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Abstract This paper aims to study the existence and uniqueness of weak periodic solutions
for certain non-linear elliptic equations with measured data, and arbitrary growth with respect to
the solution. As the data are not regular and the growths are arbitrary, a new approach is needed
to analyse these types of equations. The main operator of our equation is strongly non-linear, thus
classical numerical methods such as finite elements, and finite differences cannot be used here.
Therefore, the lattice Boltzmann method (LBM) is proposed. This method is fully discretized
for our equation. Finally, several numerical examples are given showing the robustness of the
proposed algorithm.

1 Introduction

PDEs are widely used to simulate extremely complicated physical systems, structural dynamics
and fluid mechanics, as well as theories of gravitation, electromagnetism (Maxwell’s equations)
or finance. They are used extensively in science. In fact, they play a crucial role in areas such as
weather forecasting, image synthesis and aeronautical simulation.

Dirichlet and Neumann boundary conditions are two of the many boundary conditions fre-
quently encountered when solving partial differential equations [1]. Although, in certain cases,
these conditions are periodic, such as in the modelling of molecular mechanics and molecular
dynamics, they are not always the same.

Many techniques can be used to determine whether the existence of periodic solutions for
a specific problem is ensured. Notably, the fixed point theorem, the topological degree, the
bifurcation theory and the Lyapunov function method are one of the techniques used to study the
existence of such solutions. For more details, we refer the readers to see [5], [9], [11].

The aim of this paper is to study the existence of weak solutions for a class of nonlinear
elliptic equations subject to periodic boundary conditions. The model equation is given by the
following sense {

u(t)− (|u′|p−2u′)′(t) + j (t, u(t)) = f in (0, T )
u(0) = u(T ), u′(0) = u′(T )

(1.1)

where j is a measurable and continuous function with respect to u and periodic with respect to
time t with a period T . The periodicity of j enables its extension to a continuous periodic func-
tion on R, as j(t, r+ kT ) = j(t, r) for all r ∈ (0, T ) and k ∈ Z. The function f is a nonnegative
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bounded Radon measure on the interval ]0, T [.

Before proceeding to the main objective of this work, a few well-known results are recalled,
in which the techniques used are relatively close to the one used here.

The semilinear case of equation (1.1) corresponds to the case when p = 2, which can be
written as: {

u(t)− u′′(t) + j (t, u(t)) = f in (0, T )
u(0) = u(T ), u′(0) = u′(T )

(1.2)

Numerous researches have been already carried out on this specific topic. Thereafter, some
important results are presented, which help us to situate the main objective of this work:

• When p = 2, one distinguishes between the regular and non-regular case of f :

– case where f ∈ L2(0, T ) was treated in [15], where the authors proved the existence
of a periodic solution u ∈ H2(0, T ) via lower and upper solution technique.

– case where f ∈ M+
B(0, T ) and p = 2 was considered in [2], where the existence of a

periodic solution u ∈ W 1,1
per(0, T ) was proved.

• Case where p ̸= 2 and j ≡ 0 was treated in [13], in which the model problem was written
as {

u(t)− (|u′|p−2u′)′(t) = f in (0, T )
u(0) = u(T ), u′(0) = u′(T )

(1.3)

The authors conducted an analysis of the given problem, and proved the existence and
uniqueness of a periodic solution when f belongs to Lp′

(0, T ).

The most significant novelty of this paper is the fact that 1 < p < ∞ and f is irregular. The
aim of this work is to study the existence and uniqueness of weak periodic solutions when f is
only a radon measure, and the nonlinearity j has an arbitrary growth with respect to the solution
u.

Another important aspect we deal with in this work is the numerical simulation of the pro-
posed model. A number of numerical approximation techniques for ODEs and PDEs exist, in-
cluding finite difference, finite element or finite volume, ect.... However, the proposed problem
is unique as it deals only with Radon data measures and involves a strongly non-linear principal
operator, which makes conventional numerical methods unsuitable in this case. Therefore, the
Lattice Boltzmann Method (LBM) was chosen, which is a relatively new method compared to
conventional approaches. The LBM method is derived from the kinetic theory of gases devel-
oped by Boltzmann which was first proposed by [12].
The Lattice Boltzmann method is widely applied to fluid dynamics [7, 16], and constitutes of a
mesoscopic approach to simulate macroscopic phenomena governed by partial differential equa-
tion problems. Among its features are, the simplicity of the computational procedure, the effi-
ciency of the computer code implementation and its high accuracy.

The remainder of this paper is organised as follows. In the second section, the assumptions
and hypotheses related to the proposed problem are outlined, and the adapted notion of the weak
periodic solution for problem (1.1) is given. Afterwards, the main result on the existence and
uniqueness of a weak periodic solution is given. Section 3 is devoted to a result on the existence
and uniqueness of weakly periodic solutions when the data f is regular. In section 4, the proof
of the main result is presented. Section 5 focuses on the numerical simulation of our general
periodic problem, using the Lattice Boltzmann Method (LBM) as a micro-macro solver. In
section 6, we have the conclusion and some perspectives.

2 Statement of the theoretical main result

Throughout this paper, we assume the following:

A1) f ∈ M+
B(0, T ) and T-periodic.

A2) j : [0, T ]×R → [0,+∞[ is a measurable function, and j(., r) is T-periodic.
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A3) ∀t, r → j(t, r) is continuous and non-decreasing.

A4) ∀t ∈ [0, T ], max {j(t, r), |r| ≤ R} ≤ c(|R|)
where c : [0,+∞ [→ [0,+∞ [ is non-decreasing.

Considers for 1 ⩽ p ⩽ ∞ the following space,

W 1,p
per(0, T ) =

{
u ∈ W 1,p(0, T ), such that u(0) = u(T )

}
which is equipped with the norm that is induced by W 1,p(0, T )

∥u∥1,p = ∥u∥p + ∥u′∥p .

When p = 2, this space is denoted by H1
per(0, T ).

Now, we define the concept of periodic Radon measure

Definition 2.1. We denote by M+
B(0, T ) the set of nonnegative bounded Radon measure on

]0, T [.
The function f ∈ M+

B(0, T ) is said to be T-periodic, if there exists fε ∈ C([0, T ])+ such that,
fε(0) = fε(T ) and

∀ϕ ∈ C([0, T ]), < f, ϕ >= lim
ε→0

∫ T

0
fεϕ

An example of a 1-periodic Radon measure is f = δ 1
2
. Since the Lorentzian sequence

fε(t) =
1
πε

1

1 +
(t− 1

2 )
2

ε2

(2.1)

is 1-periodic continuous (in the sense that fε is defined on [0, 1] by (2.1), and its extension outside
]0, 1[ is given by fε(t+k) = fε(t) with k ∈ Z, and t ∈ (0, 1)), one can prove that fε is convergent
in the sense of measure to δ 1

2
.

Note that the 1-periodic Lorentzian sequence is used in physics and in engineering, particu-
larly in the study of resonant systems and signal processing. Furthermore, it is widely used in
statistics and probability theory as a model for heavy-tailed distributions.

At this stage, we clarify in which sense the notion of a weak periodic solution of problem
(1.1) is understood.

Definition 2.2. A function u is said to be a weak periodic solution (1.1), if
u ∈ W 1,p

per(0, T )∫ T

0
uϕ+

∫ T

0
(|u′|p−2u′)ϕ′ +

∫ T

0
j (t, u)ϕ =< f, ϕ > ∀ϕ ∈ W 1,p

per(0, T )
(2.2)

Remark 2.3. i) For the remainder of this paper, we denote by C every generic and nonnega-
tive constant.

ii) For all 1 ≤ p ≤ ∞, W 1,p
per(0, T ) ↪→ C([0, T ]) with compact embedding.

iii) <,> denotes the duality product between MB(0, T ) and L∞(0, T ).

iv) If u ∈ W 1,p
per(0, T ), then u ∈ L∞(0, T ) and |u′|p−2u′ ∈ Lp′

(0, T ), moreover since j satisfy
(A4) then j(t, u(t)) ∈ L1(0, T ) consequently all the terms in (2.2) make sense.

Now, we state the following main result

Theorem 2.4. Assume that (A2) − (A4) holds, then for all f ∈ M+
B(0, T ), there exists a weak

periodic solution u of (1.1).
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3 An auxiliary existence and uniqueness result

In order to develop the mathematical analysis of the proposed model, we first present a result
on the existence and uniqueness of weak periodic solutions when the data f are regular. In this
section, we consider f ∈ L2(0, T ), T -periodic and we obtain the result given below

Theorem 3.1. Let f ∈ L2(0, T ), T -periodic and j satisfies (A2)-(A4). Then there exists a unique
weak periodic solution of problem (1.1)

u ∈ W 1,p
per(0, T )∫ T

0
uϕ+

∫ T

0
(|u′|p−2u′)ϕ′ +

∫ T

0
j(t, u)ϕ =

∫ T

0
fϕ ∀ϕ ∈ W 1,p

per(0, T )
(3.1)

In addition if f ≥ 0, then u ≥ 0.

Proof. First, we define on L2(0, T ) the following functional

J(u) =


1
p

∫ T

0
|u′|p +

∫ T

0
Jp(t, u) if u ∈ W 1,p

per(0, T )

+∞ else

Where Jp(t, r) =

∫ r

0
j(t, s)ds is the primitive of j with respect to r.

a) Convexity of J:
Since

u 7→ 1
p

∫ T

0
|u′|p,

and

u 7→
∫ T

0
Jp(u)

are convex, then J is convex as the sum of two convex functions.

b) Lower-semicontinuity of J:
To prove that the functional J is l.s.c, it is enough to show that ∀C ∈ R

A = [J ≤ C] = {u ∈ W 1,p
per(0, T ) such that J(u) ≤ C}

is a closed set.

• Let us consider a sequence un ∈ W 1,p
per(0, T ) such that

un → u ∈ W 1,p
per(0, T ).

Since J(un) ≤ C, and un is bounded in W 1,p(0, T ), one must shows that

J(u) ≤ C.

• One can justify the existence of a sub-sequence un,k such that

un,k ⇀ u in W 1,p
per(0, T ),

Therefore,
unk → u a.e (0, T ).

Following the continuity of Jp, we have

Jp(unk(t)) → Jp(u(t)) a.e on (0, T ).

Since Jp is nonnegative, then by using the Fatou’s lemma, one obtains∫ T

0
Jp(u) ≤ lim inf

n→+∞

∫ T

0
Jp(unk) ≤ C.
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By following the l.s.c of the norm ∥ · ∥W 1,p , one can deduce that J(u) ≤ C.
Since J is convex and lower semi-continuous on L2(0, T ), then its sub-differential ∂J is a
maximal monotone operator on L2(0, T ) [4]. Further, we continue the proof by computing
∂J .
By definition, for u ∈ L2(0, T ), one has the following:

∂J(u) = {w ∈ L2(0, T ), J(v)− J(u) ≥< w, v − u > ∀v ∈ L2(0, T )}

Therefore, it is necessary to find w ∈ W 1,p
per(0, T ) such that, for Jp(u) ∈ L1(0, T ) and

∀v ∈ W 1,p
per(0, T ), the following inequality holds

1
p

∫ T

0
|vx|p +

∫ T

0
Jp(v)−

1
p

∫ T

0
|u′|p +

∫ T

0
Jp(u) ≥

∫ T

0
w.(v − u)

By choosing v = u+ zϕ for a z close to 0 and a ϕ ∈ D(0, T ), one gets:

1
p

∫ T

0
|u′ + ϕ′|p +

∫ T

0
Jp(u+ ϕ′)− 1

p

∫ T

0
|u′|p +

∫ T

0
Jp(u) ≥ z

∫ T

0
wϕ

Dividing the inequality by z > 0 then z < 0, then, the limit when z approaches 0 gives :

d

dz |z=0
J1(u+ zϕ) +

d

dz |z=0
J2(u+ zϕ) =

∫ T

0
wϕ

Now, one has

1
p

∫ T

0

d

dz |z=0
|u′ + zϕ′|p +

∫ T

0

d

dz |z=0
Jp(u+ zϕ) =

∫ T

0
wϕ

which yields to the following result
∫ T

0
|u′|p−2u′ϕ′ +

∫ T

0
j(u)ϕ =

∫ T

0
wϕ

u ∈ W 1,p
per(0, T )

Therefore, {
< −(|u′|p−2u′)′ + j(u), ϕ >=< w,ϕ > ∀ϕ ∈ D(0, T )
u ∈ W 1,p

per(0, T )

Thus,
∂J(u) = −(|u′|p−2u′)′ + j(., u)

Using the properties of maximal monotone operators, we obtain ∀λ ≥ 0 and ∀f ∈ L2(0, T )
the existence and uniqueness of a solution to the problem{

λu(x)− ∂J(u) = f(x)

u ∈ W 1,p
per(0, T )

(3.2)

where for λ = 1, the equation (3.2) is equivalent to our main problem and that concludes
the proof.
Now, if f ≥ 0 a.e. in (0,T), we introduce the function sign− defined in R by the following
sense

sign− r =

{
−1 if r < 0
0 if r ≥ 0

as sign− is an increasing function, one considers the convex function jε which is a twice
differentiable function, such that

j′ε(r) → sign− r when ε → 0
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Let’s take j′ε(u) as a test function, then we get∫ T

0
uj′ε(u) +

∫ T

0
|u′|p−2u′j′′ε (u) +

∫ T

0
j (t, u) j′ε(u) =< f, j′ε(u) > .

Using the convexity of jε, one can deduce that∫ T

0
|u′|p−2u′j′′ε (u) ≥ 0

for the other terms, we have

lim
ε→0

∫ T

0
j(t, u)j′ε(u) = lim

ε→0

∫
[u≥0]

j(t, u)j′ε(u) +

∫
[u<0]

j(t, u)j′ε(u) =

∫
[u<0]

j(t, u) ≥ 0,

which follows that

lim
ε→0

∫ T

0
uj′ε(u) ≤ lim

ε→0

∫ T

0
j′ε(u)f,

this implies that ∫ T

0
u− ≤ −

∫ T

0
f ≤ 0

This leads to conclude that u ≥ 0 a.e. in [0, T ].

4 Proof of the main result

Since f ∈ M+
B(0, T ), then there exists fn ∈ L2(0, T ) fn ≥ 0 such that ∥fn∥L1 ≤ ∥f∥MB

,
and which converges to f in M+

B(0, T ). According to the last theorem, there exists a weak
nonnegative periodic solution un of

un ∈ W 1,p
per(0, T ), un ≥ 0∫ T

0
unϕ+

∫ 1

0
|u′

n|p−2u′
nϕ

′ +

∫ T

0
j (t, un)ϕ =

∫ T

0
fnϕ ∀ϕ ∈ W 1,p

per(0, T )
(4.1)

In this section, the main ingredient for the proof of Theorem 2.4 will be developed. First, we
derive some apriori estimates to finally prove that under appropriate additional assumptions, the
solution of the approximated problem (4.1) converges to a weakly periodic solution of (1.1).
For the remainder of this paper, we denote by C any generic and nonnegative constant depending
only on T .

Lemma 4.1. Let un be the sequence defined as above, then, there exists a constant C such that:

i) ∥un∥p ≤ C(T ) ∥u′
n∥p

ii)
∫ T

0
|un| dt+

∫ T

0
|j(t, un)| dt ≤ ∥f∥MB

iii)
∥∥|u′

n(t)|p−2u′
n

∥∥
p′ ≤ C(T ) ∥f∥MB

Proof. Let’s take ϕ ≡ 1 as a test function in (4.1) to get∫ T

0
un +

∫ T

0
j (t, un) =

∫ T

0
fn ≤ ∥f∥MB

since un and j(t, un) ≥ 0, then one obtains i) and ii).
Finally, let θn be defined as θn = |u′

n|p−2u′
n. We deduce from (4.1) that

θn(t)
′ = un + j(t, un)− fn

Then θn is bounded in V B(0, T ). Therefore un is compact in L1(0, T ). Then there exists a
sub-sequence still denoted by un and u ∈ L1(0, T ) such that, un → u strongly in L1 and a.e in
(0, T ). Moreover, θn is bounded in Lp′

(0, T ), then, θn ⇀ θ weakly in Lp′
(0, T ).
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According to i) and ii), one can deduce that un is bounded in W 1,p
per(0, T ). consequently, there

exists a sub-sequence still denoted by un and u ∈ W 1,p
per(0, T ) such that{

un ⇀ u weakly in W 1,p
per(0, T )

un −→ u strongly in C([0, T ])

Therefore, according to (H4) we get

j(t, un) −→ j(t, u) in L1(0, T ).

Moreover, the almost everywhere convergence result of the gradient of [3] applies in this case.
Hence, we deduce the existence a subsequence still denoted by un such that

u′
n → u′ a.e. in ]0, T [

According to (iii), we have that |u′
n(t)|p−2u′

n is bounded in Lp′
. This implies that{

|u′
n(t)|p−2u′

n → |u′(t)|p−2u′ a.e. in ]0, T [
|u′

n(t)|p−2u′
n ⇀ |u′(t)|p−2u′ weakly in Lp′

(0, T ),

which allows one to pass to the limit in (4.1) to obtain that u satisfies
u ∈ W 1,p

per(0, T )∫ T

0
uϕ+

∫ T

0
(|u′|p−2u′)ϕ′ +

∫ T

0
j (t, u)ϕ =< f, ϕ > ∀ϕ ∈ W 1,p

per(0, T )

5 Numerical simulation

5.1 The Lattice Boltzmann method

The Lattice Boltzmann method is derived from the kinetic theory of gases as well as cellular au-
tomata, and models the fluid as a set of microscopic particles [8]. It is based on microscopic and
mesoscopic kinetic equations, unlike traditional schemes based on macroscopic Navier-Stokes
equations. Moreover, this method has the advantage of being fast to implement and allows
simple boundary conditions to be expressed. The LBM method describes the evolution of the
discretized particle distribution functions fi(x, t) in space x and time t, along the direction with
a velocity ci.
In this paper, the D1Q3 model is used, where D1 represents the one-dimensional domain and Q3
represents the three velocities. The Lattice Boltzmann Method (LBM) can be divided into two
main steps: the collision step and the streaming step.
In the collision step, the LBM calculates the local equilibrium distribution function of the fluid
particles at each node of the lattice, based on the current values of macroscopic variables such
as density, velocity and temperature. In the streaming step, the LBM updates the distribution
functions through moving the fluid particles along the lattice’s discrete velocity vectors, based
on the result of the particle’s collision.
Most interestingly, the LBM method can solve both linear and non-linear partial differential
equations.
The discrete LBM equation is:

fi(x+ vi △ t, t+△t) = fi(x, t) +
△t

τ
[feq

i (x, t)− fi(x, t)] (5.1)

where fi(x, t) is the probability density of having a particle at position x and time t. τ denotes
the equilibrium relaxation time, and feq designates the equilibrium distribution function.
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5.2 Applications

In this section, we consider the equation (1.1) with T = 1. Let us first introduce the microscopic
time s, u = u(t, s) and set

k(t, s) =

∣∣∣∣∂u(t, s)∂t

∣∣∣∣p−2

and
F (t, s) = f − j(t, u(t, s))− u(t, s)

The equation (1.1) will then be written

∂

∂t

(
k(t, s)

∂u

∂t

)
= F (t, s) (5.2)

In this study, the model D1Q3 is used [6], [17]. To do this, the interval [0, 1] is descritized into
m step points, and we take dt = 0.01, the microscopic time step ds = 0.01, and the speed

c =
dt

ds
= 1.

We initialize the solution in s = 0 by u ≡ 1, and we define the distribution functions f (eq)
0 , f (eq)

1 ,
f
(eq)
2 as follows

f
(eq)
i (t, s) =

{
(w0 − 1)u(t, s) for i = 0
wiu(t, s) for i = 1, 2

(5.3)

where wi are the weight coefficients which satisfy the following equations:

2∑
i=0

ωi = 1
2∑

i=0

ωici = 0,
2∑

i=0

ωicici = αc2 (5.4)

For the D1Q3 model, these weights are given by:

w0 =
2
3
, w1 =

1
6
, w2 =

1
6

and the coefficients α, c0, c1 and c−1 are equal to

α =
1
3
, c0 = 0, c1 = c, c−1 = −c.

Therefore, it can deduced that

2∑
i=0

cif
(eq)
i = 0,

2∑
i=0

cicif
(eq)
i = αc2u, (5.5)

where the physical quantity u is given by (see [10])

u(t, s) =
1

1 − ω0

2∑
i=1

f
(eq)
i (t, s) =

1
1 − ω0

2∑
i=1

fi(t, s) (5.6)

Let’s consider ε a rather small expansion parameter, s2 =
s

ε2 and t1 =
t

ε
as before to derive the

equation (5.2), we use the Chapman-Enskog analysis [14] to get

fi = feq
i + εf

(1)
i + ε2f

(2)
i +O(ε2),

∂s = ε2∂s2 +O(ε3), ,

∂t = ε∂t1 +O(ε2),

F = ε2F (2) +O(ε3)

where ∂t1 is the derivative with respect to t1.
Now in order to solve numerically the Lattice Boltzmann equation, we propose to use the LB
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algorithm which consists on the following two processes.
For the collision process, the three distribution functions are calculated at each node by the fol-
lowing formula

fi(t+ cids, s+ ds) = (1 − 1
τ
)fi(t, s) +

1
τ
feq
i (t, s) + dsw̄iF (t, s)

Where ω̄0 = 0, ω̄i =
1
2

(i = 1, 2).
For the propagation process, the only functions that propagates are f1 and f2. The function f1
propagates along the direction c2 = c while f2 propagates along the direction c3 = −c.
By applying the Taylor expansion to the equation (5.2), one can derive the first and second-order
equations in ε:

O(ε) : Dif
eq
i = − 1

τdsf
(1)
i

O
(
ε2
)

: ∂s2f
eq
i +Dif

(1)
i +

ds

2
D2

i f
eq
i = − 1

τds
f
(2)
i + w̄iF (t, s),

where Di = ci · ∂t and D2
i = c2

i · ∂tt.
Substituting these two equations, the first one into the second to obtain

∂s2f
eq
i +Di

[(
1 − 1

2τ

)
f
(1)
i

]
= − 1

τds
f
(2)
i + w̄iF (t, s)

By summing over i and using the fact that
2∑

i=0
f
(k)
i = 0 for k ≥ 1,

2∑
i=0

f
(eq)
i = 0 and that

2∑
i=0

w̄i = 1, we obtain ∑
i

cif
(1)
i = −τds

∑
i

ciDif
(eq)
i

By using (5.3), one gets
2∑

i=0

ciD1if
(eq)
i = αc2∂t1u.

Therefore
2∑

i=0

cif
(1)
i = −τdsαc2∂t1u

Substitute this into the previous equality

−∂t1

(
dsαc2

(
τ − 1

2

)
∂t1u

)
= F (2)

then we multiply by ε2 to get

−∂t

(
dsαc2(τ − 1

2
)∂tu

)
= F

Hence, the function k and the relaxation parameter are related by:

k = dsαc2
(
τ − 1

2

)
(5.7)

Calcul ∂tu and τ(t, s):
Based on the Chapman-Enskog analysis, one can estimate εf

(1)
i byfi − f

eq
i . Thus, we obtain:

∂tu = −

i=2∑
i=0

ci
(
fi − f

eq
i

)
τdsαc2 = −

i=2∑
i=0

cifi

τdsαc2 (5.8)

Using (5.7) and the fact that k(t, s) = |∂tu(t, s)|p−2 to deduce the expression of τ

τ(t, s) =
1
2
+

1
dsαc2 |∂tu(t, s)|p−2 (5.9)
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5.3 Numerical simulation

Numerical simulations were also performed using Matlab software. The LBM method was used
to solve the equation (1.1). Then, an LBM algorithm was created to solve the proposed quasi-
linear periodic equation. The proposed algorithm reads as follows:

Algorithm 1 The LBM algorithm for the proposed quasilinear periodic equation

Initialization: tolerance ε0, and u0, f (0)
i , f (eq)

i , α =
1
3

, w = [
2
3
,

1
6
,

1
6
] , w̄ = [0,

1
2
,

1
2
], ds, dt,

c =
dt

ds
, F (0) = −u0 − j(., u0) + f , u(1) = u0

Repeat until
∥∥u(k+1) − u(k)

∥∥
p
< ε0

Calculate ∂tu
(k) using the formulate (5.8)

Calculate τk using the formulate (5.9)
Calculate F (k) = −u(k) − j(t, u(k)) + f
Calculate fi using the formulate (5.5)

Collision: f (k)
i = f

(k)
i − 1

τk
(f

(k)
i − f

(eq)(k)

i ) + dsw̄iF
(k)

Streaming: f (k+1)
i = f

(k)
i

Calculate: u(k+1) = 3(f (k+1)
1 + f

(k+1)
2 )

end until: when the convergent rule is met.

In order to strengthen this method, the numerical solution obtained in the following two
examples was calculated:

• Example 1:
u(t)− (|u′(t)|p−2

u′(t))′ + u(t)4 = 1 + sin(πt) for 0 < t < 1
u(0) = u(1)
u′(0) = u′(1)

(5.10)

The initial condition is taken u0 ≡ 1, and ds = dt = 0.01.
The solutions corresponding to p = 2, p = 4 and p = 7 are shown respectively in Figure 1,
Figure 2 and Figure 3.

Figure 1. Output solution for p=2
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Figure 2. Output solution for p=4

Figure 3. Output solution for p=7

• Example 2: 
u− (|u′|p−2

u′)′ + u4 = δ 1
2

dans ]0,1[
u(0) = u(1)
u′(0) = u′(1)

(5.11)

The initial condition is u0 ≡ 1, and ds = dt = 0.01.
Using the sequence presented in equation (2.1) to approach δ 1

2
, we obtain the solutions

corresponding to p = 2, p = 4 and p = 7, shown respectively in Figure 4, Figure 5 and
Figure 6.
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Figure 4. Output solution for p=2

Figure 5. Output solution for p=4
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Figure 6. Output solution for p=7.

6 Conclusion

In this paper, we are interested in the mathematical analysis and numerical simulation of a class
of periodic nonlinear equations with non-regular data. When the data are regular, the existence
and uniqueness of the periodic solution using the optimization method are proved. If the data are
not regular (for example Radon measures), then a sequence of periodic solutions based on the
regular case have been constructed.
Once the a priori estimates have been obtained, we have shown that we can extract a subsequence
that converges to the solution of the problem. Subsequently, a numerical algorithm based on the
Lattice Boltzmann Method (LBM) was proposed to simulate the periodic solutions. Numerical
simulations affirm the efficiency and robustness of the proposed algorithm.
Furthermore, in the near future, the main focus will be on the analysis of other numerical methods
for the simulation of periodic solutions such as FEM (Finite Element Method), ANN (Artificial
Neural Networks), etc..... , as well as the analysis of the differences in performance between
these methods, comparing their accuracy, time consumption, etc...
Additionally, the research to be carried out as an extension of this work consists in applying the
proposed approach to the following general periodic system:{

ui(t)− (Ai(t, ui, u
′
i))

′ + ji (t, u, u′) = fi in (0, T )
ui(0) = ui(T ), u′

i(0) = u′
i(T )

(6.1)

where Ai is an operator of type Leray-Lions.
Since the data are only nonnegative Radon measure, and the main operator of is strongly nonlin-
ear, then the classical numerical methods such as finite element, finite difference etc... cannot be
used here. For these reasons, the Lattice Boltzmann Method (LBM) is used. This is a relatively
new method compared with the classical approaches usually used in numerical simulation (finite
element method, etc.).
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