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Abstract In this article, we have constructed an interesting type of generalized Schottky
group, named as Fuchsian Schottky group of arbitrary finite rank, in the context of the classi-
cal Schottky group (i.e., Schottky curves which are Euclidean circles). After that, we initiated
the construction of the generalized Fuchsian Schottky group of any finite rank by including
orientation-reversing isometries of the hyperbolic plane as side-pairing transformations. Further,
we have investigated the hyperbolic ends for any arbitrary finite rank Fuchsian Schottky groups
from the point of view of the Euler characteristic in the hyperbolic surface. Finally, we have
shown that the compact core of the conformally compact Riemann surface can be decomposed
into non-tight pairs of pants by using suitable twist parameters with some fixed Bers’ constant.
The Fenchel-Nielsen coordinates for Teichmüller space corresponding to any finite rank Fuch-
sian Schottky groups are also obtained.

1 Introduction

It is well known that Schottky groups are free, discrete subgroups of PSL(2,C). Since the latter
half of the 20th century, Schottky groups have been studied by various authors like Chuckrow
([7] and [8]), Marden [9], Ber [3], Button [5], Peter [16], and Maskit ([10], [11], and [13]). The
classical construction of this group is as follows: consider the region in CP1 bounded by n pairs
of mutually disjoint circles and pair these sides by n loxodromic transformations such that the
quotient is a hyperbolic surface of genus n; the Schottky group is the free group generated by
these side-pairing transformations. A similar construction also works in PSL(2,R), taking a
region D of the hyperbolic plane bounded by semi-circles orthogonal to the boundary at infinity;
these are called real Schottky groups. Now, to develop the literature, in this manuscript, we have
constructed a type of generalized Schottky group (named as Fuchsian Schottky group) on the
analogy of the real Schottky groups with two additional conditions:

(i) The transformation is paired with the semi-circles with its reflection on the upper imagi-
nary axis.

(ii) The positions of semi-circles at the circle at infinity are non-tangential (at least for the
Fuchsian Schottky group).
After that, we built the construction of the generalized Fuchsian Schottky groups of finite rank by
including the orientation-reversing isometries as side-pairing transformations in the upper-half
plane model. Then we have derived the hyperbolic ends for any finite rank Fuchsian Schottky
groups from the point of view of the topological invariant Euler characteristic in the hyperbolic
surface. This study gives rise to interesting surfaces, like finite Loch Ness monster and finite
Jacob’s ladder with sufficiently small limit sets. In fact, in this paper, we fabricated a finitely
generated hyperbolic group which produces an infinite area hyperbolic surface. Further, we have
deduced the Fenchel-Nielsen coordinates for Teichmüller space corresponding to any arbitrary
finite rank Fuchsian Schottky groups by indicating the Bers’ constant.
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Outline of this paper. In section 2 we have briefly discussed the preliminaries of the gen-
eralized Schottky group and the geometry of ends for hyperbolic surfaces. In section 3 we
have constructed a rank n, n ∈ N − {1}, purely hyperbolic generalized Schottky group, called
the Fuchsian Schottky group, (denoted by ΓSn) by using orientation-preserving isometries of
H as side-pairing transformations (see, Proposition 3.1). In section 4 we have extended this
construction in PSL∗(2,R) (see, Table : 1, for description) by including orientation-reversing
isometries of H as side-pairing transformations (see, Proposition 4.1). In this paper, we have
used orientation-reversing isometries only in section 4. Then we studied the geometry of the
limit set for the group ΓSn

, n ∈ N. In subsection 5.1, we have organized surface decomposition
and gluing for ΓSn , n ∈ N, including the discussion about the equivalency of the convex core
and the compact core for the group ΓSn

. Then we have given a characterization of the Nielsen
region for any finite rank Fuchsian Schottky group, in the hyperbolic plane. In subsection 5.2, we
have investigated the quotient surfaces with the conformal boundary at infinity corresponding to
ΓSn (n ∈ N) from the point of view of the Euler characteristic, χ, in the hyperbolic surface (see,
Theorem 5.1 and Theorem 5.2). In section 6 we have first discussed the existence of non-tight
pairs of pants for ΓSn , n ∈ N− {1}. After that, we created hyperbolic surfaces attaching Y and
X-pieces by using (3n − 2) numbers of twist parameters for rank n Fuchsian Schottky group,
n ∈ N− {1}. A characterization of half-collars for ΓSn is also studied. Finally, we have proved
that the compact core of the conformally compact Riemann surface can be decomposed into
(2n− 2) numbers of non-tight pair of pants where Bers’ constant is strictly less than (31n+ 21)
and produced Fenchel-Nielsen coordinates {l1, l2, ..., l(3n+2) ; β1, β2, ..., β(3n−2)} of Teichmüller
space (⊂ R6n−4) corresponding to the Fuchsian Schottky group of rank n, n ∈ N − {1} (see,
Theorem 6.1).

2 Generalized Schottky group and ends

In this section, we have discussed some basics of the generalized Schottky group, hyperbolic
ends, Y-piece, and conformal boundary for the non-abelian Fuchsian group. For details, we refer
the readers to the books of Beardon [2], Maskit [12], Matsuzaki [14], and Buser [4].

A generalized Schottky group S(γ1, γ2, ..., γp) (with respect to the point 0) is a subgroup of
PSL(2,R) generated by non-trivial non-elliptic elements {γ1, γ2, ..., γq}, (1 ≤ p ≤ q) such that
for all m ̸= n we have

{(C(γm) ∪ C(γ−1
m )) ∩ (C(γn) ∪ C(γ−1

n ))} = ϕ,

where C(γi) = {a ∈ H : d(a, γ(0)) ≤ d(a, 0)}, d denotes the hyperbolic distance. The sets
(C(γm) ∪ C(γ−1

m )) are pairwise tangential if γm are parabolic, however, these sets are pairwise
non-tangential when γm are hyperbolic. Notice that, if we omit the tangential case then the
group S(γ1, γ2, ..., γp) is reduced to a Schottky group in PSL(2,R). Although it is still possible
that C(γm) and C(γ−1

m ) are tangent to each other. For the generalized Schottky group, the
parabolic isometry is not always conjugate to powers of the parabolic generator γi, whereas, for
the Schottky group, it always agrees.

The following Table : 1 represents the symbols and notations of different terms that will be
used throughout the paper.
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Sl.
No. Descriptions of terms Notation

1. hyperbolic plane H
2. convex core C

3. limit set Λ(Γ)

4. set of discontinuity Ω(Γ)

5. projective special linear group over R degree 2 PSL(2,R)
6. boundary of the hyperbolic plane ∂H
7. Nielsen region N

8. compact core K

9. Euler’s characteristic χ

10. SL∗(2,R) is a group of real 2 × 2 matrices with
det = ±1, SL∗(2,R)/{±I2} =

PSL∗(2,R)

11. circle at infinity RP1

12. Fuchsian Schottky group of rank n ΓSn

13. conical limit set Λc(Γ)

14. Hausdorff dimension dimH

15. empty set ϕ

16. H ∪ {∞} H
17. the conformal boundary at infinity Ω(Γ)/Γ

18. funnels end F ′

19. Sphere at infinity CP1

20. projective special linear group over C degree 2 PSL(2,C)

Table : 1

All surfaces in this paper are orientable and triangulable. A funnel is a hyperbolic surface
having one geodesic boundary component which is isometric to D/ < z → el1z >, where
D = {z ∈ U : ℜ(z) ≤ 0} has the induced metric as a subspace of the upper-half plane
model U of the hyperbolic plane (ℜ(z) denotes the real part of z = x + iy). A cusp is a hy-
perbolic surface having one horocyclic boundary component which is isometric to the quotient
{z : ℑ(z) ≥ 1}/ < z → z + 1 >, where {z : ℑ(z) ≥ 1} has the induced metric as a subspace
of the upper-half plane model (ℑ(z) denotes the imaginary part of z). We all know that any
finite-type geodesically complete hyperbolic surface has ends that are either funnels or cusps. A
geodesically complete hyperbolic surface X is the quotient of the hyperbolic plane H, by a non-
elementary torsion-free Fuchsian group Γ. Throughout this paper, we have used the Fuchsian
group to mean the torsion-free Fuchsian group. The action of Γ on the circle at infinity of the hy-
perbolic plane breaks up into the limit set Λ(Γ) and the (if not empty) set of discontinuity, Ω(Γ).
The set of discontinuity Ω(Γ) is made up of a countable union of intervals of discontinuity. The
stabilizer in the finitely generated Fuchsian group Γ of an interval of discontinuity is generated
by a hyperbolic element. The convex core of X , i.e., C(X), is the quotient of the convex hull
of the limit set. The convex core is the smallest closed convex sub-surface with the boundary
which carries all the homotopy. Let, X = H/Γ be a geodesically complete hyperbolic surface.
Γ is said to be of the first kind if Λ(Γ) = ∂H. Otherwise it is of the second kind. Similarly, X
is said to be of the first kind when C(X) = X . Otherwise it is of the second kind that we are
mainly interested in this manuscript. An end is usually called geometrically finite if it contains a
neighborhood that is disjoint from N/Γ and geometrically infinite otherwise. If X is a geodesi-
cally complete hyperbolic surface, then a boundary component of C(X) is either a simple closed
geodesic that bounds a funnel in X and corresponds to an isolated end that is visible or a simple
geodesic isometric to the real line that bounds a half-plane in X and corresponds to a component
of a visible end of infinite type. Also, a visible infinite type end of a geodesically complete
hyperbolic surface has an equivalence class of components of the convex core boundary being
simple open geodesics with attached half-planes. A surface may have an uncountable number of



FUCHSIAN SCHOTTKY GROUP 507

ends. However, the hyperbolic metric in the hyperbolic plane places restrictions on the geometry
of the ends. Since a Fuchsian group has only a countable number of intervals of discontinuity a
complete hyperbolic surface has at most a countable set of ends (that means at most enumerable)
that are visible (see, [1] for more details). A Fuchsian group Γ is said to be a pair of pants if
the quotient space H/Γ is topologically a sphere with 3 disks removed. A pair of pants (or a
Y -piece) is a compact Riemann surface of signature (0, 3) whereas an X-piece is a compact Rie-
mann surface of signature (0, 4). A non-tight hyperbolic pair of pants is a hyperbolic sphere with
three geometric conformal holes, where all the conformal holes are geodesic boundary compo-
nents as simple closed curves (i.e., homeomorphic to three circles). A compact Riemann surface
is a hyperbolic surface that is compact without a boundary. A compact hyperbolic surface of sig-
nature (g,m) is called a Riemann surface of signature (g,m) when every boundary component is
a smooth closed geodesic. For a torsion-free non-elementary Fuchsian group Γ, the conformal
boundary of a hyperbolic 2-manifold is the topological boundary of (H ∪ Ω(Γ))/Γ. The con-
formal boundary at infinity of the hyperbolic surface is defined by Ω(Γ)/Γ, for the non-abelian
group Γ, where this group acts as a group of isometries. Canary [6] has proved that the length of
a curve in the conformal boundary produces an upper bound on the length of the corresponding
curve in the convex core boundary.

3 Construction of arbitrary finite rank Fuchsian Schottky group in the
context of the classical Schottky group

In this section we have constructed a purely hyperbolic generalized Schottky group, called the
Fuchsian Schottky group of rank n, n ∈ N− {1}, using 2n semi-circles in the hyperbolic plane,
H, with centers lying on the real projective line, RP1.

Proposition 3.1. Any rank n ∈N−{1}, Fuchsian Schottky group contains orientation preserving
isometries of H as side-pairing transformations.

Proof. In the upper-half plane model, let D1, D2, ..., D2n−1, and D2n be open mutually disjoint
Euclidean semi-circles in H with centers on the real projective line, RP1. The transformation is
paired with the semi-circle with the diameter on the real axis and with its reflection on the upper
imaginary axis. For each pair, Dj , Dj+n, (j = 1, 2, ..., n) we have supposed S′

j ∈ PSL(2,R)
is a transformation that sends ∂Dj to ∂Dj+n (∂Dj denotes the boundary of Dj). Also, the
transformation S′

j maps the (whole) exterior of Dj to the interior of Dj+n. Each transformation
S′
j is hyperbolic with a repelling fixed point inside Dj and an attracting fixed point inside Dj+n.

Let, D be a convex non-compact hyperbolic polygon with free edges (a polygon has edges
that are lying on the boundary, such edges are called free edges). D has vertices at the boundary
at infinity {a1, a2, ..., an; −a1,−a2, ...,−an; 0; b1, b2, ..., bn; −b1,−b2, ...,−bn}. Notice that,
here every vertex of the polygon D is an improper vertex except 0, which is a neither proper nor
improper vertex (see, [2]). The sides of D are the geodesic segments joining ai and bi; −bi and
−ai. Assume that all sides si and s′i, {i = 1, 2, ..., (n−1), n} of D are equipped with side-pairing
transformations γi and γ′

i respectively. We consider the orientation-preserving isometry of H to
be a side-pairing transformation. The isometries {γ1, γ

′
1, γ2, γ

′
2, ..., γn−1, γ

′
n−1, γn, γ

′
n} (which

are orientation preserving) act locally such that the half-plane bounded by {s1, s2, ..., sn−1, sn
; s′1, s

′
2, ..., s

′
n−1, s

′
n} containing D is mapped by γi and γ′

i to the half-plane bounded by γi(si)
and γ′

i(s
′
i) respectively. Let, each free edge be paired with itself by the identity map. Now, given

a vertex (let, ai) and a side (let, si or s′i) with an endpoint at that vertex, we have the following
cases:

(a) (i) The vertex ai belongs to a parabolic cycle which does not contain a vertex that is the
end-point of a free edge. (ii) The vertex ai ∈ ∂H belongs to a free cycle if the parabolic cycle
does contain a vertex that is the end-point of a free edge.

(b) The vertex ai ∈ ∂H belongs to a free cycle if the hyperbolic cycle does contain a vertex
that is the end-point of a free edge.
Note that, no vertex can belong to the parabolic cycle.

Now, to show the discreteness of ΓSn
(say) in PSL(2,R) we have used Poincaré’s theo-

rem (see, [2]). Observe that, it is not usual to apply when all the edges of the polygon are
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free. But we have presented that as follows: let, D be a convex hyperbolic polygon with all
edges free. Suppose that D ⊂ H is a finite-sided convex polygon whose sides are identified
in pairings by isometries {s1, s2, ..., sn−1, sn ; s′1, s

′
2, ..., s

′
n−1, s

′
n} = G1. Now, D is equipped

with a collection G1 of side-pairing hyperbolic orientation-preserving isometries. Assume that,
each free edge is paired with itself via the identity. Also, each hyperbolic cycle satisfies the
hyperbolic cycle condition. Then, the subgroup < G1 > generated by G1 is a subgroup of
PSL(2,R) and D is a fundamental domain of G1. Now, it is clear that all vertices lie on the
boundary and every vertex is the endpoint of a free edge. So, as every vertex must belong to a
free cycle, the side-pairing transformations generate a discrete subgroup (< G1 > = ΓSn

, say)
of PSL(2,R). Here, γ1, γ

′
1, γ2, γ

′
2, ..., γn−1, γ

′
n−1, γn, γ

′
n are orientation preserving isometries

given by the hyperbolic transformations with fixed points at a1, b1 ; −a1,−b1 ; a2, b2 ; −a2,−b2
; ... ; an−1, bn−1 ; −an−1,−bn−1 ; an, bn ;−an,−bn respectively ∈ ∂H. Clearly, γ1, γ

′
1, γ2, γ

′
2, ...,

γn−1, γ
′
n−1, γn, γ

′
n are side-pairing transformations. Now, it is obvious that cycles containing

the vertices are free cycles and there is no parabolic cycle containing any of the above vertices.
So, all the cycles are hyperbolic cycles and all transformations are hyperbolic transformations.
Hence, by Poincaré’s theorem, {γ1, γ

′
1, γ2, γ

′
2, ..., γn−1, γ

′
n−1, γn, γ

′
n} generates a discrete sub-

group of PSL(2,R). Observe that, for the group < γ1, γ
′
1, γ2, γ

′
2, ..., γn−1, γ

′
n−1, γn, γ

′
n >, the

generators are overlapping by γ1, γ
′
1 ; γ2, γ

′
2 ; ... ; γn−1, γ

′
n−1 ; γn, γ

′
n. Hence, the group re-

duces to < γ1, γ2, ..., γn−1, γn > = ΓSn (say). This group is a Fuchsian group with n generating
elements. Here, D is a fundamental domain for G1 and D is of infinite area. Now, it is well
known that (see, [2]) a Fuchsian group is of the first kind if and only if a (hence all) funda-
mental domain has a finite area. So, ΓSn

must be a Fuchsian group of the second kind. Hence,
the limit set of ΓSn , i.e., Λ(ΓSn) contains either 0, 1, or 2 elements or a Cantor set. Now, γ1
has hyperbolic fixed points at a1 and b1. Hence, a1, b1 ∈ Λ(ΓSn

). Similarly, ΓSn
contains the

hyperbolic Möbius transformations {γ2, γ3, ..., γn−1, γn} having fixed points at {a2, b2; a3, b3; ...
;an−1, bn−1; an, bn} respectively. So, a1, b1, a2, b2, ..., an−1, bn−1, an, bn ∈ Λ(ΓSn

). Similarly,
one can choose {γ′

1, γ
′
2, ..., γ

′
n−1, γ

′
n} as the generators of the group ΓSn . Then for that case,

−b1,−a1,−b2,−a2, ...,−bn−1,−an−1,−bn,−an ∈ Λ(ΓSn
). Therefore, Λ(ΓSn

) contains more
than 2 elements. That means Λ(ΓSn) is a Cantor set. We call the group ΓSn is the rank n
Fuchsian Schottky group. This completes the proof.

In this way, one can easily construct any rank n, n ∈ N − {1}, Fuchsian Schottky group by
introducing Euclidean open mutually disjoint semi-circles Di, {i = 1, 2, ..., (2n − 1), 2n} in H
centers on RP1 with the number of semi-circles are double of the required number of rank of
that group. Also, for ΓSn

, each j ∈ {1, 2, ..., n}, S′
j+2n = S′

j and S′
j+n = (S′

j)
−1 hold, where

the elements γs or γ′
s (∈ ΓSn

) are given by fractional linear transformations that map the whole
exterior of Dk to the interior of Dt with |k − t| = n, where ‘n’ is the rank of the group ΓSn

.

Remark 3.2. Let, X◦ be the interior of a connected orientable hyperbolic surface with a bound-
ary. Then the surface group of X◦, i.e., the fundamental group π1(X◦) is free on (1 − χ)
generators for ΓSn

. The above constructed group ΓSn
(⊂ PSL(2,R)) is the holonomy of an

infinite area hyperbolization of X◦. So, our Fuchsian Schottky representation is not exhaus-
tive. Here, ΓSn

is freely generated by S′
1, S

′
2, ..., S

′
n ∈ PSL(2,R) and there exists 2n open

intervals {(a1, b1), (−b1,−a1) ; (a2, b2), (−b2,−a2) ; ... ; (an, bn), (−bn,−an)} which are mu-
tually disjoint and centers on the real projective line such that S′

k(−bk,−ak) = (ak, bk), with
{(I+1 ∪ I+2 ∪ ...∪ I+k ) ∪ (I−1 ∪ I−2 ∪ ...∪ I−k )} ⊊ RP1, where I+k = (ak, bk) and I−k = (−bk,−ak).
We observe that this group ΓSn , n ∈ N− {1}, is not a lattice, although both ΓSn and lattices are
geometrically finite.

4 Construction of arbitrary finite rank generalized Fuchsian Schottky group
in the context of the classical Schottky group

In section 3 we have utilized only orientation-preserving isometry to be a side-pairing transfor-
mation. But in this section, we have included the orientation reversing isometry of H to be a
side-pairing transformation to extend the Proposition 3.1 construction in PSL∗(2,R). We have
concluded this section by briefly describing the geometry of the limit set for this generalized
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Schottky group ΓSn
, n ∈ N.

Proposition 4.1. Any rank n, n ∈ N − {1}, generalized Fuchsian Schottky group contains ori-
entation preserving and orientation reversing isometries of H as side-pairing transformations.

Proof. At first, taking the notion of our Fuchsian Schottky construction in Proposition 3.1, we
have allowed arbitrary isometry of H to be a side-pairing transformation (i.e., orientation revers-
ing isometry may occur). Now, let the sides of D be the geodesic segments joining ai and bi; −ai
and −bi but all sides ti and t′i, {i = 1, 2, ..., (n−1), n} of D are equipped with side-pairing trans-
formations γi and γ′

i respectively which may be orientation-preserving or orientation-reversing
isometries. So, the isometries {γ1, γ

′
1, γ2, γ

′
2, ..., γn−1, γ

′
n−1, γn, γ

′
n} act locally such that the half-

plane bounded by {t1, t2, ..., tn−1, tn ; t′1, t
′
2, ..., t

′
n−1, t

′
n} containing D is mapped by γi and γ′

i

to the half-plane bounded by γi(ti) and γ′
i(ti) respectively but opposite D. Also let, each free

edge be paired with itself by the identity map. Now, to show the discreteness of < G2 > (say)
in PSL∗(2,R) we have again utilized Poincaré’s theorem as follows: let, D be a convex hyper-
bolic polygon consisting of all free edges. Assume that, D ⊂ H is a finite-sided convex polygon
whose sides are identified in pairings by isometries {t1, t2, ..., tn−1, tn; t′1, t

′
2, ..., t

′
n−1, t

′
n} = G2.

So, D is equipped with a collection G2 of side-pairing hyperbolic isometries where each free
edge is paired with itself via the identity. Suppose that, each hyperbolic cycle satisfies the hy-
perbolic cycle condition. Then, the subgroup < G2 > generated by G2 is a discrete subgroup
of PSL∗(2,R). Observe that, D is not a fundamental domain of G2, because we have taken
arbitrary isometries (may not just Möbius transformations) as side-pairing transformations for
G2. In Proposition 3.1, we have assumed that γ1, γ

′
1, ..., γn, γ

′
n are orientation-preserving isome-

tries which are given by the hyperbolic transformations with fixed points at a1, b1; −b1,−a1;
...; an, bn; −bn,−an respectively ∈ ∂H. Now, let some of the side-pairing transformations be
orientation-reversing isometries. Then, the group Γ1 = {< G2 > ∩ PSL(2,R)}, of all orien-
tation preserving transformations in < G2 > is a Fuchsian group. Let, γi ∈ < G2 > be an
orientation reversing isometry, where i = 1, 2, ..., (n − 1) or n. Then, D1 = {D ∪ γi(D)} is a
fundamental domain for Γ1. So, D1 ⊃ D. Notice that, all the vertices of the hyperbolic polygon
lie on the boundary of the hyperbolic plane. Also, all vertices of the polygon are the endpoints
of the free edges. Therefore, all vertices belong to free cycles. Hence, the side-pairing transfor-
mations generate a discrete subgroup < G2 > = Γ2 (say) of PSL∗(2,R). Again, the orientation
reversing isometry γi given by the composition of a hyperbolic transformation with fixed points
at ai, bi ∈ ∂H and a reflection in the geodesic [ai, bi]. Also, γi pairs the side [ai, bi] to itself. So,
γi is a side-pairing transformation. For orientation-preserving isometries, it is obvious that they
are side-pairing transformations. Now, for the orientation reversing case, we have clarified this
in the ensuing way.
The cycle containing the vertex (ai−1), i = {2, 3, ..., n or (n+ 1)} is given by ;(

ai−1

ti−1

)
γ(i−1)−−−→

(
ai−1

ti−1

)
∗−→

(
ai−1

t(i−2)(i−1)

)
id−→

(
ai−1

t(i−2)(i−1)

)
∗−→

(
ai−1

ti−1

)
.

As this cycle contains the free edge t(i−2)(i−1), it is a free cycle.
And the cycle containing the vertex (ai), i = 1 (only) is given by ;(

ai
ti

)
γ(i)−−→

(
ai
ti

)
∗−→

(
ai

t′(i)(i)

)
id−→

(
ai

t′(i)(i)

)
∗−→

(
ai
ti

)
.

As this cycle contains the free edge t′(i)(i), it is a free cycle.
Now, the cycle containing the vertex (−bi), i = {1, 2, ..., n or (n− 1)} is given by ;(

−bi
t′i

)
γ′
n−→

(
−bi
t′i

)
∗−→

(
−bi
t′(i+1)i

)
id−→

(
−bi
t′(i+1)i

)
∗−→

(
−bi
t′i

)
.

As this cycle contains the free edge t′(i+1)i, it is also a free cycle.
And for the cycle containing the vertex (−bi), i = n (only) is given by ;(

−bi
t′i

)
γ′
n−→

(
−bi
t′i

)
∗−→

(
−bi
t′(i)(i)

)
id−→

(
−bi
t′(i)(i)

)
∗−→

(
−bi
t′i

)
.
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We notice that, for i = n, the free edge t′(i)(i) is equal to t(i)(i). Now, as this cycle contains the
free edge t′(i)(i), it is also a free cycle. Clearly, there is no parabolic cycle. So, all the cycles
are hyperbolic cycles and all transformations are hyperbolic transformations. Hence by using
the Poincaré’s theorem, we get that the group {γ1, γ

′
1, γ2, γ

′
2, ..., γn−1, γ

′
n−1, γn, γ

′
n} generates a

discrete subgroup of PSL∗(2,R). Since there is an overlapping issue on each generator between
γi and γ′

i, the group < γ1, γ2, ..., γn−1, γn > generates a discrete subgroup of PSL∗(2,R). Let,
Γ3 = {< γ1, γ2, ..., γn−1, γn > ∩ PSL(2,R)}, be the subgroup of hyperbolic Möbius transfor-
mations in the upper half plane contained in the group < γ1, γ2, ..., γn−1, γn >. Then, Γ3 is a
Fuchsian group. This group Γ3 is called the rank n, n ∈ N−{1}, generalized Fuchsian Schottky
group. Hence, the proof follows.

Therefore, by Proposition 4.1, one can construct a rank n, n ∈ N−{1}, generalized Fuchsian
Schottky group by allowing any isometry of H to be a side-pairing transformation.

The rest of this section is devoted to the study of the limit set for the Fuchsian Schottky
group of rank n, n ∈ N. Our constructed Fuchsian Schottky group of arbitrary finite rank n,
n ∈ N − {1}, is a particular example of a free Fuchsian group whose limit set is a Cantor
set with sufficiently small limit set. The freeness of ΓSn is defined by the well-known Ping-
pong lemma. Though it is known that, a Kleinian group with a limit set of a Cantor set of
Hausdorff dimension < 1 is always a free group. On the other hand, there exists a non-free
purely hyperbolic Kleinian group with the limit set a Cantor set of Hausdorff dimension < 1+ ϵ
(for ϵ > 0) (see, [15]). Further, the limit points of this Fuchsian Schottky group ΓSn lie within
a line or a circle. Also, for the Fuchsian Schottky group, ΓSn

, n ∈ N, all the limit points are
conical, i.e., each limit point of ΓSn is a point of approximation of this group. So, the non-
wandering set of the geodesic flow on the unitary tangent bundle of H/ΓSn

is compact and none
of the elements of this set diverges concerning the geodesic flow. Also, this set contains geodesic
trajectories that are neither dense nor periodic. This characterizes the conical limit points in the
limit set of ΓSn , n ∈ N. Hence, the group ΓSn has no cusped limit point. Our constructed
Schottky group satisfies the Beardon-Maskit condition in trivial, since {Λ(ΓSn

) − Λc(ΓSn
)} =

ϕ, n ∈ N. Also, the measure, m{Λ(ΓSn)} = 0 = m{Λc(ΓSn)}, which is the Ahlfors conjecture
(general version one can say) for the group with the second kind. For ΓS1 , the limit set consists
of two points only. But for ΓSn , n ∈ N− {1}, the limit set is a fractal with Hausdorff dimension
0 < δ = dimH(ΛΓSn

) < 1. The ordinary set Ω(ΓSn
) has a single ΓSn

-invariant component
that is not simply connected. Since, for rank n (n ∈ N), m{Λc(ΓSn)} ̸= 1, so the group ΓSn , n
∈ N, is of convergence type and the Green functions exist on H/ΓSn

concerning the hyperbolic
Laplacian. The exponent of convergence of this group (denotes δΓSn

) is bounded by 0 and 1
2 , i.e.,

0 < δΓSn
≤ 1

2 . Since ΓSn
is geometrically finite, δΓSn

is the Hausdorff dimension of the limit set
ΛΓSn

.

5 Associated surfaces with the conformal boundary at infinity corresponding
to the group ΓSn from the point of view of the Euler characteristic, in the
hyperbolic surface

In this section, we have discussed the associated surfaces corresponding to rank n, (n ∈N) Fuch-
sian Schottky group. For this purpose, first, we have obtained the Nielsen region for the group
ΓSn , n ∈ N − {1} and characterized this region in H. After that, we discussed the equivalency
of the convex core and the compact core for the group ΓSn

. Further, we have presented surface
decomposition and gluing for ΓSn to create the required hyperbolic surface with the confor-
mal boundary at infinity from the point of view of the Euler characteristic, χ, in the hyperbolic
surface.

Due to the absence of elliptic elements in ΓSn
, the quotient hyperbolic surface is smooth.

If ΓSn had elliptic elements then the quotient surface would be an Orbifold, with singularities
(conical) corresponding to the elliptic fixed points. Now, given an isometry group, (let, ΓSn

) of
H, a natural way to obtain a hyperbolic surface is as a quotient H/ΓSn . Points in the quotient
correspond to orbits of ΓSn

and there is a natural projection Π: H → H/ΓSn
given by Π(z) =
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ΓSn
(z). Since the action of ΓSn

is properly discontinuous on the hyperbolic plane, H, the quo-
tient is well-defined. Hence, the orbits are locally finite.

5.1. Surface decomposition for the group ΓSn
, n ∈ N− {1}.

Here, ΓSn is a non-elementary Fuchsian group of the second kind with n number of gener-
ators. So, the corresponding hyperbolic surface (X = H/ΓSn

) is non-elementary and geometri-
cally finite. Also, Λ(ΓSn) is nowhere dense in the circle at infinity and hence {∂H − Λ(ΓSn)} is
a countable union of open intervals Ii, where i = 1, 2, ..., (2n−1), (2n), ... . Then the group ΓSn

acts properly discontinuously on {RP1 − Λ(ΓSn
)}. Since ΓSn

is geometrically finite containing
only hyperbolic elements as peripheral elements, the conformal boundary at infinity for ΓSn

, i.e.,
{RP1 − (Cantor set with dimH ≤ 1

2 as a limit set of ΓSn
)}/ ΓSn

consists of a finite number of
simple closed curves. The structure of the ends of H/ΓSn reflects the 1-dimensional measure of
Λ(ΓSn) with Λ(ΓSn) ̸= RP1 which gives the length of Λ(ΓSn) is zero. Now, let us consider that
αi is a geodesic whose endpoints are the endpoints of Ii and Hi is the half-plane bounded by αi

and Ii. Then, the Nielsen region (also called the convex hull of the limit set Λ(ΓSn) in H) of
rank n, n ∈ N− {1}, Fuchsian Schottky group ΓSn

is defined by the subsequent set,

N(ΓSn
) = {H− (H1 ∪H2 ∪ ... ∪H2n−1 ∪H(2n−1)+1 ∪ ...)}. (5.1)

The collection {(∪Hi), i = 1, 2, ..., (2n − 1), (2n), ...} is invariant under ΓSn
by the invariance

of Λ(ΓSn). Since the cardinality of Λ(ΓSn) is greater than 1, the convex core for ΓSn , i.e.,
N(ΓSn

)/ΓSn
is nonempty. Each semi-circular line, i.e., Di marks the boundary of the funda-

mental domain for the action of ΓSn . Since ΓSn contains no parabolic element, there is zero
possibility to create the truncated Nielsen region. If there is a parabolic element, say c in ΓSn

then we will define the truncated Nielsen region as, N1(ΓSn) = N(ΓSn) − Oc, where Oc is the
interior of horocycle O′

c which will be created at the point c. So, the compact core (say, K) of
X is the same as the convex core in X , i.e., C(X) = K. Hence, the compact core K of the
hyperbolic surface corresponding to ΓSn

is compact and X −K is a finite disjoint union of fun-
nels (only). Due to the absence of parabolic elements in ΓSn , the convex core boundary for ΓSn

doesn’t contain any cusp end. Also, the convex core is compact, i.e., ΓSn
is a convex cocompact

group. That means H/ΓSn is a conformally compact hyperbolic surface. Now, the Dirichlet fun-
damental domain, D(ΓSn

) of ΓSn
has finitely many sides, so D(ΓSn

) meets Ω(ΓSn
) in a finite

collection of disjoint arcs {αi} which lie in the half-planes {H1, H2, ..., H2n−1, H(2n−1)+1, ...}.
Therefore, the quotient D(ΓSn

) ∩ (∪Hi)/ΓSn
(closure is taking in the Riemann-sphere topol-

ogy) gives a finite collection of ends in the hyperbolic surface with an extra boundary circle at
infinity. The collection of extra funnel end components corresponded with the conformal bound-
ary of ΓSn . Therefore, X has the decomposition as the compact core with only a finite number
of funnels attached to it. So, we have performed the decomposition for purely hyperbolic gener-
alized Schottky group as

X = K ∪ F ′ (5.2)

together with the funnels grouped as the disjoint union, {F ′
1 ∪ F ′

2 ∪ ... ∪ F ′
k} = F ′, where, k is

the number of funnel ends in the hyperbolic surface X corresponding to the Fuchsian Schottky
group of some finite rank.

Now, taking the notion from the preceding discussion, in the following, we have provided a
characterization of the Nielsen region, N(ΓSn

), for the group ΓSn
, n ∈ N− {1}, in H:

(i) Outside the Fuchsian Schottky curves on the hyperbolic plane, H, N(ΓSn) of ΓSn , is
bounded by the Euclidean half-planes (i.e., H1, H2, ..., H2n, ...) centered on R. Actually,
N(ΓSn) is bounded by the axes of the hyperbolic elements in ΓSn which project to the closed
geodesics and cut off the funnel ends on H/ΓSn

.
(ii) Inside the Fuchsian Schottky curves, the Nielsen region N(ΓSn) of ΓSn is unbounded on

the hyperbolic plane, H at RP1.

5.2. The conformal boundary at infinity corresponds to the group ΓSn
, n ∈ N, in the

point of view of the topological invariant Euler characteristic, in the hyperbolic surface.
The region FSn

= {H − (D1 ∪ D2 ∪ ... ∪ D2n−1 ∪ D2n)} is the fundamental domain for
the action of ΓSn . It is well known that H/ΓSn and FSn /ΓSn are topologically equivalent if and
only if FSn

is locally finite (see, [2]) (FSn
is the closure of FSn

). FSn
is a geodesically convex
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fundamental domain, so it is also a Dirichlet domain. Again we know that the Dirichlet domain
is always locally finite. Note that, the fundamental region FSn

has Euler characteristic, χ = 1.
On the other hand, for any hyperbolic surfaces, the Euler characteristic is

χ(X) = 2 − 2g − nF ′ − nC (5.3)

where g is the number of the genus, nF ′ denotes the number of funnel ends and nC indicates the
number of cusp ends. Now, for the group ΓSn after gluing 2n edges together to form the required
surface X , we obtain the Euler characteristic

χ = (1 − n) (5.4)

Therefore, combining equations (5.3) and (5.4) we get the following (keeping equation (5.2) in
mind):

For rank, n=1:
nF ′ + 2g = 2 (5.5)

So, only one case arises; g = 0, nF ′ = 2.
For rank, n=2:

nF ′ + 2g = 3 (5.6)

Therefore, 2 cases arise; (i) g = 1, nF ′ = 1, and (ii) g = 0, nF ′ = 3.
For rank, n=3:

nF ′ + 2g = 4 (5.7)

That means, here also 2 cases arise; (i) g = 1, nF ′ = 2, and (ii) g = 0, nF ′ = 4.
For rank, n=4:

nF ′ + 2g = 5 (5.8)

Hence, 3 cases arise; (i) g = 1, nF ′ = 3, (ii) g = 2, nF ′ = 1, and (iii) g = 0, nF ′ = 5.
For rank, n=5:

nF ′ + 2g = 6 (5.9)

That means, here also 3 cases arise; (i) g = 0, nF ′ = 6, (ii) g = 1, nF ′ = 4, and (iii) g =
2, nF ′ = 2.

For rank, n=6:
nF ′ + 2g = 7 (5.10)

So, 4 cases arise; (i) g = 0, nF ′ = 7, (ii) g = 1, nF ′ = 5, (iii) g = 2, nF ′ = 3, and (iv)
g = 3, nF ′ = 1.

For rank, n=7:
nF ′ + 2g = 8 (5.11)

i.e., here also 4 cases arise; (i) g = 0, nF ′ = 8, (ii) g = 1, nF ′ = 6, (iii) g = 2, nF ′ = 4, and (iv)
g = 3, nF ′ = 2.

For rank, n=8:
nF ′ + 2g = 9 (5.12)

Therefore, 5 cases arise; (i) g = 0, nF ′ = 9, (ii) g = 1, nF ′ = 7, (iii) g = 2, nF ′ = 5,
(iv)g = 3, nF ′ = 3, and (v) g = 4, nF ′ = 1.

For rank, n=9:
nF ′ + 2g = 10 (5.13)

Hence, 5 cases again arise: (i) g = 0, nF ′ = 10, (ii) g = 1, nF ′ = 8, (iii) g = 2, nF ′ = 6, (iv)
g = 3, nF ′ = 4, and (v) g = 4, nF ′ = 2.

For rank, n=10:
nF ′ + 2g = 11 (5.14)

So, 6 cases arise: (i) g = 0, nF ′ = 11, (ii) g = 1, nF ′ = 9, (iii) g = 2, nF ′ = 7, (iv)
g = 3, nF ′ = 5, (v) g = 4, nF ′ = 3, (vi) g = 5, nF ′ = 1;
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and so on.

Observations:
For ΓS2 : Equation (5.6)(i) gives a hyperbolic surface containing 1 funnel end with 1 genus.

Equation (5.6)(ii) produces a hyperbolic surface containing 3 funnel ends with no genus. So, for
rank 2 the maximum number of funnel ends is 3. Notice that, one can attach two funnel ends
with a suitable twist parameter and produce a genus 0 surface. So, equation (5.6)(ii) surface can
be converted to equation (5.6)(i) surface.

For ΓS3 : Equation (5.7)(i) produces a surface containing 2 funnel ends with 1 genus. Equa-
tion (5.7)(ii) gives a surface containing 4 funnel ends with no genus. So, here also attaching two
funnel ends with a suitable twist parameter we get a surface containing 1 genus and 2 funnel
ends. Note that, keeping in mind equation (5.2), we can not go further to get 2 genus surfaces
with no funnel end. Observe that, for the rank 3 Fuchsian Schottky group, the maximum number
of funnel ends can be 4.

For ΓS4 : Equation (5.8)(i) delivers a surface containing 3 funnel ends with 1 genus. Now
using a suitable twist parameter we get equation (5.8)(ii), i.e., the surface containing 2 genera
with 1 funnel end. Further, Equation (5.8)(iii) produces a surface containing 5 funnel ends
(which is the maximum for ΓS4 ) with no genus. Observe that, this surface can be converted to
the equation (5.8)(ii) surface by using two suitable twist parameters.

For ΓS5 : Equation (5.9)(i) produces a surface containing no genus with 6 funnel ends (which
is the maximum for ΓS5 ). Notice that, surfaces coming from (5.9)(i) and (5.9)(ii) can be reduced
in the equation (5.9)(iii) surface by using 2 and 1 suitable twist parameters respectively.

For ΓS6 : Equation (5.10)(i) gives a surface containing no genus with 7 funnel ends (which is
the maximum for ΓS6 ). Observe that, surfaces arising from (5.10)(i), (5.10)(ii), and (5.10)(iii)
can be reduced in the equation (5.10)(iv) surface by using 3, 2, and 1 suitable twist parameters
respectively.

For ΓS7 : Equation (5.11)(i) delivers a surface containing no genus with 8 funnel ends (which
is the maximum for ΓS7 ). Note that, surfaces originating from (5.11)(i), (5.11)(ii), and (5.11)(iii)
can be converted in the equation (5.11)(iv) surface by using 3, 2, and 1 suitable twist parameters
respectively.

For ΓS8 : Equation (5.12)(i) gives a surface containing no genus with 9 funnel ends (which is
the maximum for ΓS8 ). Observe that, surfaces coming from (5.12)(i), (5.12)(ii), (5.12)(iii), and
(5.12)(iv) can be consolidated in the equation (5.12)(v) surface by using 4, 3, 2, and 1 suitable
twist parameters respectively.

For ΓS9 : Equation (5.13)(i) produces a surface containing no genus with 10 funnel ends
(which is the maximum for ΓS9 ). Notice that, surfaces arising from (5.13)(i), (5.13)(ii), (5.13)(iii),
and (5.13)(iv) can be reduced in the equation (5.13)(v) surface by using 4, 3, 2, and 1 suitable
twist parameters respectively.

For ΓS10 : Equation (5.14)(i) delivers a surface containing no genus with 11 funnel ends
(which is the maximum for ΓS10 ). Note that, surfaces coming from (5.14)(i), (5.14)(ii), (5.14)(iii),
(5.14)(iv), and (5.14)(v) can be converted in the equation (5.14)(vi) surface by using 5, 4, 3, 2,
and 1 suitable twist parameters respectively;

and so on.

Conclusion of the overhead observations:
(i) For the rank n Fuchsian Schottky group, the associated hyperbolic surface contains the

maximum number of funnel ends when the surface doesn’t contain a genus. In this case, the
number of funnels end is equal to (n+ 1).

(ii) If we apply the attaching process with the funnel ends by using suitable twist parameters
then we get, n = 2g, when nf = 1 and n = 2g + 1, when nf = 2 ; where n ∈ N − {1} and
g ∈ N.

So, the preceding conclusion leads to the following two theorems:

Theorem 5.1. For the Euler characteristic, χ, in the hyperbolic surface, the quotient surface
corresponding to the rank n Fuchsian Schottky group

(i) is of (n+2)
2 (when n is even) or (n+1)

2 (when n is odd) types of hyperbolic surfaces.
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(ii) contains the maximum number of funnels end (n+1) when the surface has no genus.
(iii) contains the minimum number of funnel ends 1 or 2 when the surface has genus n

2 (for n
is even) or (n−1)

2 (for n is odd) respectively.

Theorem 5.2. For the Euler characteristic, χ, in the hyperbolic surface, the associated hyper-
bolic surface (applying attaching process with suitable twist parameters) corresponding to the
Fuchsian Schottky group, with

(i) rank 1, contains two funnel ends with no genus, i.e., it is a hyperbolic cylinder.
(ii) even rank (for some even number m,m ∈ 2N), contains m

2 genera with one funnel end
in the conformal boundary at infinity; i.e., it is the finite Loch Ness monster, having arbitrarily
finitely many handles and only one way to go to infinity.

(iii) odd rank {for some odd number n, n ∈ (2r − 1)N, (r ∈ N, but r ̸= 1)}, contains (n−1)
2

genera with two funnels ending in the conformal boundary at infinity; i.e., it is the finite Jacob’s
ladder, having two ways to go to infinity and arbitrarily finitely many handles in each.

6 The pair of pants situation for the group ΓSn , n ∈ N − {1}

Existence of a non-tight pair of pants for ΓSn
, n ∈ N with n ̸= 1.

Assume that, γ ∈ ΓSn
− {Id} and a0 ∈ H such that a0 is not fixed by γ. So, the perpendic-

ular bisector of the hyperbolic segment [a0, γ(a0)] defined by Pa0(γ) = {a ∈ H : d(a, a0) =
d(a, γ(a0))} is the geodesic that separates H into two connected components, orthogonal to
the segment [a0, γ(a0)], passing through its middle point. Let, Ca0 be the closed half-plane in
H bounded by Pa0(γ) containing γ(a0). So, γ(Pa0(γ

−1)) = Pa0(γ) and γ(C◦
a0
(γ−1)) = H −

Ca0(γ) hold, where C◦(γ) denotes the interior of C(γ). Since, ΓSn
is purely hyperbolic, so for

an element γ in ΓSn , P a0(γ) ∩ P a0(γ
−1) = ϕ holds in H. Now, for γ ∈ ΓSn

, C(γ) ∩ C(γ−1) = ϕ
and γ(C(γ−1)) = H − C◦(γ). Hence, only two types of cases can arise here for the group ΓSn .
For γ1,γ2, ...,γn ∈ ΓSn

, the sets {C(γ1) ∪ C(γ−1
1 )}, {C(γ2) ∪ C(γ−1

2 )}, ..., {C(γn) ∪ C(γ−1
n )}

are disjoint. So, we have two cases as in the following.
(i) {C(γi) ∩ C(γ−1

i )} = ϕ for γi ∈ ΓSn
(i = 1, 2, ..., n) and they are adjacent to each of them

in H.
(ii) {C(γj) ∩ C(γ−1

j )} = ϕ for γj ∈ ΓSn
(j = 1, 2, ..., n) and they are not adjacent, rather

opposite to each of them in H.
Clearly, from our construction of rank n, n ∈ N − {1}, Fuchsian Schottky group in Proposition
3.1, we claim that only case (i) can occur for the group ΓSn , n ∈ N− {1} because we have cho-
sen the semi-circles with diameters lying on the real axis and with their reflection in the upper
imaginary axis. Now, we define the group ΓSn is called crossed when we order the sets C(γ±1

i ),
(i = 1, 2, ..., n) along the boundary of H. Observe that, C(γi) and C(γ−1

i ) are not adjacent. So,
any rank n, n ∈ N − {1}, Fuchsian Schottky group is not crossed. Hence, the non-tight pair of
pants arises from the group ΓSn

, which we have described below in brief.

Attaching Y -pieces for ΓS2 .
The Fuchsian Schottky group of rank 2 produces pairs of pants with no cusp holes where γ1

and γ2 are hyperbolic with γ1γ2 hyperbolic. For hyperbolic elements γ1, γ2, and γ1γ2 to match
with the conformal holes via their fixed points, we have the axes A(γ1), A(γ2), and A(γ1γ2) to
connect its fixed points by the geodesic to bound the hole. Now, taking the notion of the previ-
ous section, we obtain for ΓS2 that the quotient H/ΓS2 gives a hyperbolic handlebody of genera
2. So, by pants decomposition, for a rank 2 Fuchsian Schottky group, it provides a closed ori-
entable hyperbolic surface which can be subdivided by 3 closed, simple, disjoint geodesics into
the union of 2 pairs of pants with the geodesics of their boundary circles. Let, Y 1 and Y 2 be two
Y -pieces with boundary geodesics γ1

1 , γ2
1 , γ1

1γ
1
2 ; γ1

2 , γ2
2 , and γ2

1γ
2
2 parametrized on R/[t → t+1],

t ∈ [0, 1]. Note that, here {γ1
1 , γ

1
2 , γ

1
1γ

1
2} and {γ2

1 , γ
2
2 , γ

2
1γ

2
2} all are hyperbolic. So, the lengths

of these boundary geodesics are always positive. Let us suppose that γ1
1γ

1
2 = γ1

3 and γ2
1γ

2
2 = γ2

3 .
Now, l(γj

i ) = d(zk, γ
j
i (z)), where zk is the axis of γj

i (i = 1, 2, 3 ; j = 1, 2 ; k = 1, 2, 3). Further,
assume that, l(γ1

1) = l(γ2
2). Then for any β ∈ R (call the twist parameter), we have built an

X-piece via the identification γ1
1(t) = γ2

2(β− t) = γβ(t), where t ∈ R/[t → t+1], t ∈ [0, 1]. So,
by pasting the two Y -pieces we obtain Xβ = Y 1 + Y 2 with the preceding twist parameter con-
dition. Hence, for ΓS2 , the corresponding hyperbolic surface is a conformally compact Riemann



FUCHSIAN SCHOTTKY GROUP 515

surface of signature (0, 4), i.e., it is a one X-piece whose length of all the boundary geodesics
{γ1

2 , γ
1
3 , γ

2
1 , γ

2
3} are positive.

Attaching Y -pieces for ΓS3 .
For ΓS3 , the quotient H/ΓS3 contains 6 boundaries, and for hyperbolic elements γ1, γ2, γ3,

γ1γ2, γ2γ3, γ1γ3 that match with the conformal holes via their fixed points. Hence, for ΓS3 the
closed orientable hyperbolic surface can be subdivided by 6 simple, closed, disjoint geodesics
into the union of 4 pairs of pants with the geodesics of their boundary circles. Let, Y 1, Y 2,
Y 3 and Y 4 be four Y -pieces with boundary geodesics γ1

1 , γ
1
2 , γ

1
1γ

1
2 ; γ2

2 , γ
2
3 , γ

2
2γ

2
3 ; γ3

1 , γ
3
3 , γ

3
1γ

3
3 ;

γ4
1γ

4
2 , γ

4
2γ

4
3 , γ

4
1γ

4
3 respectively parametrized on R/[t → t + 1], t ∈ [0, 1]. Let, γ1

1γ
1
2 = γ1

3 , γ2
2γ

2
3

= γ2
5 , γ3

1γ
3
3 = γ3

4 , γ4
1γ

4
2 = γ4

3 , γ4
2γ

4
3 = γ4

5 , γ4
1γ

4
3 = γ4

4 . Notice that, l(γj
i ) = d(zk, γ

j
i (z)), where

zk is the axis of γj
i (i = 1, 2, 3, 4, 5 ; j = 1, 2, 3, 4 ; k = 1, 2, 3, 4, 5) and lengths of all of these

elements are positive. Let, l(γ1
1) = l(γ2

2) and l(γ3
3) = l(γ4

4). Then for twist parameters β1, β2

∈ R, we prepare two X-pieces via the identifications γ1
1(t) = γ2

2(β
1 − t) = γβ1

(t) and γ3
3(t) =

γ4
4(β

2 − t) = γβ2
(t), where t ∈ R/[t → t+1], t ∈ [0, 1]. Now, by pasting these four Y -pieces we

get, Xβ1
+ Xβ2

= (Y 1 + Y 2) + (Y 3 + Y 4) = X1 + X2, with the overhead two twist parameter
conditions. Now, suppose that l(γ2

3) = l(γ3
1) and l(γ2

5) = l(γ3
4). Then for twist parameters β3, β4

∈ R, we have finally built a hyperbolic surface X3 of signature (1, 4) via the two identifications
γ2

3(t) = γ3
1(β

3 − t) = γβ3
(t) and γ2

5(t) = γ3
4(β

4 − t) = γβ4
(t) where t ∈ R/[t → t+1], t ∈ [0, 1].

Hence, for ΓS3 the corresponding hyperbolic surface is a conformally compact Riemann surface
of signature (1, 4).

Attaching Y -pieces for ΓS4 .
For ΓS4 the closed orientable hyperbolic surface can be subdivided by 9 simple, closed, dis-

joint geodesics into the union of 6 pairs of pants with the geodesics of their boundary circles.
Let, Y 1, Y 2, Y 3, Y 4, Y 5 and Y 6 be six Y -pieces with boundary geodesics γ1

1 , γ
1
2γ

1
3 , γ

1
1γ

1
2γ

1
3 ;

γ2
2 , γ

2
3γ

2
4 , γ

2
2γ

2
3γ

2
4 ; γ3

3 , γ
3
1γ

3
4 , γ

3
1γ

3
3γ

3
4 ; γ4

4 , γ
4
1γ

4
2 , γ

4
1γ

4
2γ

4
4 ; γ5

1γ
5
2 , γ

5
3γ

5
4 , γ

5
2γ

5
3 ; and γ6

1γ
6
3 , γ

6
2γ

6
4 , γ

6
1γ

6
4

respectively parametrized on R/[t → t+ 1], t ∈ [0, 1]. Let, γ1
2γ

1
3 = γ1

5 , γ1
1γ

1
2γ

1
3 = γ1

6 , γ2
3γ

2
4 = γ2

7 ,
γ2

2γ
2
3γ

2
4 = γ2

9 , γ3
1γ

3
4 = γ3

5 , γ3
1γ

3
3γ

3
4 = γ3

8 , γ4
1γ

4
2 = γ4

3 , γ4
1γ

4
2γ

4
4 = γ4

7 , γ5
1γ

5
2 = γ5

3 , γ5
3γ

5
4 = γ5

7 , γ5
2γ

5
3

= γ5
5 , γ6

1γ
6
3 = γ6

4 , γ6
2γ

6
4 = γ6

6 , γ6
1γ

6
4 = γ6

5 . Also, l(γj
i ) = d(zk, γ

j
i (z)), where zk is the axis of γj

i

(i = 1, 2, 3, 4, 5, 6, 7 ; j = 1, 2, 3, 4, 5, 6 ; k = 1, 2, 3, 4, 5, 6, 7). Assume that, l(γ1
1) = l(γ2

2),
l(γ3

3) = l(γ4
4), l(γ

5
5) = l(γ6

6). Then for twist parameters β1, β2, β3 ∈ R, we obtain three X-pieces
via the two identifications γ1

1(t) = γ2
2(β

1 − t) = γβ1
(t), γ3

3(t) = γ4
4(β

2 − t) = γβ2
(t), and γ5

5 =

γ6
6(β

3 − t), where t ∈ R/[t → t+ 1], t ∈ [0, 1]. So, by pasting the six Y -pieces we get, Xβ1
+

Xβ2
+Xβ3

= (Y 1 +Y 2) + (Y 3 +Y 4) + (Y 5 +Y 6) =X1 +X2 +X3 (say), with the exceeding
three twist parameter conditions. Now, for X1 and X2, let l(γ2

7) = l(γ3
5) and l(γ2

9) = l(γ3
8). Then

for twist parameters β4, β5 ∈ R, we have built a hyperbolic surface X12 (say, X4) of signature
(1, 4) via the two identifications γ2

7(t) = γ3
5(β

4 − t) = γβ4
(t) and γ2

9(t) = γ3
8(β

5 − t) = γβ5
(t),

where t ∈ R/[t → t + 1], t ∈ [0, 1]. Again, for X4 and X3, suppose l(γ4
3) = l(γ5

3) and l(γ4
7)

= l(γ5
7). Then for twist parameters β6, β7 ∈ R, we have finally reached the required hyperbolic

surface X123 (say, X5) of signature (2, 4) via the two identifications γ4
3(t) = γ5

3(β
6 − t) = γβ6

(t)

and γ4
7(t) = γ5

7(β
7 − t) = γβ7

(t), where t ∈ R/[t → t + 1], t ∈ [0, 1]. Hence, for ΓS4 , the
corresponding hyperbolic surface is a conformally compact Riemann surface of signature (2, 4).

In this way, for the rank n Fuchsian Schottky group ΓSn
, n ∈ N−{1}, one can attach (2n−2)

numbers of non-tight pairs of pants by using (3n− 2) numbers of twist parameters where Bers’
constant < (31n+ 21) (for Bers’ constant the readers may go through the book of Buser [4]) to
create the required associated hyperbolic surface X∗ (say), which is basically the conformally
compact Riemann surface of signature ((n− 2), 4).

Half-collars for ΓSn
.

For pair of pants Y k, k = 1, 2, ..., (2n − 2) with boundary geodesics γk
i , i = 1, 2, 3, the sets

µ[γk
i ] = {a ∈ Y k, a /∈ γk

i : 0 < sinh(dist(a, γk
i )) sinh 1

2 l(γ
k
i ) ≤ 1} are homeomorphic to {(0, 1]

× R/[t → t+ 1]} with the funnel metric. Note that, here dist{µ[γk
i ], µ[γ

k
j ]} ↛ 0 for any i ̸= j.

Consequently, the sets µ[γk
i ] are always pairwise disjoint for ΓSn

. So, the collar around γk
i for
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the group ΓSn
is defined by the subsequent set,

C(γk
i ) = {a ∈ X∗ : 0 < dist(a, γk

i ) ≤ w(γk
i )},

where, w(γk
i ) = arcsinh[ 1

sinh( 1
2 l(γ

k
i ))

] is the width. Since there is no thin part of the hyperbolic
surface X∗, the width of the half-collars is minimal for the group ΓSn

. This characterizes any
arbitrary finite rank Fuchsian Schottky group from the point of view of the Fuchsian surface
group in the hyperbolic space.

Fenchel-Nielsen coordinates for the group ΓSn
.

The deformation parameters for the hyperbolic surface X∗ corresponding to rank n Fuchsian
Schottky group obtained through our preceding study are l1, l2, ..., l(3n−2)+4 and β1, β2, ..., β(3n−2).
Hence, the Fenchel-Nielsen coordinates of Teichmüller space for the group ΓSn

which is a subset
of real (6n− 4) dimensional Euclidean space, R6n−4 are given by :

TX∗ = {l1, l2, ..., l(3n+1), l(3n+2);β1, β2, ..., β(3n−3), β(3n−2) ∈ R(3n+2)
+ ×R(3n−2)}

Therefore, from the above discussion we can state the following:

Theorem 6.1. (Non-tight pants decomposition for any finite rank Fuchsian Schottky group)
The compact core of the conformally compact Riemann surface X∗ corresponding to the Fuch-
sian Schottky group of rank n, n ∈ N − {1}, can be decomposed into 2(n − 1) numbers of
non-tight pairs of pants Yi by using (3n− 2) numbers of twist parameters where Bers’ constant
is strictly less than (31n+ 21), such that X∗ = {Y1 ∪ Y2 ∪ ... ∪ Y2(n−1)} ∪ {F ′

1 ∪ F ′
2 ∪ F ′

3 ∪ F ′
4}

with (n − 2) genera, where F ′
j denotes the funnel ends, j = 1, 2, 3, 4, and (2 − 2n) is the Eu-

ler characteristic, χ of X∗. Moreover, the Fenchel-Nielsen coordinates for Teichmüller space
(⊂ R6n−4) corresponding to the group ΓSn

are {l1, l2, ..., l(3n+2) ; β1, β2, ..., β(3n−2)}.

7 Conclusion remarks

Though any finite rank Fuchsian Schottky group is a discrete subgroup of PSL(2,R), in this
paper, we have introduced orientation-reversing isometries as side-pairing transformations that
enrich our constructed group from the group’s theoretical point of view (see, Proposition 4.1).
We noticed that the convex cocompact Fuchsian Schottky hyperbolic surface had a sufficiently
small limit set with Hausdorff dimension 0 ≤ δΓSn

≤ 1
2 . We also observed that, from the

point of view of the topological invariant Euler characteristics in the hyperbolic surface, the
Fuchsian Schottky group produced hyperbolic surfaces like finite Loch Ness monster and finite
Jacob’s ladder (see, Theorem 5.1 and Theorem 5.2). Note that, for a compact Riemann surface
corresponding to a Fuchsian group of genus n (n > 1) and a conformally compact Riemann
surface corresponding to the Fuchsian group equipped with the Schottky structure of rank n
(n > 1) (which we have constructed in this paper), the dimensions of Teichmüller spaces are not
equal (increased by 2 in the sense of real dimensional Euclidean space for ΓSn , see, Theorem
6.1).
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