of
chain silicate structures.

Theorem 3.7. For any odd natural number ξ, the radio number of single chain Silicate structure
satisfies rn(SL(1, ξ) ≤ ξ2 − 2ξ +

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ ξ

(⌊
ξ
2

⌋
− 1

)
+ 12.

Proof. We name the silicon vertices in single chain silicate SL(1, ξ) as z1, z2 . . . zξ from left
to right and the remaining vertices are named as in OX (1, ξ) . Next, we define an injection
φ : V (SL (1, ξ)) → N as follows: φ (zi) = ξ2−3ξ+

⌈
ξ
2

⌉
+
(⌊

ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ξ (i− 1)+

12, i = 1, 2 . . .
⌈
ξ
2

⌉
, φ

(
z⌈ ξ

2 ⌉+i

)
= ξ2 − 2ξ +

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ ξ (i− 1) + 12, i =

1, 2 . . .
⌊
ξ
2

⌋
. The rest of the vertices are labelled as in Case 1 of Theorem 3.1.

Claim: |φ (x)− φ(y)|+ d (x, y) ≥ 1 + ξ ∀x, y ∈ V (SL (1, ξ)).
Let x, y ∈ V (SL (1, ξ)).
Case 1. Suppose x = zl and y = zm, then φ (x) = ξ2 − 3ξ +

⌈
ξ
2

⌉
+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+

ξ (l − 1) + 12 and φ (y) = ξ2 − 3ξ +
⌈
ξ
2

⌉
+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ ξ (m− 1) + 12, 1 ≤

l ̸= m ≤
⌈
ξ
2

⌉
. Also, d (x, y) ≥ 2. Hence, |φ (x)− φ(y)| + d (x, y) ≥ |ξ (l −m)| + 2 >

ξ + 1, Since l ̸= m.
Case 2. If x = z⌈ ξ

2 ⌉+l and y = z⌈ ξ
2 ⌉+m, then d

(
z⌈ ξ

2 ⌉+l, z⌈ ξ
2 ⌉+m

)
≥ 2 and φ

(
z⌈ ξ

2 ⌉+l

)
= ξ2 −

2ξ+
(⌊

ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ξ (l − 1)+12, φ

(
z⌈ ξ

2 ⌉+m

)
= ξ2−2ξ+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+

ξ (m− 1) + 12, 1 ≤ l ̸= m ≤
⌊
ξ
2

⌋
. Since l ̸= m, the condition becomes |φ (x)− φ (y)| +

d (x, y) ≥ |ξ (l −m)|+ 2 > ξ + 1.
Case 3. Assume that x = zl and y = z⌈ ξ

2 ⌉+m, then

φ (zl) = ξ2 − 3ξ +
⌈
ξ
2

⌉
+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ ξ (l − 1) + 12, 1 ≤ l ̸= m ≤

⌊
ξ
2

⌋
and

φ (y) = φ
(
z⌈ ξ

2 ⌉+m

)
= ξ2−2ξ+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ξ (m− 1)+12, 1 ≤ l ̸= m ≤

⌊
ξ
2

⌋
.

Case 3.1. If l = m, then d
(
zl, z⌈ ξ

2 ⌉+l

)
=

⌈
ξ
2

⌉
+ 1 and so] |φ (x)− φ (y)| + d (x, y) ≥∣∣∣−ξ +

⌈
ξ
2

⌉∣∣∣+⌈
ξ
2

⌉
+1 ≥ ξ+1.So, d (x, y) ≥ 2. Hence, |φ (x)− φ(y)|+d (x, y) ≥ |ξ (l −m)|+

2 > ξ + 1, Since l ̸= m.
Case 3.2. If l = m+ 1, then d

(
zm+1, z⌈ ξ

2 ⌉+m

)
=

⌈
ξ
2

⌉
and

∣∣∣φ (zm+1)− φ
(
z⌈ ξ

2 ⌉+m

)∣∣∣
=

∣∣∣−ξ +
⌈
ξ
2

⌉
+ ξ

∣∣∣ = ⌈
ξ
2

⌉
. Therefore, |φ (x)− φ(y)| + d (x, y) ≥ 2

⌈
ξ
2

⌉
> ξ + 1. Otherwise,

|φ (x)− φ(y)| ≥ ξ which trivially verifies the condition.
Case 4. Suppose that x = v⌈ ξ

2 ⌉+l and y = z⌈ ξ
2 ⌉+m, 1 ≤ l,m ≤

⌊
ξ
2

⌋
, then φ (x) = ξ2 − 3ξ +⌈

ξ
2

⌉
+9+(i− 1)

(
2
⌈
ξ
2

⌉
+ 3

)
and φ (y) = ξ2−2ξ+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ξ (m− 1)+12.
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If l =
⌊
ξ
2

⌋
and m = 1, then d

(
vξ, z⌈ ξ

2 ⌉+1

)
=

⌊
ξ
2

⌋
and

∣∣∣φ (vξ)− φ
(
z⌈ ξ

2 ⌉+1

)∣∣∣ =
⌈
ξ
2

⌉
+ 2.

Otherwise, |φ (x)− φ (y)| > ξ. Hence, |φ (x)− φ (y)|+ d (x, y) ≥ ξ + 1.
Case 5. If x = zl and y = u⌈ ξ

2 ⌉+m, then φ (zl) = ξ2 − 3ξ +
⌈
ξ
2

⌉
+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+

ξ (l − 1)+12, 1 ≤ l,m ≤
⌊
ξ
2

⌋
and φ

(
u⌈ ξ

2 ⌉+m

)
= ξ2−3ξ+

⌈
ξ
2

⌉
+9+(m− 1)

(
2
⌈
ξ
2

⌉
+ 3

)
, 1 ≤

l,m ≤
⌊
ξ
2

⌋
. If l = 1 and m =

⌊
ξ
2

⌋
, then d (x, y) = ξ and |φ (x)− φ (y)| = 3 . Otherwise,

|φ (x)− φ (y)| > ξ + 1. So, |φ (x)− φ (y)|+ d (x, y) ≥ ξ + 1.
Case 6. Presume that x ∈ { zk\k = 1, 2 . . . ξ} and y is another other vertex in SL (1, ξ) except
the cases 4 and 5, then |φ (x)− φ (y)| > ξ and hence we get |φ (x)− φ (y)|+ d (x, y) ≥ ξ + 1.
The rest of the cases can be discussed and verified as in Theorem 3. 1. Since, the vertex zξ was
labelled with the maximum number ξ2 − 2ξ+

(⌊
ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ ξ

(⌊
ξ
2

⌋
− 1

)
+ 12 and

hence, rn(SL(1, ξ)) ≤ ξ2 − 2ξ +
(⌊

ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ ξ

(⌊
ξ
2

⌋
− 1

)
+ 12 , ξ is odd.

Lemma 3.3. Let e0, e1 . . . e⌊ ξ
2 ⌋ be the eccentricities of the vertices of SL(1, ξ), where ξ is

an odd natural number. If ek > ek+1, k = 0, 1, 2 . . .
⌊
ξ
2

⌋
, then the number of vertices with

eccentricity ek is 6, 0 ≤ k ≤
⌊
ξ
2

⌋
− 1 and e⌊ ξ

2 ⌋ is 4.

Proof. We have noticed that the vertices in the sets
{
u1, w1, z1, uξ+1, w⌈ ξ

2 ⌉, zξ
}

,{
u2, v1, z2,uξ, w⌊ ξ

2 ⌋, zξ−1

}
. . .

{
u⌊ ξ

2 ⌋, w⌈ ξ
4 ⌉, z⌊ ξ

2 ⌋, u⌈ ξ
2 ⌉+2, w⌊ ξ

4 ⌋+1, z⌊ ξ
2 ⌋+1

}
having eccen-

tricities e0, e1 . . . e⌊ ξ
2 ⌋−1 and

{
u⌈ ξ

2 ⌉, u⌈ ξ
2 ⌉+1, v⌈ ξ

4 ⌉
, z⌊ ξ

2 ⌋

}
having eccentricity e⌊ ξ

2 ⌋. There-

fore, the number of vertices in each set shows that the number of vertices with eccentricity
ek as 6, 0 ≤ k ≤

⌊
ξ
2

⌋
− 1 and e⌊ ξ

2 ⌋ is 4.

Theorem 3.8. Let e0 > e1 > · · · > e⌊ ξ
2 ⌋ be the

⌈
ξ
2

⌉
eccentricities of the vertices of single chain

silicate structure SL (1, ξ). Then, rn (SL (1, ξ)) ≥ 6ξ−4
⌈
ξ
2

⌉
+1+8

∑⌊ ξ
2 ⌋−1

i=1 (ξ − i) , ξ is odd.

Proof. The eccentricities of vertices are given by e0 = ξ, e1 = ξ − 1 . . . e⌊ ξ
2 ⌋−1 =

⌈
ξ
2

⌉
+

1, e⌊ ξ
2 ⌋ =

⌈
ξ
2

⌉
. Using Lemma 3.3 and Theorem 3.2, we have αi = 6, i = 0, 1 . . .

⌊
ξ
2

⌋
− 1

and α⌊ ξ
2 ⌋ = 4. Since, αk = 3 > 1, we get, rn (SL (1, ξ)) ≥ 3ξ + 1 − 2

(
ξ −

⌈
ξ
2

⌉)
+∑⌊ ξ

2 ⌋
i=1 2 (ξ − i) 6 + 2

(
ξ −

⌊
ξ
2

⌋)
4 = ξ + 10

⌈
ξ
2

⌉
+ 1 + 12

∑⌊ ξ
2 ⌋−1

i=1 (ξ − i) .

Combining Theorems 3.7 and 3.8, we get the following result:

Theorem 3.9. Let ξ be odd. Then the radio number of single chain silicate structure lies between

6ξ− 4
⌈
ξ
2

⌉
+1+8

∑⌊ ξ
2 ⌋−1

i=1 (ξ − i) and ξ2 − 2ξ+
(⌊

ξ
2

⌋
− 1

)(
2
⌈
ξ
2

⌉
+ 3

)
+ ξ

(⌊
ξ
2

⌋
− 1

)
+12.

Theorem 3.10. Let ξ be an even natural number. Then the radio number of single chain silicate
structure satisfies rn(SL(1, ξ) ≤ ξ2 − ξ +

(
ξ
2 − 1)

)
(2ξ + 4) + 10.

Proof. First we label the vertices of OX (1, ξ) as same as of Case 1 in Theorem 3. 1. Then label
the rest of the vertices, namely the silicon vertices as φ(zi) = ξ

2 − 3ξ+
(

ξ
2 − 1

)
(ξ + 3) + ξ

2 +

(ξ + 1) (i− 1) + 9, i = 1, 2 . . . ξ
2 .

φ
(
z ξ

2 +i

)
= ξ

2
− 2ξ +

(
ξ

2
− 1

)
(ξ + 3) + (ξ + 1) (i− 1) + 10, i = 1, 2 . . .

ξ

2
.

Since the rest of the proof is Similar to Theorem 3.1 and Theorem 3.2, we omit the proof.

Lemma 3.4. Let ξ be even. If e0, e1 . . . e ξ
2

be the eccentricities of the vertices of SL(1, ξ),
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such that ek > ek+1, k = 0, 1, 2 . . . ξ
2 − 1, then the number of vertices with eccentricity

ek is 6, 0 ≤ k ≤ ξ
2 − 1 and e ξ

2
is 1.

Theorem 3.11. If e0 > e1 > · · · > e ξ
2

be the ξ
2 + 1 eccentricities of the vertices of SL(1, ξ),

then rn (OX(1, ξ), ) ≥ 3ξ + 2 + 12
∑ ξ

2 −1
i=1 (ξ − i) , ξ is even.

As the proof of Lemma 3.4 and Theorem 3.6 are the combinations of Lemmas 3.1, 3.3 and
Theorems 3.3, 2.4, we left the proof to the reader.

Combining Theorems 3.10 and 3.11, we acquired the following theorem.

Theorem 3.12. Let ξ be even. Then the radio number of SL (1, ξ) lies between 3ξ + 2 +

12
∑ ξ

2 −1
i=1 (ξ − i) and ξ2 − ξ +

(
ξ
2 − 1)

)
(2ξ + 4) + 10.

3.3 Upper Bounds for cyclic Silicate and oxide Structure

Theorem 3.13. Let SLc (ξ) be the cyclic silicate having the diameter
⌊
ξ
2

⌋
+1, then for ξ> 5 the

radio number of SLc (ξ) satisfies, rn(SLc (ξ) ))≤


3ξ2

4 +5, ξ is even

2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋ ⌈
ξ
2

⌉
+4, ξ is odd

.

Proof. First let us partition the vertex set of SLc (ξ) into three disjoint sets V1, V2 and V3 such
that V1 contains the silicate vertices, V2 and V3 contains the oxide vertices of degree 6 and 3
respectively. Again, we name the vertices in V1, V2 and V3 as {w1, w2. . .wξ}, {u1, u2. . .uξ} and
{v1, v2. . .vξ} respectively. Next, we assign distinct natural numbers to V (SLc (ξ)) as follows:
φ (ui)=

(⌊
ξ
2

⌋
+1

)
(i−1)+1, i= 1, 2 . . .

⌈
ξ
2

⌉
,

φ
(
u⌈ ξ

2 ⌉+i

)
=
(⌊

ξ
2

⌋
+1

)
(i−1)+3, i= 1, 2 . . .

⌊
ξ
2

⌋
,

φ (vi)=
⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋
(i−1)+3, i= 1, 2 . . .

⌈
ξ
2

⌉
,

φ
(
v⌈ ξ

2 ⌉+i

)
=
⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋
(i−1)+4, i= 1, 2 . . .

⌊
ξ
2

⌋
, φ (wi)=2

(⌊
ξ
2

⌋)2
+
⌊
ξ
2

⌋
i+4

i= 1, 2 . . .
⌈
ξ
2

⌉
, φ

(
w⌈ ξ

2 ⌉+i

)
= 2

(⌊
ξ
2

⌋)2
+
⌊
ξ
2

⌋
i+5, i= 1, 2 . . .

⌊
ξ
2

⌋
. This mapping is evident

through Figure 3. Now, we verify the above mapping φ is a valid radio labeling. Since the diame-
ter of SLc (ξ) is

⌊
ξ
2

⌋
+1, we must show that |φ (x)−φ(y)|+d (x, y)≥2+

⌊
ξ
2

⌋
∀ x, y∈V (SLc (ξ) ).

Let x, y∈V (SLc (ξ) ).
Case 1.Choose x and y in the set V2.
Case 1.1. If x and y are any two distinct vertices in V2 such that x=us and y=uk, 1≤s̸=k≤

⌈
ξ
2

⌉
,

then under the mapping φ, the labeling of x and y are
(⌊

ξ
2

⌋
+1

)
(s−1)+1 and(⌊

ξ
2

⌋
+1

)
(k−1)+1 respectively. Hence, |φ (x)−φ(y)|+d (x, y)≥

⌊
ξ
2

⌋
+2, since s̸=k.

Case 1.2. If x, y∈V2 such that x=u⌈ ξ
2 ⌉+s and y=u⌈ ξ

2 ⌉+k , 1≤s̸=k≤
⌊
ξ
2

⌋
,

then |φ (x)−φ (y)|=
∣∣∣(⌊ ξ

2

⌋
+1

)
(s−1)+3−

((⌊
ξ
2

⌋
+1

)
(k−1)+3

) ∣∣∣=∣∣∣(s−k)
(⌊

ξ
2

⌋
+1

)∣∣∣ , Since s̸=k, we get, |φ (x)−φ (y)|+d (x, y)≥
⌊
ξ
2

⌋
+2.

Case 1.3. Assume that x=us and y=u⌈ ξ
2 ⌉+k . 1≤s≤

⌈
ξ
2

⌉
, 1≤k≤

⌊
ξ
2

⌋
. Then d (x, y)≥1 and

φ (us) =
(⌊

ξ
2

⌋
+1

)
(s−1)+1 and φ

(
u⌈ ξ

2 ⌉+k

)
=

((⌊
ξ
2

⌋
+1

)
(k−1)+3

)
. If s = k, then us

and u⌈ ξ
2 ⌉+k assigned with a labeling difference exactly 2. Also, since they are diametrically

opposite vertices, the radio labeling condition is satisfied. Otherwise,
|φ (x)−φ(y)|+d (x, y)≥

∣∣∣(⌊ ξ
2

⌋)
(s−)+1−

((⌊
ξ
2

⌋
+1

)
(k−1)+3

)∣∣∣+1 >
⌊
ξ
2

⌋
+2, since s̸=k.
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Figure 3. A radio labeling of cyclic silicates SLc (ξ) )for ξ =7 and 12 which attains the bound
as in Theorem 3.13 and Theorem 3.14.

Case 2. Let x, y ∈ V3.
Case 2.1. Guess x and y takes the form vs and vk, 1≤s̸=k≤

⌈
ξ
2

⌉
, then

φ (vs) =
⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋
(s−1)+3 , φ (vk) =

⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋
(k−1)+3 and

d (vs, vk) ≥ 2. Again, since s̸=k, we get
|φ (x)−φ(y)|+d (x, y)≥

∣∣∣(⌊ ξ
2

⌋)
(s−1)−

((⌊
ξ
2

⌋)
(k−1)

) ∣∣∣+2≥
⌊
ξ
2

⌋
+2.

Case 2.2. suppose we take x=v⌈ ξ
2 ⌉+s and y=v⌈ ξ

2 ⌉+k, 1≤s̸=k≤
⌊
ξ
2

⌋
, then the modulus dif-

ference of φ
(
v⌈ ξ

2 ⌉+s

)
and φ

(
v⌈ ξ

2 ⌉+k

)
v⌈ ξ

2 ⌉+k is at least
⌊
ξ
2

⌋
. Further, the distance between

v⌈ ξ
2 ⌉+s and v⌈ ξ

2 ⌉+k is at least two. Hence, the radio labeling condition becomes, |φ(x)−φ(y)|+

d(x, y) ≥
⌊
ξ
2

⌋
+ 2.

Case 2.3. Assume that x=vs and y=v⌈ ξ
2 ⌉+k, 1≤s≤

⌈
ξ
2

⌉
, 1≤k≤

⌊
ξ
2

⌋
. Then, d (x, y)≥1 and

|φ (x)−φ(y)| =
∣∣∣⌊ ξ

2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋
(s−1)+3−

(⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋
(k−1)+4

)∣∣∣
If s = k, then d

(
vs, v⌈ ξ

2 ⌉+s

)
=

⌊
ξ
2

⌋
+1, else

∣∣∣φ(vs)−φ
(
v⌈ ξ

2 ⌉+s

)∣∣∣ ≥ ⌊
ξ
2

⌋
and d

(
vs, v⌈ ξ

2 ⌉+s

)
=

2. Hence in both the chances, |φ (x)−φ(y)|+d (x, y)≥
⌊
ξ
2

⌋
+2.

Case 3. Choose x and y in V1.

Case 3.1. If x = ws and y = wk, 1≤s̸=k≤
⌈
ξ
2

⌉
, then φ (ws) = 2

(⌊
ξ
2

⌋)2
+
⌊
ξ
2

⌋
s+4 , φ (wk) =

2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋
k+4. Also, the distance between ws and wk is at least 2. So, the radio labeling

condition becomes
, |φ (x)−φ(y)|+d (x, y)≥

∣∣∣∣2(⌊ ξ
2

⌋)2
+
⌊
ξ
2

⌋
s+4−

(
2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋
k+4

) ∣∣∣∣+2≥
⌊
ξ
2

⌋
+2, since

s̸=k.
Case 3.2. If we choose x as w⌈ ξ

2 ⌉+s and y as w⌈ ξ
2 ⌉+k, 1≤s̸=k≤

⌊
ξ
2

⌋
, then |φ (x)−φ(y)| ≥∣∣∣∣2(⌊ ξ

2

⌋)2
+
⌊
ξ
2

⌋
s+5−

(
2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋
t+5

)∣∣∣∣ ≥ ⌊
ξ
2

⌋
, since s̸=k. Again, in this case, the min-

imum distance between w⌈ ξ
2 ⌉+s and w⌈ ξ

2 ⌉+k is 2. Hence, the radio labeling condition is verified.

Case 3.3. Let x=ws and y=w⌈ ξ
2 ⌉+k, 1≤s≤

⌈
ξ
2

⌉
, 1≤k≤

⌊
ξ
2

⌋
. Then, d

(
ws, w⌈ ξ

2 ⌉+k

)
≥1 and∣∣∣φ (ws)−φ(w⌈ ξ

2 ⌉+k)
∣∣∣ =

∣∣∣∣2(⌊ ξ
2

⌋)2
+
⌊
ξ
2

⌋
s+4−

(
2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋
t+5

)∣∣∣∣ =
∣∣∣⌊ ξ

2

⌋
(s−k)− 1

∣∣∣ .
If s = k, then d (x, y) =

⌊
ξ
2

⌋
+ 1, otherwise, d

(
ws, w⌈ ξ

2 ⌉+s

)
= 2 and

∣∣∣φ(ws)−φ
(
w⌈ ξ

2 ⌉+s

)∣∣∣ ≥
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⌊
ξ
2

⌋
. Hence in both the possibilities, the radio labeling condition is verified.

Case 4. Suppose ξ is odd and x ∈ V2, y ∈ V3. Then, the minimum and maximum values of
φ (x) are 1 and

(⌊
ξ
2

⌋
+1

)(⌈
ξ
2

⌉
−1

)
+1 respectively. Also, from the mapping φ, the least value

of φ (y) is
(⌊

ξ
2

⌋
+1

)(⌈
ξ
2

⌉
−1

)
+3. Further, in this case, d (x, y) =

⌊
ξ
2

⌋
and hence we get,

|φ (x)−φ(y)|+d (x, y)≥2 +
⌊
ξ
2

⌋
.

Case 5. Choose x ∈ V2, y ∈ V3 and ξ as even. Then, the maximum value of φ (x) which is as-
signed to the vertex uξ is

(⌊
ξ
2

⌋
+1

)(⌈
ξ
2

⌉
−1

)
+1 and the least value of φ (y) is

⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+3.

Again, in this case, since d (x, y) ≥ 2, hence we get,|φ (x)−φ(y)|+d (x, y)≥∣∣∣(⌊ ξ
2

⌋
+1

)(⌈
ξ
2

⌉
−1

)
+1 −

(⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+3

)∣∣∣ ≥ 2 +
⌈
ξ
2

⌉
= 2 +

⌊
ξ
2

⌋
.

Case 6. If x ∈ V2 and y ∈ V1, then, from the assigned labeling pattern, the difference between

the maximum φ (x) and minimum φ (y) values is greater than
(⌊

ξ
2

⌋)2
. Hence, the radio labeling

condition is trivially satisfied.
Case 7. Let x ∈ V3, y ∈ V1
Case 7.1. If ξ is even, then, the maximum value of φ (x) is labelled to the vertex vξ as⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋(⌊
ξ
2

⌋
−1

)
+4 and the minimum value of φ (y) is labelled to the vertex w1

as2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋
+4. Hence, the difference between φ (w1)and φ (vξ) is

⌊
ξ
2

⌋
. The condition is

now verified in this case because, the distance between them is 2.
Case 7.2. If ξ is odd, then, the maximum value of φ (x) labelled to the vertex
v⌈ ξ

2 ⌉ is
⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋(⌈
ξ
2

⌉
−1

)
+3 and the minimum value of φ (y) labelled to the ver-

tex w1 is

2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋
+4. So, the difference between φ (w1)and φ (vξ) is 1 and d (x, y) =

⌊
ξ
2

⌋
+ 1.

Thus, |φ (x)−φ(y)|+d (x, y)≥2 +
⌊
ξ
2

⌋
.

Hence, the mapping φ is a valid radio labeling. Therefore, if ξ is even, then the vertex

wξ received the maximum number 2
(⌊

ξ
2

⌋)2
+
⌊
ξ
2

⌋ ⌊
ξ
2

⌋
+5 = 3

4ξ
2 + 5 and if ξ is odd, then the

vertex w⌈ ξ
2 ⌉ received the maximum number 2

(⌊
ξ
2

⌋)2
+
⌊
ξ
2

⌋ ⌈
ξ
2

⌉
+4 , which is the required ra-

dio number of SLc (ξ).

Theorem 3.14. Let OXc (ξ) be the cyclic oxide having diameter
⌊
ξ
2

⌋
+ 1, then for the same

labeling pattern as in Theorem 3.1, the radio number of OXc (ξ) satisfies,

rn(OXc (ξ) )≤


⌊
ξ
2

⌋(⌊
ξ
2

⌋
+1

)
+
⌊
ξ
2

⌋(⌈
ξ
2

⌉
−1

)
+3, ξ is odd

2
(⌊

ξ
2

⌋)2
+4, ξ is even

, where ξ > 5.

Proof. As the proof is similar to Theorem 3.13, we omit the proof.

The bounds obtained in this research work provides the maximum usage of bandwidth for the
communication networks designed in the form of chain or cyclic silicates. Further, these results
help to study the properties of protein-protein interaction networks.

4 Conclusion remarks

This research work pertaining to the chemical graphs has explored the ways to study radio fre-
quency difference between the atoms of the molecules (vertices) by the interesting concept in
telecommunication called radio labeling. As, cyclic, single chain oxide and silicate structures
are obtained by continuously fusing oxygen ions of two tetrahedra of different silicates, the up-
per bounds for the radio number for such chemical structures have been successfully presented.
Further, the lower bounds for the single chain chemical structures have been proven by calculat-
ing the eccentricities of the vertices. This problem is still open to other forms of chemical graphs
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such as double-chain silicates, silicate sheets, silicate networks oxide networks and copper oxide
networks.
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