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Abstract By modifying the usual definition of a prime ideal in a skew brace A somewhat, we
define what we call a skew-prime ideal of A, and denote by SpecsA the set of these ideals. We
then endow this set with a Zariski topology in a manner akin to how the set of prime ideals of a
commutative ring is endowed with the Zariski topology. We characterize the irreducible closed
subsets of the resulting topological space, and prove that every irreducible closed subset of the
space has a unique generic point. We give a sufficient condition for the space to be Noetherian.
We study continuous maps between such spaces. Denoting the set of all ideals of A by IdlA,
it turns out that IdlA, partially ordered by inclusion, is a multiplicative lattice with a certain
multiplication introduced here for the first time. We end the paper by observing that Spec(IdlA)
is a spectral space.

1 Introduction

To study non-degenerate involutive set-theoretic solutions of the Yang–Baxter equation, RUMP
introduced a new algebraic structure in [18] called a (left) brace, which was generalized into
noncommutative setting by GUARNIERI & VENDRAMIN in [7] and called a (left) skew brace.
Since the introduction of skew braces, several algebraic properties of them have been studied.
JESPERS, KUBAT,VAN ANTWERPEN, & VENDRAMIN studied factorization of skew left braces
through strong left ideals in [11] and proved analogs of Itô’s theorem in the context of skew
left braces, whereas in [12], they obtained a Wedderburn type decomposition for Artinian skew
left braces and also proved analogues of a theorem of Wiegold, a theorem of Schur and its
converse. In [3], CEDÓ, SMOKTUNOWICZ & VENDRAMIN studied series of left ideals of skew
left braces that are analogs of upper central series of groups and using that they defined left and
right nilpotent skew left braces. The concepts like ideals, series of ideals, prime, and semiprime
ideals, Baer and Wedderburn radicals and solvability for skew braces have been explored in [14]
by KONOVALOV, SMOKTUNOWICZ & VENDRAMIN, whereas some categorical aspects of skew
braces have been studied in BOURN, FACCHINI, & POMPILI [2]. A study of braces and skew
braces from multiplicative lattices point of view has been conducted in FACCHINI [5].

Skew braces are fairly new algebraic structures and much more study of their algebraic as-
pects yet to come. Compared to algebraic properties studied so far, little has been explored from
the topological side. The aim of this paper is to initiate that aspect, and we do so by studying
some of the (Zariski) topological properties of the spectrum of what we call skew-prime ideals
of a skew brace. It is worth it to mention that in [14], it has been pointed out that “in the con-
ference ‘Groups, rings, and the Yang–Baxter equation,’ Spa, 2017, Louis Rowen suggested that
it could be interesting to study prime ideals of skew braces.” To meet our requirements and to
make analogy with the prime spectrum of a (commutative) ring, we propose a new definition of
prime-type ideals of a skew brace called skew-prime ideals. We discuss separation axioms and
irreducibility. Using a skew brace homomorphism, we obtain continuous maps between spaces
of spectra and study properties of these maps. Finally, we prove a result on spectrality. We end
the paper with some open questions.
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2 Preliminaries

A skew left brace is a triple (A,+, ◦) such that (A,+) and (A, ◦) are groups, and the operations
satisfy the identity:

a ◦ (b+ c) = a ◦ b− a+ a ◦ c,
for all a, b, c in A, where −a denotes the inverse of a with respect to the + operation. By a skew
brace, we will always mean a skew left brace. We say that (A,+) is the additive group of A,
whereas (A, ◦) is the multiplicative group of A. The identity of the additive group of A coincides
with that of the multiplicative group of A, and we denote the common identity element by e. The
multiplicative inverse of an element a in A is denoted by a−1. We write A as a skew brace to
mean the triple (A,+, ◦). For any set S, we denote by P(S) the power set S.

Given a skew brace A, a new operation ∗ is defined as follows:

a ∗ b = −a+ a ◦ b− b,

for all a, b in A. In particular, a ∗ b = λa (b)− b, for all a, b in A, where λa is an automorphism
of (A,+) and is defined by:

λa(b) = −a+ a ◦ b.
If X and Y are subsets of a skew brace A, The notation X ∗ Y denotes the subset of A defined
by {x ∗ y | x ∈ X, y ∈ Y }.

An ideal I of a skew brace A is a normal subgroup of both the group structures (A,+) and
(A, ◦) such that λa(I) ⊆ I for all a ∈ A. We define the trivial or zero ideal of A as the singleton
set {e} of A and denote it by 0, whereas by a proper ideal I , we mean I is an ideal of A and
I ̸= A. If S is a subset of A, then ⟨S⟩ denotes the ideal generated by S. A maximal ideal M is a
proper ideal of A and not properly contained in another proper ideal of A. We denote the set of
all ideals of A by IdlA, whereas the set of all maximal ideals A is denoted by MaxA. Involving
the ∗ operation, a characterisation (see CEDÓ, SMOKTUNOWICZ, & VENDRAMIN [3, Lemma
1.8, Lemma 1.9]) of normal subgroups of any skew brace to be an ideal is given in the following
proposition.

Proposition 2.1. Suppose A is a skew brace and I is a normal subgroup of (A,+). Then I is an
ideal of A if and only if A ∗ I ⊆ I and I ∗A ⊆ I .

The following lemma is going to be used in the sequel. The proof of the first part of it is
trivial, whereas for the second part, we refer the reader to KONOVALOV, SMOKTUNOWICZ, &
VENDRAMIN [14, Lemma 3.7].

Lemma 2.2. If {Iλ}λ∈Λ is a family of ideals of A, then
⋂

λ∈Λ
Iλ is also an ideal of A. If I and J

are ideals of A, so is I + J, where I + J is defined as the additive subgroup of A generated by
{i+ j | i ∈ I, j ∈ J}.

The binary sum of ideals of a skew brace can be extended to an “infinite sum”, which we
shall see in the next corollary. But before that, let us first define this infinite sum of ideals of
a skew brace A. If {Iλ}λ∈Λ is a family of ideals of A, then the sum

∑
λ∈Λ

Iλ is a subset of A,
which constitutes of elements of the form

∑n
j=1 iλj

, for some finite subset {λ1, . . . , λn} of Λ,
where iλj ∈ Iλj . Using the fact that the sum of two ideals is an ideal, we can easily prove the
following result.

Corollary 2.3. If {Iλ}λ∈Λ is a family of ideals of A, then
∑

λ∈Λ
Iλ is also an ideal of A.

Remark 2.4. (1). Recall that an associative ring (R,+, ◦) is called a radical ring if (R, ∗) is a
group, where the operation ∗ is defined by a∗ b = a+ b−a◦ b. RUMP [18] showed that (R,+, ∗)
is an example of a (left) brace. It is now natural to ask what should be a “ring-type” example of
a skew brace, and here the problem starts. Since the addition operation of a ring is commutative,
we can not expect an example even from a noncommutative ring. We rather need to consider a
near-ring and apply the above method to have the expected example.

(2). Note that if a ring R is a radical ring, then every element of R is quasi-regular (see
JACOBSON [10]) and such a ring can not have a multiplicative identity 1. Indeed, for x ∈ R,

x ∗ 1 = x+ 1 − x ◦ 1 = x+ 1 − x = 1 ̸= 0,
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a contradiction. Therefore, it follows that we can not have a “unital” brace or a “unital” skew
brace (unless the braces or the skew braces are trivial). Furthermore, we observe that the identity
element e of a skew brace A can not play the role of an unital element. Otherwise, A will not
have any proper ideals (as by definition e ∈ I for all ideals I of A).

3 Spectra of skew braces

The aim of this section is to introduce a Zariski topology on the set of "prime-like" ideals (see
Definition 3.1) in a manner that seeks to mimic the Zariski topology on the set of prime ideas
of a (commutative) ring. We formalize the definition of these ideals below. The reader will
observe that our definition mimics that of prime ideals in commutative rings. We first introduce
the following notation. If I and J are ideals of A, the ideal I � J is defined by

I � J = ⟨{i ∗ j | i ∈ I, j ∈ J}⟩.

Definition 3.1. A proper ideal P of a skew brace A is called skew-prime if I � J ⊆ P implies
I ⊆ P or J ⊆ P, for all ideals I and J of A. We denote the set of all skew-prime ideals of A by
Specs A.

Note that I ∗ J used in the definition of prime ideals in KONOVALOV, SMOKTUNOWICZ &
VENDRAMIN [14] is merely an additive subgroup of A, whereas I � J in Definition 3.1 is an
ideal of A, which accords primeness in commutative rings.

Lemma 3.2. If I and J are any two ideals of a skew brace A, then I � J ⊆ I ∩ J.

Proof. If i ∗ j ∈ I � J, then i ∗ j = λi(j)− j ∈ J as J is an ideal. On the other hand,

i ∗ j = −i+ i ◦ j − j = −i+ j ◦
(
j
−1 ◦ i ◦ j

)
− j = −i+ j + λj

(
j
−1 ◦ i ◦ j

)
− j ∈ I.

Proposition 3.3. Suppose A is a skew brace. Then (IdlA,⊆,�) is a multiplicative lattice.

Proof. Notice that under subset inclusion ⊆ relations, the zero ideal and A are respectively the
bottom and top elements of IdlA. That the pair (IdlA,⊆) is a complete lattice now follows
from Lemma 2.2 and Corollary 2.3, whereas by Lemma 3.2 it follows that the complete lattice
(IdlA,�) is also multiplicative.

In a skew brace, maximal ideals need not be skew-prime. For example, in a finite two sided
brace A with more than one element, each maximal ideal of A cannot be skew-prime. What
we have instead is the following characterisation of maximal ideals that are skew-prime. The
proof of this proposition is analogous to the proof of JESPERS, KUBAT, VAN ANTWERPEN, &
L. VENDRAMIN [12, Proposition 3.6].

Proposition 3.4. A maximal ideal M of A is skew-prime if and only if A2 ⊈ M, where A2 =
A � A.

Since the operation ∗ is neither associative nor commutative, an expression like an = a∗an−1

does not make sense for us. Therefore, we cannot adapt the “elementwise” definition of the
radical of an ideal as we have for commutative rings. Following the definition of the radical of
an ideal of a noncommutative ring (see LAM [15, Theorem 10.7]), we propose the following.

Definition 3.5. The radical of an ideal I in a skew brace A, denoted by Rad I , is defined as

Rad I =
⋂

I⊆P ∈ Specs A

P.

The nil radical NilA of A is the radical of the zero ideal (see Section 2) of A. So, NilA is the
intersection of all skew-prime ideals of A.
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4 Zariski topology

Let S be a subset of a skew brace A. If H(S) = {P ∈ Specs A | S ⊆ P}, then it is easy to see
that H(S) = H(⟨S⟩). Therefore, it is sufficient to consider the set of all ideals of a skew brace
brace A to define closed sets of Zariski topology on Specs A.

Definition 4.1. The Zariski topology on Specs A is imposed by considering the collection of sets
{H(I)}I∈Idl A as closed sets, where

H(I) = {P ∈ Specs A | I ⊆ P} (I ∈ IdlA).

The following proposition shows that Definition 4.1 indeed makes sense for skew braces.

Proposition 4.2. The collection {H(I)}I∈Idl A of sets satisfies the following properties:

(i) H(A) = ∅ and H(0) = Specs A.

(ii) H(I) ∪H(J) = H(I ∩ J) = H(I � J) for all I, J ∈ IdlA.

(iii)
⋂

λ∈Λ
H(Iλ) = H

(∑
λ∈Λ

Iλ
)

for all Iλ ∈ IdlA and λ ∈ Λ.

Proof. (i) Since by Definition 3.1, A /∈ Specs A, we have H(A) = ∅. Since {e} ⊆ P for all P in
Specs A, we have H(0) = Specs A.

(ii) By Definition 4.1, it follows that H(I) ∪ H(J) ⊆ H(I ∩ J) for any two ideals I and J
of A. On the other hand, the containment H(I) ∪H(J) ⊇ H(I ∩ J) follows by Lemma 3.2. If
P ∈ H(I � J), then I � J ⊆ P , and hence I ⊆ P or J ⊆ P, and that gives P ∈ H(I) ∪H(J).
The inclusion H(I � J) ⊇ H(I) ∪H(J) follows from Lemma 3.2.

(iii) Note that if {Iλ}λ∈Λ is a family of ideals of A, then by Corollary 2.3,
∑

λ∈Λ
Iλ is an

ideal of A. By Definition 4.1 we also have
⋂

λ∈Λ
H(Iλ) ⊇ H

(∑
λ∈Λ

Iλ
)
. Conversely, if P

is in
⋂

λ∈Λ
H(Iλ), then Iλ ⊆ P for all λ ∈ Λ, and hence

∑
λ∈Λ

Iλ ⊆ P. This proves that⋂
λ∈Λ

H(Iλ) ⊆ H
(∑

λ∈Λ
Iλ
)
.

Lemma 4.3. If I ∈ IdlA, then H(I) = H(Rad I).

Proof. The proof follows from Definition 3.5.

Theorem 4.4. For a subset S of Specs A, let K(S) =
⋂

I∈S I. The operator K has the following
properties.

(i) K(∅) = R and K
(⋃

λ∈Λ
Tλ

)
=

⋂
λ∈Λ

K (Tλ) .

(ii) If T is a subset of X and I is an ideal of R then KH(I) = Rad I, and HK(S) is the closure
of S in Specs A.

Proof. (i) The first assertion follows from the empty intersection property. For the second, the
fact Sλ ⊆

⋃
λ∈Λ

Sλ implies K(Sλ) ⊇ K(
⋃

λ∈Λ
Sλ), and hence

⋂
λ∈Λ

K(Sλ) ⊇ K(
⋃

λ∈Λ
Sλ).

For the other half of the inclusion, let Sλ = {Iα,λ}α∈L and let x ∈
⋂

λ∈Λ
K(Sλ). Then x ∈⋂

λ∈Λ
(
⋂

α∈L Iα,λ); whence x ∈ K(
⋃

λ∈Λ
Sλ).

(ii) For the first assertion we observe that

a ∈ KH(I) ⇔ a ∈ P for every P with P ∈ H(I) ⇔ a ∈ P for every P ⊇ I.

Therefore, KH(I) =
⋂

P⊇I P = Rad I. For the second claim, if a closed set H(X) (for some
subset X of A) contains S, then X ⊆ I for all I ∈ S; which subsequently implies X ⊆ K(S) and
hence H(X) ⊇ HK(S). Since T ⊆ HK(S), and HK(S) is the smallest closed set of Specs A
containing S, we have the desired claim.

Following KOCK [13], we can represent the relation between H and K categorically as fol-
lows: We observe that the poset map K is a right adjoint of the map H . The unit of the ad-
junction H ⊣ K is η : ⟨S⟩ 7→ KH(S) = ⟨S⟩ . Hence the full subcategory Fix η = {S ∈
P(A) | ηS is an isomorphism} is the set of ideals of R. The counit of the adjunction H ⊣ K is
ϵ : T 7→ HK(T ) = T . Therefore Fix ϵ = {T ∈ P(Specs A)op | ϵT is an isomorphism} is the set
of closed subsets. Therefore the adjunction H ⊣ K restricts to an adjoint equivalence between
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the categories IdlA and Closed(Specs A). By considering open sets of the topology on Specs A,
the above isomorphism of categories become IdlA ≈ Open(Specs A). The following diagram
summarises the above inter-relations.

P(A)

H //
P(Specs A)op

K

⊥oo

Fix η = IdlA
?�

OO

//
Closed(SpecA)op≈oo

?�

OO

= Fix ϵ.

Lemma 4.5. Suppose A is a skew brace and P,Q ∈ Specs A. Then

(i) cl{P} = H(P ), where cl{P} is the closure of {P}.

(ii) P ∈ cl{Q} if and only if P ∈ H(Q).

Proof. (i) Since H(P ) is a closed set containing P and cl{P} is the smallest closed set containing
P , we immediately have cl{P} ⊆ H(P ). For the converse, suppose cl{P} = H(I) for some
ideal I of A. Clearly, P ∈ cl{P}, hence I ⊆ P . Thus any skew-prime ideal that contains P will
also contain I. Hence, H(P ) ⊆ H(I) = cl{P}.

(ii) Observe that by (i), P ∈ cl{Q} if and only if P ∈ H(Q), and this occurs if and only if
Q ⊆ P .

Proposition 4.6. Every Specs A is a T0-space.

Proof. Let P and Q be two distinct points of Specs A such that P ⊈ Q. By Lemma 4.5 we have
Q /∈ cl{P} = H(P ) ∋ P, which implies there exists a closed set H(P ) containing P that does
not contain Q.

With a further restriction on a skew brace, we obtain the following

Proposition 4.7. If A is a skew brace with A2 ⊈ M for all M ∈ MaxA, then Specs A is a
T1-space if and only if Specs A = MaxA.

Proof. By Theorem 3.4 it follows that Specs A ⊇ MaxA. Let Specs A ̸= MaxA. Then there
exists P ∈ Specs A such that P /∈ MaxA, and that implies there exists M ∈ MaxA such that
P ⊊ M . Then M ∈ H(P ) = cl{P}, where the equality follows from Lemma 4.5(i). Hence {P}
is not closed and hence Specs A is not a T1-space. Conversely, suppose that Specs A = MaxA.
Then H(P ) = {P} for all P ∈ Specs A and hence every singleton set is closed, and that implies
Specs A is a T1-space.

Let us recall the notion of irreducible topological spaces and some of their properties. Read-
ers may consult GÖRTZ & WEDHORN [8] for further details on irreducibility.

Definition 4.8. If X is a topological space, a closed subset S is irreducible if S is not the union of
two properly smaller closed subsets S1, S2 ⊊ S. A maximal irreducible subset of a topological
space X is called an irreducible component of X. A point x in a closed subset S is called a
generic point of S if S = cl({x}).

Recall the following basic properties on irreducibility (see ALTMAN & KLEIMAN [1, Lemma
16.50]).

Proposition 4.9. Let X be a topological space.

(i) A subspace Y of X is irreducible if and only if cl(Y ) is irreducible.

(ii) The irreducible components of X are closed and cover X .

Lemma 4.10. {H(P )}P∈Specs A are precisely the irreducible closed subsets of Specs A.
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Proof. Let P ∈ Specs A. Since {P} is irreducible, by Proposition 4.9(i) and Lemma 4.5(i), so
is H(P ). Let H(I) be an irreducible closed subset of Specs A and if possible, I /∈ Specs A. This
implies there exist ideals I1 and I2 such that I1 ⊈ I and I2 ⊈ I , but I1 � I2 ⊆ I . Then we have:

H(⟨I, I1⟩) ∪H(⟨I, I2⟩) = H(⟨I, I1⟩ ∩ ⟨I, I2⟩) = H(⟨I, I1 ∗ I2⟩) = H(I),

where the first two equalities follow from Proposition 4.2(ii). Since H(⟨I, I1⟩) ̸= H(I) and
H(⟨I, I2⟩) ̸= H(I), the closed set H(I) is not irreducible, a contradiction.

Theorem 4.11. Every irreducible closed subset of Specs A has a unique generic point.

Proof. The existence of generic point follows from Lemma 4.5 and Lemma 4.10, whereas the
uniqueness part follows from Proposition 4.6.

Note that if we have a decreasing chain of skew-prime ideals, then the intersection of the
ideals in the chain gives the minimal element, which is either a skew-prime ideal or the zero
ideal, and in the second case, with a vacuous argument, it is also a skew-prime ideal. This
confirms the existence of the minimal skew-prime ideals of A and hence allows us to obtain the
following lemma.

Lemma 4.12. The irreducible components of Specs A are the closed sets H(P ), where P is a
minimal skew-prime ideal of A.

Proof. By Proposition 4.9(ii), irreducible components of Specs A are closed. If P is a minimal
skew-prime ideal, then by Lemma 4.10, H(P ) is irreducible. If H(P ) is not a maximal irre-
ducible subset of Specs A, then there exists a maximal irreducible subset H(Q) with Q ∈ Specs A
such that H(P ) ⊊ H(Q). This implies that P ∈ H(Q) and hence Q ⊊ P , contradicting the min-
imality property of P .

Proposition 4.13. Specs A is irreducible if and only if NilA is skew-prime.

Proof. If NilA is skew-prime, then it is the minimum skew-prime ideal. Therefore, Specs A has
only one maximal irreducible component, namely H(NilA), and since by Proposition 4.9(ii) the
maximal irreducible components cover Specs A, the irreducible component H(NilA) must be
equal to Specs A. Hence Specs A is irreducible by Lemma 4.12. Conversely, suppose Specs A is
irreducible. Then by Proposition 4.9(ii), there exists P ∈ Specs A such that H(P ) = Specs A.
Hence P ⊆ Q for all Q ∈ Specs A, and so is NilA, i.e., P ⊆ NilA. By Definition 3.5, NilA ⊆ P ,
and hence NilA is skew-prime.

Before we discuss continuous maps, let us first recall some of the basic facts about skew
brace homomorphisms and quotient skew braces.

Definition 4.14. A skew subbrace S of a skew brace A is a subgroup of (A,+) and (A, ◦). If
A and B are skew braces, a skew brace homomorphism is a map f : A → B of A into B such
that f(a + a′) = f(a) + f(a′), f(a ◦ a′) = f(a) ◦ f(a′) for all a, a′ ∈ A. The kernel of f is
the subset ker f = {a ∈ A | f(a) = e} of A. The image of a skew brace homomorphism f
is the subset im f = {b ∈ B | b = f(a) for some a ∈ A} of B. Let f : A → B be a skew
brace homomorphism and let I, J be ideals of B and A respectively. The contraction of I and
the extension of J are respectively denoted by Ic and Je, and they are, respectively, f−1(I) and
⟨f(J)⟩.

Lemma 4.15. Let I and J respectively be ideals of skew left braces A and B. Let f : A → B be
a skew brace homomorphism. Then

(i) ker f, f−1(J) are ideals of A and im f is a skew subbrace of B;

(ii) a ◦ I = a+ I for every a ∈ A and A/I = {a+ I | a ∈ A} is a skew left brace under the
operation: (a+ I) + (b+ I) = (a+ b) + I and (a+ I) ◦ (b+ I) = (a ◦ b) + I;

(iii) there is a bijection between ideals of A/I and ideals of A containing I;

(iv) f(I � J) = f(I) � f(J) for all I, J ∈ IdlA.
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Some parts of the following proposition (and indeed the proofs we give) mirror their com-
mutative ring analogues.

Proposition 4.16. Suppose f : A → B is a skew brace homomorphism and define the map
f ! : SpecB → Specs A by f !(P ) = f−1(P ), where P ∈ SpecB. Then

(i) every skew-prime ideal of A is a contracted ideal if and only if f ! is surjective;

(ii) if every skew-prime ideal of B is an extended ideal then f ! is injective;

(iii) f ! is continuous;

(iv) if f is surjective, then im(f !) is homeomorphic to H(ker f);

(v) the image of f ! is dense in Specs A if and only if ker f ⊆ NilA.

Proof. (i) Let P ∈ Specs A and P = Qc for some Q ∈ SpecB. Then, f !(Q) = f−1(Q) = P.
Hence f ! is surjective. Conversely, if f ! is surjective, then for any P ∈ Specs A, we have
P = f !(Q) = Qc, as required.

(ii) Let Q ∈ SpecB and Q = P e. Then, f !(Q) = P ec ⊇ P. Suppose f !(Q) = f !(Q′). Then,
P ec = (P ′)ec, where Q′ = (P ′)e, this implies P ece = (P ′)ece, which implies P e = (P ′)e and
that Q = Q′.

(iii) To show f ! is continuous, we first show that f−1(P ) ∈ Specs A, whenever P ∈ SpecB.
Let I ∗ J ⊆ f−1(P ), where I, J ∈ IdlA. Then f(I ∗ J) ⊆ P, and by Lemma 4.15(iv) we have
f(I) ∗ f(J) ⊆ P . Since P is skew-prime, by Definition 3.1 either f(I) ⊆ P or f(J) ⊆ P, and
that implies either I ⊆ f−1(P ) or J ⊆ f−1(P ). If H(I) is a closed subset of Specs A, then for
any Q ∈ SpecB, we have:

Q∈(f !)−1(H(I))⇔f !(Q) ∈ H(I)⇔f
−1(Q)∈H(I)⇔I ⊆ f

−1(Q)⇔Q∈H(⟨f(I)⟩).

(iv) By Lemma 4.15(i), im(f !) and ker f are ideals of A. We first show that cl(f !(H(I))) =
H(f−1(I)) for any I ∈ IdlB and for that it is sufficient to show: f !(H(I)) = H(f−1(I)). We
observe:

P ∈ H(f−1(I)) ⇔ f(f−1(I)) ⊆ f(P ) ⇔ P = f
−1(f(P )) = f !(f(P )) ∈ f !(H(I)),

and by taking I = 0, we obtain im(f !) = H(ker f). This implies f ! induces a continuous
bijection between im(f !) and H(ker f). The continuity of (f !)−1 also now follows from the
above. Hence we have the desired homeomorphism.

(v) Note that im(f !) is dense in Specs A if and only if cl(im f !) = H(ker f) = Specs A,
and this occurs if and only if ker f ⊆ P for all P ∈ Specs A, and that holds if and only if
ker f ⊆ NilA.

Corollary 4.17. For a skew brace A, the spaces Specs A and Spec(A/NilA) are homeomorphic.

Proof. Note that by Lemma 4.15(ii), A/NilA is a skew brace. On applying Proposition 4.16(iv)
on the homomorphism A → A/NilA we obtain the desired result.

Proposition 4.18. Let I be an ideal of a skew brace A and J = Ic be an ideal of a skew brace
A′. Let ϕ̄ : A/I → A′/J be the skew brace homomorphism induced by the skew brace homomor-
phism f : A → A′. Then the restriction of the map ϕ∗ : Specs A

′ → Specs A to H(J) is the map
ϕ̄∗ : Spec(A′/J) → Spec(A/I).

Proof. Note that below the left commutative diagram induces the right commutative diagram.

A
ϕ
//

πI

��

A′

πJ

��
A/I

ϕ̄
// A′/J

Specs A Specs A
′

ϕ∗oo

Spec(A/I)

πI
∗

OO

ϕ̄∗ // Spec(A′/J).

πJ
∗

OO

Moreover, K ∈ H(J) implies ϕ∗(K) = Kc ⊇ Jc = Iec ⊇ I, that is, ϕ∗(H(J)) ⊆ H(I). Now
the desired result follows from Proposition 4.16(iv).
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Definition 4.19. According to JESPERS, KUBAT, VAN ANTWERPEN, & VENDRAMIN [12, Def-
inition 4.1] the weight ω(A) of non-zero skew brace A is defined as the minimal number of
elements of A needed to generate A (as an ideal). By convention, we put ω(A) = 1 if A = 0.

Recall that a skew left brace A is said to be Noetherian if every ascending chain of ideals of
A is eventually stationary. It follows immediately that a skew left brace is Noetherian if and only
if all its ideals have finite weight. Also recall that a topological space X is said to be Noetherian
if the closed subsets of X satisfy the descending chain condition.

Proposition 4.20. If all ideals of A have finite weight, then Specs A is a Noetherian space.

Proof. It suffices to show that a descending chain of closed sets H(I1) ⊇ H(I2) ⊇ · · · in Specs A
satisfy descending chain condition. By Lemma 4.3, I1 ⊆ I2 ⊆ · · · is an ascending chain of ideals
in A. Since A is Noetherian, it stabilizes at some n ∈ N. Hence, H(In) = H(In+k) for any k.
Thus Specs A is Noetherian.

Corollary 4.21. The set of minimal skew-prime ideals in a Noetherian skew brace is finite.

Proof. By Proposition 4.20, Specs A is Noetherian, thus Specs A has finitely many irreducible
components. By Lemma 4.12, every irreducible closed subset of Specs A is of the form H(P ),
where P is a minimal skew-prime ideal. Thus H(P ) is irreducible components if and only if P
is minimal skew-prime. Hence, A has only finitely many minimal skew-prime ideals.

The following well-known result (see ALTMAN & KLEIMAN [1, Exercise 16.70]) holds for
any topological space and hence for Specs A.

Proposition 4.22. If A is a skew brace, then the following are equivalent:

(i) Specs A is Noetherian.

(ii) Every open subspace of Specs A is compact.

(iii) Every subspace of Specs A is compact.

Recall that in the sense of HOCHSTER [9], a topological space is called spectral if it is
quasi-compact, sober, admits a basis of quasi-compact open subspaces that is closed under finite
intersections.

Theorem 4.23. Spec(IdlA) is a spectral space.

Proof. Note that by Proposition 3.3, IdlA is a multiplicative lattice. Since every skew brace A
is finitely generated (by e) as an ideal of itself, by FACCHINI, FINOCCHIARO, & JANELIDZE [6,
Theorem 11.5] we have the desired claim.

Concluding remarks 1. The following are some natural topological questions that arise when
we study Zariski topology on a skew-prime spectrum of an algebraic structure and we do not
have answers to these questions for skew braces.

• It would be interesting to study S-Zariski topology and clopen topology (in the sense of
JARBOUI [16] and [17] respectively) on the prime spectrum of a skew brace.

• Although the partition of unity property is a sufficient condition for compactness of skew-
prime spectrum of a ring with identity (see DUBE & GOSWAMI [4]), we can not apply the same
argument for skew braces. In the context of a skew brace A, when we try to apply the finite
intersection property, although we obtain a finite sum representation of the identity e of A, but
from that we cannot conclude the same for an arbitrary element of A.

• If a is an element of a skew brace A such that a2 = a, then we immediately see that
a = e. This means a skew brace does not have nontrivial idempotent elements. For a commu-
tative ring R (with identity), without having any nontrivial idempotent elements implies SpecR
is connected. Therefore, one may expect the same for a skew brace. Once again not having
zero divisors and “multiplicative identity” in a skew brace lead to the problem of checking the
connectivity.

• HOCHSTER [9] proved that the prime spectrum of a commutative ring (with 1) endowed
with Zariski topology is spectral. We proved Spec(IdlA) is spectral (see Theorem 4.23), but it
could be interesting to know whether Specs A itself is spectral.

• Proposition 4.20 gives a sufficiant condition for Specs A to be Noetherian. But it would be
nice to characterize Notherian spaces as well as obtain a similar result for Artinian spaces.
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