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Abstract In this paper, we introduce the concept of fuzzy multi-hyperrings and obtain several
related results. Also, we study different operations on fuzzy multi-hyperrings (such as intersec-
tion and union). Moreover, we define homomorphism and the direct product of fuzzy multi-
hyperrings and investigate some of their main properties.

1 Introduction

A fuzzy multiset is a generalization of a fuzzy set. Zadeh [21], in his theory of fuzzy sets, proposed
using a membership function operating on the domain of all possible values. In recent years,
several researchers studied various generalizations of fuzzy sets. Yager [20] discussed the fuzzy-
bag structure and operations on fuzzy multisets, such as intersection and union. Girish [9]
introduced the concepts of relation, function, and composition and Nazmul [15] defined a group
on the multiset derived from the initial universal set. An element of a fuzzy multiset can occur
more than once with possibly the same or different membership values. This new structure has
many applications in mathematics and computer sciences.

Marty [12] introduced the concept of hyperstructure during the 8th Congress of Scandinavian
Mathematicians in 1934. He defined the concept of a hypergroup as a generalization of a group.
Krasner [11] introduced the notion of hyperrings. Moreover, many researchers studied this field
and developed this theory and found related results. For example, Corsini and Leoreanu gave
main works in hyperstructures in [5]. Also for some related study see [1], [3].

Although many authors extended these concepts, study in the fuzzy multiset theory has not
yet gained much ground, and it is still in its infant stage. Therefore the study of hyperring
structure in a fuzzy-multiset context is helpful. In this paper, we introduce the notion of fuzzy
multi-hyperrings and study some of their main properties. We show that the intersection of two
fuzzy multi-hyperrings is again a fuzzy multi-hyperring, but their union may not be a fuzzy multi-
hyperring in general. In addition, we define and study homomorphic properties and the direct
product of fuzzy multi-hyperrings.

In the following, we study some basic definitions and results related to fuzzy multisets and
hyperstructures.

A multiset is an unordered collection of objects (inverse of a standard Cantorian-set) elements
are allowed to repeat. If X is a set, a multiset A drawn from X is characterized by a count function
A or CA defined as CA : X −→ {0, 1, 2, · · · }. For each x ∈ X , CA(x) is the characteristic value
of x in A, and it indicates the number of occurrences of the element x in A.

Definition 1.1. [13, 17] Let X be a non-empty set. We represent a fuzzy multiset A drawn from
the set X by a function CMA such that CMA : X −→ Q, where Q represents the set of all crisp
multisets drawn from the unit interval [0, 1]. In particular, we represent a fuzzy multiset A by a
higher order function A : X −→ [0, 1] −→ N, where N is the set of natural numbers. For each
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x ∈ X , CMA is the characteristic value of x in A and indicates a crisp multiset drawn from [0, 1].
Also, for each x ∈ X , the membership sequence is defined as the decreasingly ordered sequence
of elements in CMA(x) and is denoted by (µ1

A(x), · · · , µk
A(x)); µ

1
A(x) ≥ · · · ≥ µk

A(x). If every
x ∈ X is mapped to a finite multiset of N under the count membership function CMA, then A is
said to be a finite fuzzy multiset of X. For all x ∈ A, we define L(x;A) = max{j;µj

A(x) ̸= 0}.
We consider an operation between two fuzzy multisets by an equal length. Thus if A and B are
two fuzzy multisets at consideration, take L(x;A,B) = max{L(x;A), L(x;B)}. If no ambiguity
arises, then we denote the length of membership with L(x).

Let A and B be two fuzzy multisets drawn from a set X. Then A ⊆ B if µj
A(x) ≤ µj

B(x), for
all x ∈ X , j = 1, · · · , L(x). The intersection and union of A and B, denoted by A ∩ B and
A∪B, respectively, are defined by µj

A∩B(x) = µj
A(x)∧µj

B(x) and µj
A∪B(x) = µj

A(x)∨µj
B(x),

respectively, where j = 1, · · · , L(x) and ∧, ∨ are the minimum and the maximum operation, re-
spectively. For all i = 1, 2, · · · ,max{L(x), L(y)} by CMA(x) ≥ CMA(y), CMA(x)∧CMA(y)
and CMA(x)∨CMA(y) we mean that µi

A(x) ≥ µi
A(x), {µi

A(x)∧µi
A(y)} and {µi

A(x)∨µi
A(y)},

respectively.
Let H be a non-empty set and P ∗(H) be the family of all non-empty subsets of H. A mapping

◦ : H × H −→ P ∗(H) is called a binary hyperoperation on H and (H, ◦) is called a hyper-
groupoid. A hypergroupoid (H, ◦) is called a semihypergroup if x ◦ (y ◦ z) = (x ◦ y) ◦ z, for all
x, y, z ∈ H and is called a quasihypergroup if x ◦H = H = H ◦ x, for all x ∈ H . The couple
(H, ◦) is called a hypergroup if it is a semihypergroup and a quasi-hypergroup. A hypergroup
(H, ◦) is called commutative if x ◦ y = y ◦ x, for all x, y ∈ H .

Definition 1.2. [6, 11] A Krasner hyperring is an algebraic hyperstructure (R,+, .) which satis-
fies the following axioms:
(1) (R,+) is a canonical hypergroup, i.e.,

(i) for every x, y, z ∈ R, x+ (y + z) = (x+ y) + z;
(ii) for every x, y ∈ R, x+ y = y + x;
(iii) there exist 0 ∈ R such that 0 + x = {x}, for all x ∈ R;
(iv) for every x ∈ R there exists a unique element −x ∈ R such that 0 ∈ x− x;
(v) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.

(2) (R, .) is a semigroup having zero as a bilateral absorbing element, i.e., x.0 = 0.x = 0;
(3) The multiplication "." is distributive to the hyperoperation "+".

In the above definition, for simplicity of notations, we write 0+x = x instead of 0+x = {x}.
The following elementary facts follow easily from the axioms: −(−x) = x and −(x+y) = −x−y
and −A = {−x;x ∈ A}. We say that a Krasner hyperring (R,+, .) is commutative (with unit
element) if (R, .) is a commutative semigroup (with unit element). A non-empty subset A of
R is a sub-hyperring of (R,+, .) if a + b ⊆ A, −a ∈ A and a.b ∈ A. Let R and S be two
Krasner hyperrings. A map φ : R −→ S is called a homomorphism if φ(x+ y) ⊆ φ(x) + φ(y),
φ(x.y) = φ(x).φ(y) and φ(0) = 0, for all x, y ∈ R.

Example 1.3. [14, 18] Let (H, ◦) be a finite group with k elements (k > 3) and consider "+" and
"×" on G = H ∪ {0} with:
x + y = y + x = G⧹{x, y}, for all x, y ∈ H,x ̸= y; x + x = {x, 0}, for all x ∈ H;
x+ 0 = 0 + x = {x}, for all x ∈ G; x× y = x ◦ y, for all x, y ∈ H; x× 0 = 0, for all x ∈ G.
Then (G,+,×) is a Krasner hyperring.

Throughout this paper, let X be a Krasner hyperring and 0 be the additive identity of X. We
also omit all clear proofs throughout the article.

2 Characterizations of Fuzzy multi-hyperrings

In this section, inspired by the definitions of the Krasner hyperring [11] and the fuzzy multiset
[9], we introduce the concept of fuzzy multi-hyperring.

Definition 2.1. A fuzzy multiset A drawn from X is said to be a fuzzy multi (Krasner) hyperring
over X, if for all x, y ∈ X the count function of A i.e., CMA satisfies the following conditions:
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(i)
∧

z∈x+y CMA(z) ≥ CMA(x) ∧ CMA(y);

(ii) CMA(−x) ≥ CMA(x);

(iii) CMA(x.y) ≥ CMA(x) ∧ CMA(y).

The set of all fuzzy multi-hyperrings over X is denoted by FMHR(X).

Example 2.2. In the following, we present different examples of fuzzy multi-hyperrings:

(i) Let X = Z12
H = {xH | x ∈ Z12}, where Z12 is the set of all congruence classes of integers

modulo 12 and H is its multiplicative subgroup of units. So H = {1̄, 5̄, 7̄, 1̄1}. Clearly,
2̄H = 1̄0H , 3̄H = 9̄H , 4̄H = 8̄H and so X = {0̄H, 1̄H, 2̄H, 3̄H, 4̄H, 6̄H}. Consider
the hyperoperation "∔" by x̄H ∔ ȳH = {z̄H; (x̄H ∔ ȳH) ∩ z̄H ̸= ∅} and the binary
operation "." by x̄H.ȳH = ¯x.yH . Then (X,∔, .) is a Krasner hyperring [4]. It is clear
that A = {⟨ (1,0.8,0.5)0̄H ⟩, ⟨ (0.6,0,2)1̄H ⟩, ⟨ (0.8,0.5)2̄H ⟩, ⟨ (0.6,0,2)3̄H ⟩, ⟨ (0.9,0.6)4̄H ⟩, ⟨ (0.8,0.5)6̄H ⟩} is a fuzzy multi-
hyperring over X.

(ii) Let X = {0, 1, 2} be a set with the hyperoperation "+" and the binary operation "." defined
as follows:

+ 0 1 2
0 0 1 2
1 1 1 {0, 1, 2}
2 2 {0, 1, 2} 2

. 0 1 2
0 0 0 0
1 0 1 2
2 0 1 2

Then (X,+, .) is a Krasner hyperring [6]. It is clear that

A = {⟨ (1,0.6,0.4)0 ⟩, ⟨ (0.3,0.2,0.1)1 ⟩, ⟨ (0.3,0.2,0.1)2 ⟩}

is a fuzzy multi-hyperring over X.

(iii) Let X = {0, 1, 2, 3} be a set with the hyperoperation "+" defined as follows:

+ 0 1 2 3
0 0 1 2 3
1 1 {0, 1} 3 {2,3}
2 2 3 0 1
3 3 {2,3} 1 {0, 1}

and the binary operation "." defined as x.y = 2, if x, y ∈ {2, 3} and x.y = 0, otherwise.
Then (X,+, .) is a Krasner hyperring [19]. It is clear that

A = {⟨ (1,0.8,0.3)0 ⟩, ⟨ (0.5,0.4)1 ⟩, ⟨ 0.5,0.5,0.3
2 ⟩, ⟨ (0.5,0.4)3 ⟩}

is a fuzzy multi-hyperring over X.

(iv) Let X = {0, 1} be a set with the hyperoperation "+" defined as follows:

0 + 1 = 1 + 0 = {1}, 1 + 1 = {0, 1} and 0 + 0 = {0},

and the binary operation "." defined as the usual multiplication. Then (X, +, .) is a Krasner
hyperring [16]. It is clear that A = {⟨ (1,0.5,0.3)0 ⟩, ⟨ (0.9,0.4,0.2)1 ⟩} is a fuzzy multi-hyperring
over X

(v) Let a be a fixed element in X. Consider fuzzy multiset A drown from X by count function
CMA as CMA(x) = CMA(a), for all x ∈ X . Then A is a fuzzy multi-hyperring over X
and is called the constant fuzzy multi-hyperring over X.
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(vi) Let X = {0, 1}. Consider hyperoperation "+" as x + y = {z; z ≤ x}, if x = y, and
x + y = x ∨ y, if x ̸= y, where ∨ is the maximum and "." is the ordinary multiplication.
Then X is a Krasner hyperring. It is clear that A = {< (0.4,0.2)

0 >,< (0.3,0.1)
1 >} is a fuzzy

multi-hyperring over X.

(vii) Let X = {0, 1, 2, 3} be a set with the hyperoperation "+" and the binary operation "." as
follows:

+ 0 1 2 3
0 {0} {1} {2} {3}
1 {1} {0, 2} {1, 3} {2}
2 {2} {1, 3} {0, 2} {1}
3 {3} {2} {1} {0}

. 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

Then (X,+, .) is a Krasner hyperring [2]. It is clear that A = {⟨ (1,0.7,0.6)0 ⟩, ⟨ (0.5,0.4)2 ⟩} is a
fuzzy multi-hyperring over X .

Proposition 2.3. Let A be a fuzzy multi-hyperring over X with

CMA(x) = (µ1(x), µ2(x), · · · , µk(x)), for all x ∈ X .

Consider the complement of A by

CMA′(x) = (1 − µk(x), · · · , 1 − µ2(x), 1 − µ1(x)), for all x ∈ X .

Then A = (A′)′.

Proof. Let x ∈ X . Then CM(A′)′(x) = (1−(1−µ1(x)), 1−(1−µ2(x)), · · · , 1−(1−µk(x))) =

(µ1(x), µ2(x), · · · , µk(x)) = CMA(x).

Example 2.4. Let (X,+, .) be the Krasner hyperring defined in Example 2.2(vi). Consider

A = {⟨ (0.5,0.4)0 ⟩, ⟨ (0.3,0.2)1 ⟩}.

Then A′ = {⟨ (0.6,0.5)0 ⟩, ⟨ (0.8,0.7)1 ⟩}. This example shows that A′ is not a fuzzy multi-hyperring of
X in general because

∧
z∈1+1 CMA′(z) ≱ CMA(1).

Theorem 2.5. Let A be a fuzzy multi-hyperring over X. Then for all x ∈ X , we have

(i) CMA(0) ≥ CMA(x);

(ii) CMA(−x) = CMA(x).

Proof. Let x ∈ X .
(i) Since A is a fuzzy multi-hyperring over X, we have

CMA(0) ≥
∧

z∈−x+x

CMA(z) ≥ CMA(−x) ∧ CMA(x) ≥ CMA(x).

(ii) It is sufficient to prove that CMA(x) ≥ CMA(−x). For this aim, we have

CMA(x) = CMA(−(−x)) ≥ CMA(−x).

Theorem 2.6. A fuzzy multiset A is a fuzzy multi-hyperring over X if and only if for all x, y ∈ X ,

(i)
∧

z∈x−y CMA(z) ≥ CMA(x) ∧ CMA(y);

(ii) CMA(x.y) ≥ CMA(x) ∧ CMA(y).

Proof. Let x, y ∈ X . If A is a fuzzy multi-hyperring over X, then

CMA(x.y) ≥ CMA(x) ∧ CMA(y).
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Moreover, ∧
z∈x−y

CMA(z) =
∧

z∈x+(−y)

CMA(z) ≥ CMA(x) ∧ CMA(−y)

≥ CMA(x) ∧ CMA(y),

Conversely, if the conditions hold, then

CMA(0) ≥
∧

z∈x−x

CMA(z) ≥ CMA(x) ∧ CMA(x) = CMA(x).

Thus

CMA(−x) ≥
∧

z∈0−x

CMA(z) ≥ CMA(0) ∧ CMA(x) = CMA(x).

Hence ∧
z∈x+y

CMA(z) =
∧

z∈x−(−y)

CMA(z) ≥ CMA(x) ∧ CMA(−y)

≥ CMA(x) ∧ CMA(y).

Now, the condition (ii) completes the proof.

Proposition 2.7. Let A and B be two fuzzy multi-hyperrings over X. Consider −A by CM−A(x) =
CMA(−x), for all x ∈ X . Then

(i) −A is a fuzzy multi-hyperring over X;

(ii) −(−A) = A;

(iii) if A ⊆ B, then −A ⊆ −B.

Proof. (i) Let x, y ∈ X . Since A is a fuzzy multi-hyperring over X, then∧
z∈x+y

CM−A(z) =
∧

z∈x+y

CMA(−z) =
∧

t∈(−(x+y))

CMA(t) =
∧

t∈(−x)+(−y)

CMA(t)

≥ CMA(−x) ∧ CMA(−y) = CM−A(x) ∧ CM−A(y).

Also CM−A(−x) = CMA(−(−x)) ≥ CMA(−x) = CM−A(x). Moreover, by Theorem 2.5(2),
we have

CM−A(x.y) = CMA(−(x.y)) = CMA((−x).y) ≥ CMA(−x) ∧ CMA(y)

= CMA(−x) ∧ CMA(−y) = CM−A(x) ∧ CM−A(y).

Therefore −A is a fuzzy multi-hyperring over X. The proofs of (ii) and (iii) are straightforward.

Definition 2.8. Let A and B be two fuzzy multi-hyperrings over X. Then, we define A⊕B by

CMA⊕B(x) =
∨

{CMA(y) ∧ CMB(z);x, y, z ∈ X,x ∈ y + z},

and A⊙B by

CMA⊙B(x) =
∨

{CMA(y) ∧ CMB(z);x, y, z ∈ X,x ∈ y.z}.

Example 2.9. Let (X,+, .) be the Krasner hyperring defined in Example 2.2(iv). It is clear
that A = {⟨ (1,0.8,0.5)0 ⟩, ⟨ (0.9,0.5,0.1)1 ⟩} and B = {⟨ (1,0.9,0.8)0 ⟩, ⟨ (1,0.8,0.6)1 ⟩} are two fuzzy multi-
hyperrings over X and we have A⊕B = {⟨ (1,0.8,0.5)0 ⟩, ⟨ (1,0.8,0.6)1 ⟩} and
A⊙B = {⟨ (1,0.8,0.5)0 ⟩, ⟨ (0.9,0.5,0.1)1 ⟩}.



FUZZY MULTI-HYPERRINGS 523

Theorem 2.10. Let A be a fuzzy multi-hyperring over X. Then

(i) A⊕A = A;

(ii) −A = A.

Proof. (i) Let x ∈ X . Since A is a fuzzy multi-hyperring over X, then for all y, z ∈ X ,∧
x∈y+z

CMA(x) ≥ CMA(y) ∧ CMA(z).

So CMA(x) ≥ CMA(y) ∧ CMA(z). Hence

CMA(x) ≥
∨

{CMA(y) ∧ CMA(z); y, z ∈ X,x ∈ y + z} = CMA⊕A(x).

Thus A⊕A ⊆ A. Again

CMA⊕A(x) =
∨

{CMA(y) ∧ CMA(z); y, z ∈ X,x ∈ y + z}

≥ CMA(x) ∧ CMA(0) = CMA(x).

So A ⊆ A⊕A. Therefore A⊕A = A.
(ii) Since CM−A(x) = CMA(−x) = CMA(x), it follows that −A = A.

Definition 2.11. Let A be a fuzzy multi-hyperring over X. Then A is called commutative if
CMA(x.y) = CMA(y.x), for all x, y ∈ X .

Example 2.12. let X = {0, 1, 2} be the Krasner hyperring with the hyperoperation "+" and the
binary operation "." defined in Example 2.2(ii). Then X is a non-commutative Krasner hyperring
and A = {< (0.6,0.5,0.3)

0 >,< (0.5,0.3,0.2)
1 >,< (0.5,0.3,0.2)

2 >} is a commutative fuzzy multi-
hyperring over X.

Theorem 2.13. Let A be a fuzzy multiset drawn from X and α ∈ [0, 1]. Consider A[α] =
{x ∈ X;CMA(x) ≥ α}. Then A is a fuzzy multi-hyperring over X if and only if A[α] is a
sub-hyperrings of X.

Proof. Let x, y ∈ A[α]. Then CMA(x) ≥ α and CMA(y) ≥ α. Since A is a fuzzy multi-
hyperring over X, then

∧
z∈x+y CMA(z) ≥ CMA(x)∧CMA(y) ≥ α. Thus x+y ⊆ A[α] because

for all z ∈ x+ y we get CMA(z) ≥ α and so z ∈ A[α]. Moreover CMA(−x) ≥ CMA(x) ≥ α.
Thus −x ∈ A[α]. Also, we have CMA(x.y) ≥ CMA(x) ∧ CMA(y) ≥ α. Hence x.y ∈ A[α].
Therefore for all α ∈ [0, 1], A[α] is a sub-hyperring of X.

Conversely, let x, y ∈ X . Assume that CMA(x) = α,CMA(y) = β. Then α, β ∈ [0, 1] and
so x ∈ A[α] and y ∈ A[β]. Without loss of generality, let α ∧ β = α and so y ∈ A[α]. Since A[α]

is a sub-hyperrings of X, then x+ y ⊆ A[α] and x.y ∈ A[α] and −x ∈ A[α]. Therefore z ∈ A[α],
for all z ∈ x+ y . Hence∧

z∈x+y

CMA(z) ≥ α = α ∧ β = CMA(x) ∧ CMA(y).

Moreover CMA(−x) ≥ α = CMA(x). Also

CMA(x.y) ≥ α = α ∧ β = CMA(x) ∧ CMA(y).

Thus A is a fuzzy multi-hyperring over X.

Example 2.14. Let (X,+, .) be the Krasner hyperring defined in Example 2.2(iii). It is clear
that A = {⟨ (1,0.9,0.6)0 ⟩, ⟨ (0.4,0.2)1 ⟩, ⟨ (0.9,0.8,0.5)2 ⟩, ⟨ (0.4,0.3)⟩3 } is a fuzzy multi-hyperring over X and
A[0.5] = {0, 2} is a sub-hyperrings of X.

Theorem 2.15. Let A and B be two fuzzy multi-hyperrings over X. Then
−(A⊙B)[α] = (A⊙B)[α].
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Proof. Let x ∈ X . We have x ∈ (A ⊙ B)[α] ⇐⇒ CM−(A⊙B)(x) ≥ α ⇐⇒ CMA⊙B(−x) ≥ α
⇐⇒

∨
{CMA(y) ∧ CMB(z) | y, z ∈ X,−x = y.z} ≥ α ⇐⇒

∨
{CMA(−y) ∧ CMB(z) | y, z ∈

X,x = (−y).z} ≥ α ⇐⇒ x ∈ (A⊕B)[α].

Definition 2.16. Let A be a fuzzy multi-hyperring over X and ∅ ̸= B ⊆ A. Then B is said
to be a fuzzy sub-multi-hyperring of A if B itself is a fuzzy multi-hyperring over X. The fuzzy
sub-multi-hyperring B of A is proper if A ̸= B.

Example 2.17. Let (X,+, .) be the Krasner hyperring defined in Example 2.2(i). Consider

A = {⟨ (1,0.8,0.4)0̄H ⟩, ⟨ (0.6,0.4,0.1)2̄H ⟩, ⟨ (0.8,0.5,0.3)4̄H ⟩, ⟨ (0.6,0.4,0.1)6̄H ⟩}

and

B = {⟨ (1,0.9,0.8)0̄H ⟩, ⟨ (0.8,0.3)2̄H ⟩, ⟨ (0.8,0.4,0.3)4̄H ⟩, ⟨ (0.8,0.3)6̄H ⟩}.

It is clear that A,B ∈ FMHR(X) with A ⊆ B and A ̸= B. Therefore A is a fuzzy (proper)
sub-multi-hyperring over B.

Proposition 2.18. Let A be a fuzzy multi-hyperring over X, B be a fuzzy sub-multi-hyperring of
A, C be a fuzzy multiset of X and C ⊆ B. Then C is a fuzzy sub-multi-hyperring of A if and only
if C is a fuzzy sub-multi-hyperring of B. Also, A is a fuzzy submulti-hyperring of B if and only if
-A is a fuzzy submulti-hyperring of -B.

Proof. The proof is straightforward.

3 Intersection and Union of Fuzzy multi-hyperrings

In the sequel, we define some operations on fuzzy multi-hyperrings and study their properties.

Theorem 3.1. Let A and B be two fuzzy multi-hyperrings over X. For all x ∈ X , consider
CMA∩B(x) = CMA(x) ∧ CMB(x). Then A ∩B is a fuzzy multi-hyperring over X.

Proof. Let x, y ∈ X . Since A and B are fuzzy multi-hyperrings over X, then∧
z∈x+y

CMA∩B(z) =
∧

z∈x+y

(CMA(z) ∧ CMB(z))

= (
∧

z∈x+y

CMA(z)) ∧ (
∧

z∈x+y

CMB(z))

≥ (CMA(x) ∧ CMA(y)) ∧ (CMB(x) ∧ CMB(y))

= (CMA(x) ∧ CMB(x)) ∧ (CMA(y) ∧ CMB(y))

= CMA∩B(x) ∧ CMA∩B(y).

Moreover,

CMA∩B(−x) = CMA(−x) ∧ CMB(−x) ≥ CMA(x) ∧ CMB(x) = CMA∩B(x).

Also

CMA∩B(x.y) = CMA(x.y) ∧ CMB(x.y)

≥ (CMA(x) ∧ CMA(y)) ∧ (CMB(x) ∧ CMB(y))

= (CMA(x) ∧ CMB(x)) ∧ (CMA(y) ∧ CMB(y))

= CMA∩B(x) ∧ CMA∩B(y).

Hence A ∩B is a fuzzy multi-hyperring over X.

Remark 3.2. Let A and B be two fuzzy multi-hyperrings over X and for all x ∈ X , consider
CMA∪B(x) = CMA(x) ∨ CMB(x). Then A ∪ B is not a fuzzy multi-hyperring over X in
general.
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Example 3.3. Let (X,+, .) be the Krasner hyperring defined in Example 2.2(vii). Consider
A = {⟨ (1,0.5,0.4)0 ⟩, ⟨ (0.4,0.3)2 ⟩} and B = {⟨ (1,0.6,0.5)0 ⟩, ⟨ 0.3,0.1

3 ⟩}. It is clear that A, B and A ∩ B =

{⟨ (1,0.5,0.4)0 ⟩} are fuzzy multi-hyperrings over X, but A ∪ B = {⟨ (1,0.6,0.5)0 ⟩, ⟨ (0.4,0.3)2 ⟩, ⟨ (0.3,0.1)3 ⟩}
is not a fuzzy multi hyperrong over X because

∧
z∈3+2 CA∪B(z) ≱ CA∪B(3) ∧ CA∪B(2).

Proposition 3.4. Let A,B,C ∈ FMHR(X). Then

(i) if CMA(0) = CMB(0), then A ∩B,A ∪B ⊆ A⊕B;

(ii) if A ⊆ B or B ⊆ A, then A ∪B is a fuzzy multi-hyperring over X;

(iii) if A ⊆ B ⊆ C, then A ∩B and A ∪B are fuzzy sub-multi-hyperrings of C.

Proof. (i) Let x ∈ X .

CMA⊕B(x) =
∨

{CMA(y) ∧ CMB(z); y, z ∈ X,x ∈ y + z}

≥ CMA(x) ∧ CMA(0) = CMA(x).

Similarly, we can show that CMA⊕B(x) ≥ CMB(x). Therefore

CMA⊕B(x) ≥ CMA(x) ∨ CMB(x) = CMA∪B(x).

Hence A⊕B ⊇ A ∪B. Clearly, A ∩B ⊆ A ∪B. Therefore A ∩B,A ∪B ⊆ A⊕B.
The proof of (ii) and (iii) are straightforward.

Theorem 3.5. Let A and B be two fuzzy multi-hyperrings over X. Then A[α] ∩B[α] = (A ∩B)[α]
and A[α] ∪B[α] = (A ∪B)[α], for all α ∈ [0, 1].

Proof. Let x ∈ X . Then x ∈ A[α] ∩ B[α] ⇐⇒ x ∈ A[α] and x ∈ B[α] ⇐⇒ CMA(x) ≥ α
and CMB(x) ≥ α ⇐⇒ CMA(x) ∧ CMB(x) ≥ α ⇐⇒ CMA∩B(x) ≥ α ⇐⇒ x ∈ (A ∩ B)[α].
Therefore A[α] ∩B[α] = (A ∩B)[α].
Similarly, we can prove that A[α] ∪B[α] = (A ∪B)[α].

Definition 3.6. Let {Ai; i ∈ I} be an arbitrary family of fuzzy multi-hyperrings over X, where
I = {1, 2, · · · } is an indexed set. Then their intersection, defined by CM∩i∈IAi(x) = ∧i∈ICMAi(x),
for all x ∈ X and their union, defined by CM∪i∈IAi

(x) =
∨

i∈I CMAi
(x), for all x ∈ X . More-

over, we say that this family satisfies in ascending (resp. descending) chain condition if for every
chain of fuzzy multi-hyperrings A1 ⊆ A2 ⊆ · · · (resp. A1 ⊇ A2 ⊇ · · · ) there exist n ∈ N such
that An = Am, for all m ≥ n.

Theorem 3.7. Let {Ai : i ∈ I} be an arbitrary family of fuzzy multi-hyperrings over X. Then

(i) The intersection of Ais, for all i ∈ I is a fuzzy multi-hyperring over X;

(ii) The union of Ais, for all i ∈ I is a fuzzy multi-hyperring over X if this family satisfies in
either ascending or descending chain condition.

Proof. (i) Put A = ∩i∈IAi. So CMA(t) =
∧

i∈I CMAi(t), for all t ∈ X . Since for all i ∈ I , Ai

is a fuzzy multi-hyperring over X, then
∧

z∈x+y CMAi
(z) ≥ CMAi

(x) ∧ CMAi
(y). Thus∧

z∈x+y

CMA(z) =
∧

z∈x+y

(
∧
i∈I

CMAi
(z)) =

∧
i∈I

(
∧

z∈x+y

CMAi
(z))

≥
∧
i∈I

(CMAi
(x) ∧ CMAi

(y)) = (
∧
i∈I

CMAi
(x)) ∧ (

∧
i∈I

CMAi
(y))

= CMA(x) ∧ CMA(y).

Also CMA(−x) =
∧

i∈I CMAi(−x) ≥
∧

i∈I CMAi(−x) = CMA(−x). Moreover

CMA(x.y) =
∧
i∈I

CMAi
(x.y) ≥

∧
i∈I

(CMAi
(x) ∧ CMAi

(y))

= (
∧
i∈I

CMAi
(x)) ∧ (

∧
i∈I

CMAi
(y)) = CMA(x) ∧ CMA(x).
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Therefore A is a fuzzy multi-hyperring over X.
(ii) Put B =

⋃
i∈I Ai. Then CMB(k) =

∨
i∈I CMAi

(k), for all k ∈ X . If {Ai; i ∈ I}
satisfies in the ascending chain condition then there exists in ∈ I such that CMAin

(x) =∨
i∈I CMAi

(x) = CMB(x), for all x ∈ X . Thus∧
z∈x+y

CMB(z) =
∧

z∈x+y

CMAin
(z) ≥ CMAin

(x) ∧ CMAin
(y) = CMB(x) ∧ CMB(y).

Also CMB(−x) = CMAin
(−x) ≥ CMAin

(x) = CMB(x). Moreover,

CMB(x.y) = CMAin
(x.y) ≥ CMAin

(x) ∧ CMAin
(y) = CMB(x) ∧ CMB(y).

If {Ai; i ∈ I} satisfies in the descending chain condition, then CMAi1
(x) =

∨
i∈I CMAi

(x) =

CMB(x) and so by the same procedure, we can arrive at the result.

Proposition 3.8. Let {Ai; i ∈ I} be an arbitrary family of fuzzy multi-hyperrings over X. Then
−(

⋂
i∈I Ai) =

⋂
i∈I(−Ai) and −(

⋃
i∈I Ai) =

⋃
i∈I(−Ai).

Proof. For all x ∈ X ,

CM(−
⋃

i∈I Ai)(x) = CM⋃
i∈I Ai

(−x) =
∨
i∈I

CMAi
(−x)

=
∨
i∈I

CM−Ai(x) = CM⋃
i∈I (−Ai)(x).

Hence −(
⋃

i∈I Ai) =
⋃

i∈I(−Ai). Similarly, we can prove that −(
⋂

i∈I Ai) =
⋂

i∈I(−Ai).

Definition 3.9. Let A be a fuzzy multi-hyperring over X. If A = ⟨a⟩, for some a ∈ X , then a is
called the generator of A. The fuzzy multi-hyperring generated by A, denoted by ⟨A⟩, is the inter-
section of all fuzzy multi-hyperrings containing A, and so ⟨A⟩ =

⋂
{B;B ∈ FMHR(X), A ⊆

B}, that implies ⟨A⟩ is the smallest fuzzy multi-hyperring containing A.

Theorem 3.10. Let A and B be two fuzzy multi-hyperrings over X such that CMA(0) = CMB(0).
If A⊕B is a fuzzy multi-hyperring over X, then A⊕B = ⟨A ∪B⟩.

Proof. Let x ∈ X . Since CMA(0) = CMB(0), then

CMA⊕B(x) =
∨

{CMA(y) ∧ CMB(z); y, z ∈ X,x ∈ y + z}

≥ CMA(x) ∧ CMB(0) = CMA(x) ∧ CMA(0) = CMA(x).

Thus A ⊆ A ⊕ B. Similarly, B ⊆ A ⊕ B and so A ∪ B ⊆ A ⊕ B. Now, let C be any fuzzy
multi-hyperring over X containing A ∪ B. Since for all y, z ∈ X , CMC(y) ≥ CMA(y) and
CMC(z) ≥ CMB(z), then

CMC⊕C(x) =
∨

{CMC(y) ∧ CMC(z); y, z ∈ X,x ∈ y + z}

≥
∨

{CMA(y) ∧ CMB(z); y, z ∈ X,x ∈ y + z} = CMA⊕B(x).

Thus A⊕B ⊆ C ⊕ C. Now, since C is a fuzzy multi-hyperring over X, then∧
x∈y+z CMC(x) ≥ CMC(y) ∧ CMC(z), for all y, z ∈ X .

Therefore CMC(x) ≥ {CMC(y) ∧ CMC(z); y, z ∈ X,x ∈ y + z}. Hence

CMC(x) ≥
∨

{CMC(y) ∧ CMC(z); y, z ∈ X,x ∈ y + z} = CMC⊕C(x).

Thus C ⊕ C ⊆ C and A⊕B ⊆ C. Therefore A⊕B is generated by A ∪B.
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4 Homomorphism and Direct Product of Fuzzy multi-hyperrings

In the following, we study some homomorphic properties of fuzzy multi-hyperrings.

Definition 4.1. Let X and Y be two Krasner hyperrings and f : X −→ Y be a homomorphism.
Suppose that A and B are fuzzy multi-hyperrings over X and Y, respectively. If (f(A) ⊆ B)
f(A) = B, then A is called (weakly) homomorphic to B, denoted by (A ∼ B) A ≈ B and if
f is an isomorphism with (f(A) ⊆ B) f(A) = B then A is called (weakly) isomorphic to B,
denoted by (A ≃ B) A ∼= B. The image of A under f, denoted by f(A), is a fuzzy multiset of
Y defined by CMf(A)(y) = ∨x∈f−1(y)CMA(x), if f−1(y) ̸= ∅ and CMf(A)(y) = 0, otherwise.
Moreover, the inverse image of B under f, denoted by f−1(B), is a fuzzy multiset of X defined
by CMf−1(B)(x) = CMB(f(x)), for all x ∈ X .

Theorem 4.2. Let X and Y be two Krasner hyperrings and f : X −→ Y be a homomorphism of
Krasner hyperrings. Then

(i) if A is a fuzzy multi-hyperring over X, then f(A) is a fuzzy multi-hyperring over Y;

(ii) if B is a fuzzy multi-hyperring over Y, then f−1(B) is a fuzzy multi-hyperring over X.

Proof. (i) Let x, y ∈ Y and z ∈ x + y. If f−1(x) = ∅ or f−1(y) = ∅, then CMf(A)(x) = 0
or CMf(A)(y) = 0. Thus

∧
z∈x−y CMf(A)(z) ≥ 0 = CMf(A)(x) ∧ CMf(A)(y). Moreover, we

have CMf(A)(x.y) ≥ 0 = CMf(A)(x)∧CMf(A)(y). Hence, the result holds by Theorem 2.6. If
f−1(x) ̸= ∅ and f−1(y) ̸= ∅, then ∃r, s ∈ X such that f(r) = x and f(s) = y, then

CMA(r) =
∨

f(t)=x CMA(t) = CMf(A)(x) and CMA(s) =
∨

f(t)=y CMA(t) = CMf(A)(y).

Since f is a homomorphism, then z ∈ f(r) + f(s) = f(r + s). Hence ∃k ∈ r + s; z = f(k).
Since A is a fuzzy multi-hyperring over X, then

CMf(A)(z) =
∨

f(t)=z

CMA(t) ≥ CMA(k) ≥
∧

z∈r+s

CMA(z)

≥ CMA(r) ∧ CMA(s) = CMf(A)(x) ∧ CMf(A)(y).

Thus
∧

z∈x+y CMf(A)(z) ≥ CMf(A)(x) ∧ CMf(A)(y). Also

CMf(A)(−x) =
∨

f(t)=−x

CMA(t) ≥ CMA(−r) ≥ CMA(r) = CMf(A)(x).

Moreover,

CMf(A)(x.y) =
∨

f(t)=x.y

CMA(t) ≥ CMA(r.s) ≥ CMA(r) ∧ CMA(s)

= CMf(A)(x) ∧ CMf(A)(y).

Therefore f(A) is a fuzzy multi-hyperring over Y.
(ii) Let B be a fuzzy multi-hyperring over Y. Since f is a homomorphism, then for all x, y ∈ X ,

∧
z∈x+y

CMf−1(B)(z) =
∧

z∈x+y

CMB(f(z)) =
∧

t∈f(x)+f(y)

CMB(t)

≥ CMB(f(x)) ∧ CMB(f(y))

= CMf−1(B)(x) ∧ CMf−1(B)(y).

Also CMf−1(B)(−x) = CMB(f(−x)) = CMB(−f(x)) ≥ CMB(f(x)) = CMf−1(B)(x), and

CMf−1(B)(x.y) = CMB(f(x.y)) = CMB(f(x).f(y)) ≥ CMB(f(x)) ∧ CMB(f(x))

= CMf−1(B)(x) ∧ CMf−1(B)(y).

Therefore f−1(B) is a fuzzy multi-hyperring over X.
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Proposition 4.3. Let f : X −→ Y and g : Y −→ Z be two homomorphisms of Krasner hyper-
rings and A, B be two fuzzy multi-hyperrings over X, Z, respectively. Then

(i) (gf)(A) = g(f(A));

(ii) (gf)−1(B) = f−1(g−1(B)).

Proof. (i) Let z ∈ Z. If g−1(z) = ∅, then clearly the result holds. If g−1(z) ̸= ∅, then

CMg(f(A))(z) =
∨

y∈g−1(z)

CMf(A)(y) =
∨

y∈g−1(z)

(
∨

x∈f−1(y)

CMA(x))

=
∨

x∈(gf)−1(z)

CMA(x) = CM(gf)(A)(z).

Therefore g(f(A)) = (gf)(A).
(ii) Let x ∈ X . Then

CM(gf)−1(B)(x) = CMB((gf)(x)) = CMB(g(f(x))) = CMg−1(B)(f(x))

= CMf−1(g−1(B))(x).

Hence (gf)−1(B) = f−1(g−1(B)).

Theorem 4.4. Let f : X −→ Y be a homomorphism of Krasner hyperrings and {Ai; i ∈ I} and
{Bj ; j ∈ J} be two arbitrary families of fuzzy multi-hyperrings over X and Y, respectively. Then

(i) f(−Ai) = −f(Ai) and f−1(−Bj) = −f−1(Bj), for all i ∈ I, j ∈ J;

(ii) f(
⋂

i∈I Ai) =
⋂

i∈I f(Ai), f(
⋃

i∈I Ai) =
⋃

i∈I f(Ai) and f−1(
⋂

j∈J Bj) =
⋂

j∈J f−1(Bj),
f(

⋃
j∈J Bj) =

⋃
j∈J f(Bj).

(iii) f(A[α]) = (f(A))[α] (if {Ai; i ∈ I} satisfies in ascending chain condition) and f−1(B[α]) =

(f−1(B))[α].

Proof. Let x ∈ X and y ∈ Y .
(i) By Theorem 2.5(ii), we have

CMf(−Ai)(y) =
∨

x∈f−1(y)

CM−Ai
(x) =

∨
x∈f−1(y)

CMAi
(−x) =

∨
x∈f−1(y)

CMAi
(x)

= CMf(Ai)(y) = CMf(Ai)(−y) = CM(−f(Ai))(y).

Hence f(−Ai) = −f(Ai), for all i ∈ I . Moreover,

CM−f−1(Bj)(x) = CMf−1(Bj)(−x) = CMBj (f(−x)) = CMBj (−f(x))

= CM−Bj (f(x)) = CMf−1(−Bj)(x).

Thus f−1(−Bj) = −f−1(Bj), for all j ∈ J .
(ii) We have

CMf(
⋃

i∈I Ai)(y) =
∨

x∈f−1(y)

CM⋃
i∈I Ai

(x) =
∨

x∈f−1(y)

(
∨
i∈I

CMAi
)(x)

=
∨
i∈I

(
∨

x∈f−1(y)

CMAi(x)) =
∨
i∈I

CMf(Ai)(y) = CM⋃
i∈I f(Ai)(y).

So f(
⋃

i∈I Ai) =
⋃

i∈I f(Ai). Similarly, f(
⋂

i∈I Ai) =
⋂

i∈I f(Ai). Also

CMf−1(
⋃

j∈J Bj)(x) = CM⋃
j∈J Bj

(f(x)) =
∨
j∈J

CMBj
(f(x)) =

∨
j∈J

CMf−1(Bj)(x)

= CM⋃
j∈J f−1(Bj)(x).
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Hence f−1(
⋃

j∈J Bj) =
⋃

j∈J f−1(Bj). Similarly, f(
⋂

j∈J Bj) =
⋂

j∈J f(Bj).
(iii) If x ∈ f(A[α]), then x = f(t), for some t ∈ A[α] and so CMA(t) ≥ α, that implies

CMf(A)(x) = ∨z∈f−1(x)CMA(z) ≥ CMA(t) ≥ α. Thus x ∈ (f(A))[α] and so f(A[α]) ⊆
(f(A))[α]. On the other hand, if y ∈ (f(A))[α], then CMf(A)(y) = ∨k∈f−1(y)CMA(k) ≥ α and
by hypothesis, CMA(k) ≥ α, for some k ∈ f−1(y). Therefore k ∈ A[α] and so y = f(k) ∈
f(A[α]). Thus (f(A))[α] ⊆ f(A[α]). Therefore equality holds. Now, we have x ∈ (f−1(B))[α]
⇐⇒ CMf−1(B)(x) ≥ α ⇐⇒ CMB(f(x)) ≥ α ⇐⇒ f(x) ∈ B[α] ⇐⇒ x ∈ f−1(B[α]). Hence the
result holds.

In the following, we study some properties of the direct product of fuzzy multi-hyperrings.

Theorem 4.5. Let X, Y be two Krasner hyperrings and A, B be two fuzzy multisets drawn from
X, Y respectively such that CMA(0) = CMB(0′), where 0 ∈ X and 0′ ∈ Y . Consider the direct
product of A and B by CMA×B(x, y) = CMA(x) ∧CMB(y), for all x ∈ X , y ∈ Y . Then A and
B are (commutative) fuzzy multi-hyperrings over X and Y, respectively, if and only if A×B is a
(commutative) fuzzy multi-hyperring over X × Y .

Proof. Let (x1, x2), (y1, y2) ∈ X × Y . Since A and B are two fuzzy multi-hyperrings over X and
Y respectively, then

∧
(x,y)∈(x1,x2)+(y1,y2)

CMA×B(x, y) =
∧

(x,y)∈(x1+y1,x2+y2)

(CMA(x) ∧ CMB(y))

= (
∧

x∈x1+y1

CMA(x)) ∧ (
∧

y∈x2+y2

CMB(y))

≥ (CMA(x1) ∧ CMA(y1)) ∧ (CMB(x2) ∧ CMB(y2))

= (CMA(x1) ∧ CMB(x2)) ∧ (CMA(y1) ∧ CMB(y2))

= CMA×B(x1, x2) ∧ CMA×B(y1, y2).

Moreover,

CMA×B(−(x1, x2)) = CMA×B(−x1,−x2) = CMA(−x1) ∧ CMB(−x2)

≥ CMA(x1) ∧ CMB(x2) = CMA×B(x1, x2).

Also,

CMA×B((x1, x2).(y1, y2)) = CMA×B(x1.y1, x2.y2) = CMA(x1.y1) ∧ CMB(x2.y2)

≥ (CMA(x1) ∧ CMA(y1)) ∧ (CMB(x2) ∧ CMB(y2))

≥ (CMA(x1) ∧ CMB(x2)) ∧ (CMA(y1) ∧ CMB(y2))

= CMA×B(x1, x2) ∧ CMA×B(y1, y2).

Hence the direct product of A and B is a fuzzy multi-hyperring over X × Y . Now, if A and B are
commutative, then

CMA×B((x1, x2).(y1, y2)) = CMA×B(x1.y1, x2.y2) = CMA(x1.y1) ∧ CMB(x2.y2)

= CMA(y1.x1) ∧ CMB(y2.x2) = CMA×B(y1.x1, y2.x2)

= CMA×B((y1, y2).(x1, x2)).

Thus A×B is commutative.
Conversely, let x ∈ A, y ∈ B and A, B be two fuzzy multisets drawn from X, Y, respectively.
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Since A×B is a fuzzy multi-hyperring over X × Y , then∧
z∈x+y

CMA(z) =
∧

z∈x+y

(CMA(z) ∧ CMA(0)) =
∧

z∈x+y

(CMA(z) ∧ CMB(0′))

=
∧

(z,0′)∈(x+y,0′+0′)

CMA×B(z, 0′) =
∧

(z,0′)∈(x,0′)+(y,0′)

CMA×B(z, 0′)

≥ CMA×B(x, 0′) ∧ CMA×B(y, 0′)

= (CMA(x) ∧ CMB(0′)) ∧ (CMA(y) ∧ CMB(0′))

= CMA(x) ∧ CMA(y) ∧ CMB(0′) = CMA(x) ∧ CMA(y) ∧ CMA(0)

= CMA(x) ∧ CMA(y).

Moreover,

CMA(−x) = CMA(−x) ∧ CMA(0) = CMA(−x) ∧ CMB(−0′)

= CMA×B(−x,−0′) = CMA×B(−(x, 0′)) ≥ CMA×B(x, 0′)

= CMA(x) ∧ CMB(0′)

= CMA(x) ∧ CMA(0) = CMA(x).

Also,

CMA(x.y) = CMA(x.y) ∧ CMA(0.0) = CMA(x.y) ∧ CMB(0′.0′)

= CMA×B(x.y, 0′.0′) = CMA×B((x, 0′).(y, 0′))

≥ CMA×B(x, 0′) ∧ CMA×B(y, 0′) ≥ (CMA(x) ∧ CMB(0′)) ∧ (CMA(y) ∧ CMB(0′))

= CMA(x) ∧ CMA(y) ∧ CMA(0) = CMA(x) ∧ CMA(y).

Therefore A is a fuzzy multi-hyperring over X. Similarly, B is a fuzzy multi-hyperring over Y.
Also, if A×B is commutative, then

CMA(x.y) = CMA(x.y) ∧ CMA(0.0)

= CMA(x.y) ∧ CMB(0′.0′)

= CMA×B((x.y, 0′.0′)) = CMA×B((x, 0′).(y, 0′))

= CMA×B((y, 0′).(x, 0′)) = CMA×B(y.x, 0′.0′)

= CMA(y.x) ∧ CMB(0′.0′) = CMA(y.x) ∧ CMA(0.0) = CMA(y.x).

Therefore A is commutative on X. Similarly, we can prove that B is commutative on Y.

Corollary 4.6. Let Xi be Krasner hyperrings and Ai be (commutative) fuzzy multi-hyperrings
over Xi, respectively, for i = 1, 2, · · · , n. Then direct product of Ai defined by

CMA1×A2×···×An
(x1, x2, · · · , xn) = CMA1(x1) ∧ CMA2(x2) ∧ · · · ∧ CMAn

(xn),

for all (x1, x2, · · · , xn) ∈ X1 × X2 × · · · × Xn, is a (commutative) fuzzy multi-hyperring over
X1 ×X2 × · · · ×Xn.

Proof. The proof follows by Theorem 4.5.

Corollary 4.7. Let X, Y be Krasner hyperrings and A, B be fuzzy multi-hyperrings over X, Y,
respectively. Then (A×B)[α] = A[α] ×B[α], for all α ∈ [0, 1].

Proof. The proof follows by Theorem 2.13 and Theorem 4.5.

Corollary 4.8. Let A and B two be two fuzzy multi-hyperrings over two X and Y, respectively.
Then

(i) −(A×B) = (−A)× (−B);
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(ii) CMA×B(0, 0′) ≥ CMA×B(x, y),
where (x, y) ∈ X × Y and 0 and 0′ are identity elements of X and Y, respectively.

Proof. The proof follows by Theorem 2.5 and Theorem 4.5.

Example 4.9. Let X = Z12
H and Y = {0, 1, 2} be two Krasner hyperrings with hyperoperations

and binary operations defined in Example 2.2(i) and Example 2.2(ii), respectively. Consider
A = {⟨ 1,0.6,0.5

0̄H ⟩, ⟨ 0.8,0.4,0.1
2̄H ⟩, ⟨ 0.9,0.5,0.4

4̄H ⟩, ⟨ 0.8,0.4,0.1
6̄H ⟩} and B = {⟨ (1,0.5,0.2)0 ⟩}. It is clear that A and

B are fuzzy multi-hyperrings over X and Y, respectively and we have
A×B = {⟨ (1,0.5,0.2)

(0̄H,0) ⟩, ⟨ (0.8,0.4,0.1)
(2̄H,0) ⟩, ⟨ (0.9,0.5,0.2)

(4̄H,0) ⟩, ⟨ (0.8,0.4,0.1)
(6̄H,0) ⟩}.

Theorem 4.10. Let f : X −→ Z and g : Y −→ W be two homomorphisms of Krasner hy-
perrings and A, B, C, D be fuzzy multi-hyperrings over X, Y, Z, W, respectively. Consider
f × g : X × Y −→ Z ×W by setting (f × g)(x, y) = (f(x), f(y)). Then

(i) f × g is a homomorphism of Krasner hyperrings;

(ii) (f × g)(A × B) is a fuzzy multi-hyperring over Z × W such that (f × g)(A × B) =
f(A)× g(B);

(iii) (f × g)−1(C ×D) is a fuzzy multi-hyperring over X × Y such that (f × g)−1(C ×D) =
f−1(C)× f−1(D).

Proof. (i) Let (a, b), (c, d) ∈ X × Y . Since f and g are homomorphisms of Krasner hyperrings,
then

(f × g)((a, b) + (c, d)) = (f × g)({(x, y); (x, y) ∈ (a+ c, b+ d)})
= {(f(x), g(y));x ∈ a+ c, y ∈ b+ d}
= ({f(x);x ∈ a+ c}, {g(y); y ∈ b+ d})
= (f(a+ c), g(b+ d)) = (f(a) + f(c), g(b) + g(d))

= (f(a), g(b)) + (f(c), g(d)) = (f × g)(a, b) + (f × g)(c, d).

Moreover

(f × g)((a, b).(c, d)) = (f × g)(a.c, b.d) = (f(a.c), g(b.d))

= (f(a).f(c), g(b).g(d)) = (f(a), g(b)).(f(c), g(d))

= (f × g)(a, b).(f × g)(c, d).

Also, we have (f × g)(0, 0) = (f(0), g(0)) = (0, 0). Thus f × g is a homomorphism of Krasner
hyperrings.

(ii) The first result is obtained by Theorem 4.5 and Theorem 4.2, so we prove that (f×g)(A×
B) = f(A)× g(B). Let (z, w) ∈ Z ×W . If (f × g)−1(z, w) = ∅, then clearly the result holds.
If (f × g)−1(z, w) ̸= ∅, then we get (f × g)−1(z, w) = (f−1(z), g−1(w)). Therefore

C(f×g)(A×B)(z, w) =
∨

(x,y)∈(f×g)−1(z,w)

CA×B(x, y)

=
∨

(x,y)∈(f−1(z),g−1(w))

(CA(x) ∧ CB(y))

= (
∨

x∈f−1(z)

CA(x)) ∧ (
∨

y∈g−1(w)

CB(y))

= Cf(A)(z) ∧ Cg(B)(w) = Cf(A)×g(B)(z, w).

(iii) Similarly, by Theorem 4.5 and Theorem 4.2, we have the first part, and therefore we
prove that (f × g)−1(C ×D) = f−1(C)× f−1(D). Let (x, y) ∈ X × Y . Then

C(f×g)−1(C×D)(x, y) = CC×D((f × g)(x, y)) = CC×D(f(x), g(y))

= CC(f(x)) ∧ CD(g(y)) = Cf−1(C)(x) ∧ Cg−1(D)(y)

= Cf−1(C)×g−1(D)(x, y).
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Corollary 4.11. Let fi : X1 −→ Yi, i = 1, 2, · · · , n be homomorphisms of Krasner hyperrings
and A1, A2, · · · , An and B1, B2, · · · , Bn be fuzzy multi-hyperrings over X1, X2, · · · , Xn and Y1,
Y2, · · · , Yn, respectively. Consider f1×f2×· · ·×fn : X1×X2×· · ·×Xn −→ Y1×Y2×· · ·×Yn

by setting (f1 × f2 × · · · × fn)(x1, x2, · · · , xn) = (f1(x1), f2(x2), · · · , fn(xn)). Then

(i) f1 × f2 × · · · × fn is a homomorphism of Krasner hyperrings;

(ii) (f1 ×f2 ×· · ·×fn)(A1 ×A2 ×· · ·×An) is a fuzzy multi-hyperring over Y1 ×Y2 ×· · ·×Yn,
such that (f1 × f2 × · · · × fn)(A1 ×A2 × · · · ×An) = f(A1)× f(A2)× · · · × f(An);

(iii) (f1×f2×· · ·×fn)−1(B1×B2×· · ·×Bn) is a fuzzy multi-hyperring over X1×X2×· · ·×Xn,
such that (f1×f2×· · ·×fn)−1(B1×B2×· · ·×Bn) = f−1(B1)×f−1(B2)×· · ·×f−1(Bn).

Proof. The proof is straightforward.
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