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Abstract In this article, Lorentz-Sasakian space forms on W0-curvature tensor are investi-
gated. Riemann, Ricci, concircular, and projective curvature tensors are discussed for (2m+ 1)-
dimensional Lorentz-Sasakian space forms, and with the help of these curvature tensors, some
special curvature conditions established on the W0- curvature tensor are examined. Also, with
the help of these curvature conditions, some properties of Lorentz-Sasakian space forms such as
Einstein manifold, η-Einstein manifold, and real space form have been obtained.

1 Introduction

ϕ−sectional curvature plays an important role in the Sasakian manifold. If the ϕ−sectional
curvature of a Sasakian manifold is constant, then the manifold is a Sasakian-space-form [1].
P. Alegre and D. Blair described generalized Sasakian space forms [2]. P. Alegre and D. Blair
obtained important properties of generalized Sasakian space forms in their studies and gave some
examples. P. Alegre and A. Carriazo later discussed generalized indefinite Sasakian space forms
[3]. Generalized indefinite Sasakian space forms are also called Lorentz-Sasakian space forms,
and Lorentz manifolds are of great importance for Einstein’s theory of Relativity. Sasakian
space forms, generalized Sasakian space forms, and Lorentz-Sasakian space forms have been
discussed by many scientists and important properties of these manifolds have been obtained
([4]-[8]). Similarly, Lorentz-Sasakian space forms can be considered in some important works
on the subject ([9]-[10]).

In this article, Lorentz-Sasakian space forms on W0-curvature tensor are investigated. Rie-
mann, Ricci, concircular, and projective curvature tensors are discussed for (2m+ 1)-dimensional
Lorentz-Sasakian space forms, and with the help of these curvature tensors, some special cur-
vature conditions established on the W0- curvature tensor are examined. Also, with the help of
these curvature conditions, some properties of Lorentz-Sasakian space forms such as Einstein
manifold, η-Einstein manifold, and real space form have been obtained.

2 Preliminary

Let M̃ be a (2m+1)−dimensional Lorentz manifold. If the M̃ Lorentz manifold with (ϕ, ξ, η, g)
structure tensors satisfies the following conditions, this manifold is called a Lorentz-Sasakian
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manifold

ϕ2κ1 = −κ1 + η (κ1) ξ, η (ξ) = 1, η (ϕκ1) = 0,

g (ϕκ1, ϕκ2) = g (κ1,κ2) + η (κ1) η (κ2) , η (κ1) = −g (κ1, ξ) ,

(
▽̃κ1

ϕ
)
κ2 = −g (κ1,κ2) ξ − η (κ2)κ1,

(
▽̃κ1

ξ
)
= −ϕκ1,

where, ▽̃ is the Levi-Civita connection according to the Riemann metric g [5].
The plane section Π in Tκ1M̃. If the Π plane is spanned by κ1 and ϕκ1, this plane is called

the ϕ-section. The curvature of the ϕ-section is called the ϕ-sectional curvature. If the Lorentz-
Sasakian manifold has a constant ϕ-sectional curvature, this manifold is called the Lorentz-
Sasakian space form and is denoted by M̃ (c). The curvature tensor of the Lorentz-Sasakian
space form M̃ (c) is defined as

R̃ (κ1,κ2)κ3 =
(
c−3

4

)
{g (κ2,κ3)κ1 − g (κ1,κ3)κ2}

+
(
c+1

4

)
{g (κ1, ϕκ3)ϕκ2 − g (κ2, ϕκ3)ϕκ1

+2g (κ1, ϕκ2)ϕκ3 + η (κ2) η (κ3)κ1 − η (κ1) η (κ3)κ2

+g (κ1,κ3) η (κ2) ξ − g (κ2,κ3) η (κ1) ξ} ,

(1)

for all κ1,κ2,κ3 ∈ χ
(
M̃ (c)

)
. If we choose κ1 = ξ in (1) , we get

R̃ (ξ,κ2)κ3 = −g (κ2,κ3) ξ − η (κ3)κ2. (2)

If we choose κ2 = ξ in (1) , we have

R̃ (κ1, ξ)κ3 = g (κ1,κ3) ξ + η (κ3)κ1. (3)

Similarly, if we choose κ3 = ξ in (1) , we obtain

R̃ (κ1,κ2) ξ = η (κ2)κ1 − η (κ1)κ2. (4)

Also, if we take the inner product of both sides of (1) by the vector field ξ, we get

η
(
R̃ (κ1,κ2)κ3

)
=

c− 1
2

[g (κ2,κ3) η (κ1)− g (κ1,κ3) η (κ2)] . (5)

Lemma 2.1. Let M̃ (c) be the (2m+1)−dimensional Lorentz-Sasakian space form. The follow-
ing relations are provided for the Lorentz-Sasakian space forms [5].

S (κ1,κ2) =

[
(m+ 2) c− (3m− 2)

2

]
g (κ1,κ2) +

[
(c+ 1) (m+ 1)

2

]
η (κ1) η (κ2) , (6)

Qκ1 =

[
(m+ 2) c− (3m− 2)

2

]
κ1 −

[
(c+ 1) (m+ 1)

2

]
η (κ1) ξ, (7)

S (κ1, ξ) = −
[
(c+ 1)− 4m

2

]
η (κ1) , (8)

Qξ = −
[
(c+ 1)− 4m

2

]
ξ. (9)

W0−curvature tensor on a semi-Riemann manifold was described by M. Tripathi and P. Gu-
nam [5]. W0−curvature tensor is the (1, 3)−type tensor field defined as

W0 (κ1,κ2)κ3 = R (κ1,κ2)κ3 −
1

2m
[S (κ2,κ3)κ1 − g (κ1,κ3)Qκ2] (10)

on a semi-Riemann manifold (M, g), where R,S,Q are the Riemann curvature tensor, Ricci
curvature tensor, Ricci operator and of manifold, respectively.
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Lemma 2.2. Let M̃ (c) be the (2m+1)−dimensional Lorentz-Sasakian space form. The follow-
ing relations are provided for the W0−curvature tensor in M̃ (c) .

W0 (ξ,κ2)κ3 = −(m+ 2) (c+ 1)
4m

[g (κ2,κ3) ξ + η (κ3)κ2] , (11)

W0 (κ1, ξ)κ3 =

(
c+ 1
4m

)
[g (κ1,κ3) ξ + η (κ3)κ1] , (12)

W0 (κ1,κ2) ξ =
(m+2)(c+1)

4m [−η (κ1)κ2

+η (κ1) η (κ2) ξ] +
(
c+1
4m

)
η (κ2)κ1,

(13)

for all κ1,κ2,κ3 ∈ χ
(
M̃ (c)

)
.

3 Lorentz-Sasakian Space Forms On W0−Curvature Tensor

In this section, the Lorentz-Sasakian space form M̃ (c) will be characterized according to some
curvature conditions established between W0−curvature tensor and Riemann, Ricci, concircular,
and projective curvature tensor. Let us first examine the special curvature condition established
between the W0 and R̃ curvature tensors. Let us state and prove the following theorem.

Theorem 3.1. Let M̃ (c) be the (2m + 1)−dimensional Lorentz-Sasakian space form. If M̃ (c)
satisfies the curvature condition W0 (κ1,κ2) · R̃ = 0, M̃ (c) is the real space form.

Proof. Let’s assume that M̃ (c) satisfies the condition(
W0 (κ1,κ2) · R̃

)
(κ4,κ5,κ3) = 0,

for all κ1,κ2,κ4,κ5,κ3 ∈ χ
(
M̃ (c)

)
. So, we can easily write

W0 (κ1,κ2) R̃ (κ4,κ5)κ3 − R̃ (W0 (κ1,κ2)κ4,κ5)κ3

−R̃ (κ4,W0 (κ1,κ2)κ5)κ3 − R̃ (κ4,κ5)W0 (κ1,κ2)κ3 = 0
(14)

If we choose κ1 = ξ in (14) and use (11) , we get

− (m+2)(c+1)
4m

{
g
(
κ2, R̃ (κ4,κ5)κ3

)
ξ + η

(
R̃ (κ4,κ5)κ3

)
κ2

−g (κ2,κ4) R̃ (ξ,κ5)κ3 − η (κ4) R̃ (κ2,κ5)κ3

−g (κ2,κ5) R̃ (κ4, ξ)κ3 − η (κ5) R̃ (κ4,κ2)κ3

−g (κ2,κ3) R̃ (κ4,κ5) ξ − η (κ3) R̃ (κ4,κ5)κ2
}
= 0.

(15)

If we make use of (2) , (3) , (4) in (15), we have

− (m+2)(c+1)
4m

{
g
(
κ2, R̃ (κ4,κ5)κ3

)
ξ + η

(
R̃ (κ4,κ5)κ3

)
κ2

+g (κ2,κ4) g (κ5,κ3) ξ + g (κ2,κ4) η (κ3)κ5

−η (κ4) R̃ (κ2,κ5)κ3 − g (κ2,κ5) g (κ4,κ3) ξ

−g (κ2,κ5) η (κ3)κ4 − η (κ5) R̃ (κ4,κ2)κ3

−g (κ2,κ3) η (κ5)κ4 + g (κ2,κ3) η (κ4)κ5

−η (κ3) R̃ (κ4,κ5)κ2
}
= 0.

(16)
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If we choose κ4 = ξ in (16) and use (2) , we obtain

(m+ 2) (c+ 1)
4m

{
R̃ (κ2,κ5)κ3 − [g (κ2,κ3)κ5 − g (κ5,κ3)κ2]

}
= 0.

It is clear from the last equation that M̃ (c) is the real space form. This completes the proof.

Corollary 3.2. Let M̃ (c) be the (2m+ 1)−dimensional Lorentz-Sasakian space form. If M̃ (c)
satisfies the curvature condition W0 (κ1,κ2) · R̃ = 0, M̃ (−1) is hyperbolic space.

Let us examine the special curvature condition established between the W0 and S Ricci cur-
vature tensors. Let us state and prove the following theorem.

Theorem 3.3. Let M̃ (c) be the (2m + 1)−dimensional Lorentz-Sasakian space form. If M̃ (c)
satisfies the curvature condition W0 (κ1,κ2) · S = 0, M̃ (c) is either a real space form or an
Einstein manifold.

Proof. Let’s assume that M̃ (c) satisfies the condition

(W0 (κ1,κ2) · S) (κ4,κ5) = 0,

for all κ1,κ2,κ4,κ5 ∈ χ
(
M̃ (c)

)
. So, we can easily write

S (W0 (κ1,κ2)κ4,κ5) + S (κ4,W0 (κ1,κ2)κ5) = 0. (17)

If we choose κ1 = ξ in (17) and use (11) , we get

− (m+2)(c+1)
4m {g (κ2,κ4)S (ξ,κ5) + η (κ4)S (κ2,κ5)

+g (κ2,κ5)S (ξ,κ4) + η (κ5)S (κ4,κ2)} = 0.
(18)

If we choose κ4 = ξ in (18) and use (8) , we have

−(m+ 2) (c+ 1)
4m

{
S (κ2,κ5)−

(c+ 1)− 4m
2

g (κ2,κ5)

}
= 0.

It is clear from the last equation that either c = −1, that is, M̃ (c) is a real space form, or M̃ (c)
is an Einstein manifold.

Let us now Lorentz-Sasakian space form characterize with the curvature condition estab-
lished on the W0−curvature tensor itself. Let us state and prove the following theorem.

Theorem 3.4. Let M̃ (c) be the (2m + 1)−dimensional Lorentz-Sasakian space form. If M̃ (c)
satisfies the curvature condition W0 (κ1,κ2) ·W0 = 0, M̃ (c) is either a real space form or an
η−Einstein manifold provided c ̸= 3, c ̸= −1.

Proof. Let’s assume that M̃ (c) satisfies the condition

(W0 (κ1,κ2) ·W0) (κ4,κ5,κ3) = 0,

for all κ1,κ2,κ4,κ5,κ3 ∈ χ
(
M̃ (c)

)
. So, we can easily write

W0 (κ1,κ2)W0 (κ4,κ5)κ3 −W0 (W0 (κ1,κ2)κ4,κ5)κ3

−W0 (κ4,W0 (κ1,κ2)κ5)κ3 −W0 (κ4,κ5)W0 (κ1,κ2)κ3 = 0.
(19)

If we choose κ1 = ξ in (19) and use (11), we get

− (m+2)(c+1)
4m {g (κ2,W0 (κ4,κ5)κ3) ξ + η (W0 (κ4,κ5)κ3)κ2

−g (κ2,κ4)W0 (ξ,κ5)κ3 − η (κ4)W0 (κ2,κ5)κ3

−g (κ2,κ5)W0 (κ4, ξ)κ3 − η (κ5)W0 (κ4,κ2)κ3

−g (κ2,κ3)W0 (κ4,κ5) ξ − η (κ3)W0 (κ4,κ5)κ2} = 0.

(20)
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If we replace (11) , (12) , (13) in (20) and make the necessary arrangements, we obtain

− (m+2)(c+1)
4m {g (κ2,W0 (κ4,κ5)κ3) ξ + η (W0 (κ4,κ5)κ3)κ2

+ (m+2)(c+1)
4m [g (κ2,κ4) g (κ5,κ3) ξ + g (κ2,κ4) η (κ3)κ5

+g (κ2,κ3) η (κ4)κ5 − g (κ2,κ3) η (κ4) η (κ5) ξ]

−η (κ4)W0 (κ2,κ5)κ3 − c+1
4m [g (κ2,κ5) g (κ4,κ3) ξ

+g (κ2,κ5) η (κ3)κ4 + g (κ2,κ3) η (κ5)κ4]

−η (κ5)W0 (κ4,κ2)κ3 − η (κ3)W0 (κ4,κ5)κ2} = 0.

(21)

If we choose κ4 = ξ in (21) and use (10) , (11) , we get

− (m+2)(c+1)
4m

{
(m+2)(c+1)

4m [g (κ2,κ3)κ5 − g (κ5,κ3)κ2]

−R̃ (κ2,κ5)κ3 +
1

2mS (κ5,κ3)κ2 − 1
2mg (κ2,κ3)Qκ5

− c+1
4m g (κ2,κ3) η (κ5) ξ

}
= 0.

(22)

If we choose κ3 = ξ in (22) , we get

− (m+2)(c+1)
4m

{
(m+1)(c+1)

4m η (κ5)κ2 +
c+1
4m η (κ2) η (κ5) ξ

+m(3−c)−2(c+1)
4m η (κ2)κ5 +

1
2mη (κ2)Qκ5

}
= 0.

(23)

If we choose κ2 = ξ in (23) and later, we take inner product of both side of the equation by
κ3 ∈ χ

(
M̃ (c)

)
, we obtain

−(m+ 2) (c+ 1)
4m

{
1

2m
S (κ5,κ3) + λ1g (κ5,κ3) + λ2η (κ5) η (κ3)

}
= 0, (24)

where
λ1 =

m (3 − c)− 2 (c+ 1)
4m

,

and
λ2 = −(m+ 2) (c+ 1)

4m
.

Thus it is clear from (24) that M̃ (c) is either a real space form or an η−Einstein manifold
provided c ̸= −1, c ̸= 3. This completes the proof.

Corollary 3.5. Let M̃ (c) be the (2m+ 1)−dimensional Lorentz-Sasakian space form. If M̃ (c)
satisfies the curvature condition W0 (κ1,κ2) ·W0 = 0, M̃ (c) is Einstein manifold if and only if
c = −1 and c ̸= 3.

Now let’s take the projective curvature tensor defined as

P (κ1,κ2)κ3 = R (κ1,κ2)κ3 −
1

2m
[S (κ2,κ3)κ1 − S (κ1,κ3)κ2] (25)

and characterize the manifold for the curvature condition written with the help of the projective
curvature tensor. If we choose κ1 = ξ,κ2 = ξ, and κ3 = ξ respectively in (25) , we have

P (ξ,κ2)κ3 = − (m+2)(c+1)
4m g (κ2,κ3) ξ

− c+1
4m η (κ3)κ2 − (c+1)(m+1)

4m η (κ2) η (κ3) ξ,

(26)
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P (κ1, ξ)κ3 =
(m+2)(c+1)

4m g (κ1,κ3) ξ

+ c+1
4m η (κ3)κ1 +

(c+1)(m+1)
4m η (κ1) η (κ3) ξ,

(27)

P (κ1,κ2) ξ =
c+ 1
4m

[η (κ2)κ1 − η (κ1)κ2] . (28)

Let us state and prove the following theorem.

Theorem 3.6. Let M̃ (c) be the (2m + 1)−dimensional Lorentz-Sasakian space form. If M̃ (c)
satisfies the curvature condition W0 (κ1,κ2) · P = 0, M̃ (c) is a real space form.

Proof. Let’s assume that M̃ (c) satisfies the condition

(W0 (κ1,κ2) · P ) (κ4,κ5,κ3) = 0,

for all κ1,κ2,κ4,κ5,κ3 ∈ χ
(
M̃ (c)

)
. So, we can easily write

W0 (κ1,κ2)P (κ4,κ5)κ3 − P (W0 (κ1,κ2)κ4,κ5)κ3

−P (κ4,W0 (κ1,κ2)κ5)κ3 − P (κ4,κ5)W0 (κ1,κ2)κ3 = 0.
(29)

If we choose κ1 = ξ in (29) and use (11) , we get

− (m+2)(c+1)
4m {g (κ2, P (κ4,κ5)κ3) ξ + η (P (κ4,κ5)κ3)κ2

−g (κ2,κ4)P (ξ,κ5)κ3 − η (κ4)P (κ2,κ5)κ3

−g (κ2,κ5)P (κ4, ξ)κ3 − η (κ5)P (κ4,κ2)κ3

−g (κ2,κ3)P (κ4,κ5) ξ − η (κ3)P (κ4,κ5)κ2} = 0.

(30)

If it is written instead of (26) , (27) , (28) in (30) and necessary arrangements are made, we have

− (m+2)(c+1)
4m {g (κ2, P (κ4,κ5)κ3) ξ + η (P (κ4,κ5)κ3)κ2

+ (m+2)(c+1)
4m [g (κ2,κ4) g (κ5,κ3) ξ − g (κ2,κ5) g (κ4,κ3) ξ]

+ (m+1)(c+1)
4m [g (κ2,κ4) η (κ5) η (κ3) ξ − g (κ2,κ5) η (κ4) η (κ3) ξ]

+ c+1
4m [g (κ2,κ4) η (κ3)κ5 − g (κ2,κ5) η (κ3)κ4 − g (κ2,κ3) η (κ5)κ4

+g (κ2,κ3) η (κ4)κ5]− η (κ4)P (κ2,κ5)κ3 − η (κ5)P (κ4,κ2)κ3

−η (κ3)P (κ4,κ5)κ2} = 0.

(31)

If we choose κ4 = ξ in (31) and use (25) , (26) , we get

− (m+2)(c+1)
4m

{
(m+1)(c+1)

4m [g (κ2,κ5) η (κ3) ξ − η (κ3) η (κ′
5)κ2

+g (κ2,κ3) η (κ5) ξ + 2η (κ2) η (κ5) η (κ3) ξ]− R̃ (κ2,κ5)κ3

− (m+2)(c+1)
4m g (κ5,κ3)κ2 +

1
2mS (κ5,κ3)κ2 − 1

2mS (κ2,κ3)κ5

+ c+1
4m g (κ2,κ3)κ5

}
= 0.

(32)
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If we choose κ3 = ξ in (23) and later, we take inner product of both side of the equation by
ξ ∈ χ

(
M̃ (c)

)
, we obtain

−(m+ 2) (m+ 1) (c+ 1)2

16m2 {g (κ2,κ5)− η (κ2) η (κ5)} = 0.

It is clear from the last equation that c = −1 ie M̃ (c) is the real space form. This completes the
proof.

Finally, let’s take the concircular curvature tensor defined as

Z̃ (κ1,κ2)κ3 = R (κ1,κ2)κ3 −
r

2m (2m+ 1)
[g (κ2,κ3)κ1 − g (κ1,κ3)κ2] (33)

and characterize the manifold for the curvature condition written with the help of the concircular
curvature tensor. If we choose κ1 = ξ,κ2 = ξ and κ3 = ξ respectively in (33) , we have

Z̃ (ξ,κ2)κ3 = −λ [g (κ2,κ3) ξ + η (κ3)κ2] , (34)

Z̃ (κ1, ξ)κ3 = λ [g (κ1,κ3) ξ + η (κ3)κ1] , (35)

Z̃ (κ1,κ2) ξ = − [η (κ2)κ1 − η (κ1)κ2] , (36)

where

λ =

[
1 +

r

2m (2m+ 1)

]
and r is the scalar curvature of M̃ (c) . Let us state and prove the following theorem.

Theorem 3.7. Let M̃ (c) be the (2m + 1)−dimensional Lorentz-Sasakian space form. If M̃ (c)
satisfies the curvature condition W0 (κ1,κ2) · Z̃ = 0, M̃ (c) is a real space form.

Proof. Let’s assume that M̃ (c) satisfies the condition(
W0 (κ1,κ2) · Z̃

)
(κ4,κ5,κ3) = 0,

for all κ1,κ2,κ4,κ5,κ3 ∈ χ
(
M̃ (c)

)
. So, we can easily write

W0 (κ1,κ2) Z̃ (κ4,κ5)κ3 − Z̃ (W0 (κ1,κ2)κ4,κ5)κ3

−Z̃ (κ4,W0 (κ1,κ2)κ5)κ3 − Z̃ (κ4,κ5)W0 (κ1,κ2)κ3 = 0.
(37)

If we choose κ1 = ξ in (37) and use (11) , we get

− (m+2)(c+1)
4m

{
g
(
κ2, Z̃ (κ4,κ5)κ3

)
ξ + η

(
Z̃ (κ4,κ5)κ3

)
κ2

−g (κ2,κ4) Z̃ (ξ,κ5)κ3 − η (κ4) Z̃ (κ2,κ5)κ3

−g (κ2,κ5) Z̃ (κ4, ξ)κ3 − η (κ5) Z̃ (κ4,κ2)κ3

−g (κ2,κ3) Z̃ (κ4,κ5) ξ − η (κ3) Z̃ (κ4,κ5)κ2
}
= 0.

(38)
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If it is written instead of (34) , (35) , (36) in (38) and necessary arrangements are made, we have

− (m+2)(c+1)
4m

{
g
(
κ2, Z̃ (κ4,κ5)κ3

)
ξ + η

(
Z̃ (κ4,κ5)κ3

)
κ2

+λ [g (κ2,κ4) g (κ5,κ3) ξ + g (κ2,κ4) η (κ3)κ5

−g (κ2,κ5) g (κ4,κ3) ξ − g (κ2,κ5) η (κ3)κ4

−g (κ2,κ3) η (κ5)κ4 + g (κ2,κ3) η (κ4)κ5]

−η (κ4) Z̃ (κ2,κ5)κ3 − η (κ5) Z̃ (κ4,κ2)κ3

−η (κ3) Z̃ (κ4,κ5)κ2
}
= 0.

(39)

If we choose κ4 = ξ in (39) and use (33) , (34) , we obtain

−(m+ 2) (c+ 1)
4m

{
−R̃ (κ2,κ5)κ3 − [g (κ5,κ3)κ2 − g (κ2,κ3)κ5]

}
= 0.

This completes the proof.

4 Conclusion

In this article, Lorentz-Sasakian space forms on W0-curvature tensor are investigated. Riemann,
Ricci, concircular, and projective curvature tensors are discussed for (2m+ 1)-dimensional
Lorentz-Sasakian space forms, and with the help of these curvature tensors, some special cur-
vature conditions established on the W0- curvature tensor are examined. Also, with the help of
these curvature conditions, some properties of Lorentz-Sasakian space forms such as Einstein
manifold, η-Einstein manifold, and real space form have been obtained.
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