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Abstract. One of the important problem in finite groups theory is group characterization by
specific property. Properties, such as element order, the set of element with the same order, the
largest elements order, graphs, etc. In this paper, we prove that the projective special unitary
group PSU3(q), where p = q2−q+1

(3,q+1) is a prime number and q = 5k ± 2, (k ∈ Z) can be uniquely
determined by its order and one conjugacy class size.

1 Introduction

One of the important problems in finite group theory is a characterization of a group by specific
property. Such properties often involve element orders and their graphs. We say that a group G
is characterized by property M if every group fulfilling M is isomorphic to G.
Let G be a finite group. The set of conjugacy classes of G will be denoted by N(G). Let mp(G)
be the number from N(G) which is not divisible by p. For every integer n denote by π(n) the
set of all prime divisors of n. The prime graph π(G) of G is constructed upon the vertex set
π(|G|) in such a way that two distinct primes p and q are joined by an edge if and only if G has
an element of order pq.
Let t(G) be the number of connected components of π(G). These components will be denoted
by π1, π2,...,πt(G). If G is of even order, then π1 is chosen to be the component in which 2 is a
vertex. We denote m1, m2,...,mt(G) to be the integers such that |G| = m1, ...,mt(G) and π(mi)
is the vertex set of πi. If mi is odd, call πi an odd order component [12].
The starting point for our discussion is from a conjecture of J. G. Thompson, which is Problem
12.38 in the Kourovka notebook [23] is as follows:
Thompson’s conjecture. Let G be a group with trivial center. If M is a non-abelian simple
group satisfying N(G) = N(M), then G ∼= M. Next, for example the authors in([2, 3, 4, 5,
6, 9, 10, 15, 26, 27]), proved that the sporadic simple groups, Alt10, PSL(4, 4) and PSL(2, p),
PSL(n, 2), 2Dn(2),2Dn+1(2), Cn(2), alternating group of degree p, p+ 1, p+ 2 and symmetric
group of degree p, where p is a prime number and PSL(5, q) are characterizable by using the
order of the group and the conjugacy class of size. The group G is called a 2-Frobenius group
if there is a normal series 1 � H � K � G such that G/H and K are Frobenius groups with
kernels K/H and H respectively. In this paper, we prove that the projective special unitary
groups PSU3(q), where p = q2−q+1

(3,q+1) is a prime number and q = 5k± 2, (k ∈ Z) can be uniquely
determined by its order and one conjugacy class of size. For easily we denote conjugacy class of
size p by CCSp. In fact, we prove the following main theorem.
Main Theorem. Let G be a group such that |G| = |PSU3(q)|. If p = q2−q+1

(3,q+1) is a prime, then

G ∼= PSU3(q) if and only if G has a conjugacy class of size |PSU3(q)|
p .
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2 Notation and Preliminaries

Lemma 2.1. [18] Let G be a Frobenius group of even order with kernel K and complement H .
Then

(i) t(G) = 2, π(H) and π(K) are vertex sets of the connected components of Γ(G);

(ii) |H| divides |K| − 1;

(iii) K is nilpotent.

Lemma 2.2. [8] Let G be a 2-Frobenius group of even order. Then

(i) t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2;

(ii) G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.3. [30] Let G be a finite group with t(G) ≥ 2. Then one of the following statements
holds:

(i) G is a Frobenius group;

(ii) G is a 2-Frobenius group;

(iii) G has a normal series 1 � H � K � G such that H and G/K are π1-groups, K/H is a
non-abelian simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.4. [28] Let G be a non-abelian simple group such that (5, |G|) = 1. Then G is
isomorphic to one of the following groups:

(i) PSLn(q′), n = 2, 3, q′ ≡ ±2( mod 5);

(ii) G2(q′), q′ ≡ ±2( mod 5);

(iii) PSU3(q′), q′ ≡ ±2( mod 5);

(iv) 3D4(q′),q′ ≡ ±2( mod 5);

(v) 2G2(q′), q′ = 32m+1, m ≥ 1.

Lemma 2.5. [31] Let q, k, l be natural numbers. Then

(i) (qk − 1, ql − 1) = q(k,l) − 1.

(ii) (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k

(k,l) and l
(k,l) are odd,

(2, q + 1) otherwise.

(iii) (qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l) is even and l
(k,l) is odd,

(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1 the inequality (qk − 1, qk + 1) ≤ 2 holds.

3 Proof of the Main Theorem

In this section, we prove the main theorem in the following lemmas. For this purpose, we denote
the projective special unitary groups PSU3(q) and prime number q2−q+1

(3,q+1) by U and p respec-

tively. Furthermore by [29], PSU3(q) has conjugacy class of size |PSU3(q)|
p . First we denote

that if G ∼= PSU3(q), then CCSp(G) = CCSp(PSU3(q)) and |G| = |PSU3(q)|. Now, assume
CCSp(G) = CCSp(PSU3(q)) and |G| = |PSU3(q)|. The aim is to prove G ∼= PSU3(q). By
the assumption on q, there exists an element α of order p in G such that CG(α) =< α > and
CG(α) is a Sylow p-subgroup of G. By the Sylow’s theorem, we have that CG(β) =< β > for
any element β in G of order p. In the following we prove p is an isolated vertex in Γ(G). We
note that |PSU3(q)| = q3(q3+1)(q2−1)

(3,q+1) and CCSp(PSU3(q)) =
|PSU3(q)|

p .
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Lemma 3.1. p is an isolated vertex in Γ(G).
Proof. We shall prove that p is an isolated vertex of Γ(G). Suppose to contrary. Then there is
t ∈ π(G) − {p} such that tp ∈ πe(G). So tp ≥ 2p = 2( q

2−q+1
(3,q+1) ) >

q2+q
(3,q+1) , thus k(G) > q2+q

(3,q+1) .
As a result t(G) ≥ 2.

So by lemma 2.3 we have the following lemmas.

Lemma 3.2. The group G is neither a Frobenius group and a 2-Frobenius group.

Proof. Let G be a Frobenius group with kernel K and complement H . Then by Lemma 3.2,
t(G) = 2 and π(H) and π(K) are vertex sets of the connected components of Γ(G) and |H|
divides |K|−1. Now, by Lemma 3.1, p is an isolated vertex of Γ(G). Because of that (i) |H| = p
and |K| = |G|/p or (ii) |H| = |G|/p and |K| = p. Since |H| divides |K| − 1.
Case (ii) is impossible. So |H| = p and |K| = |G|

p . Hence q2−q+1
(3,q+1) | q3(q3+1)(q2−1)

q2−q+1 − 1. First if
(3, q + 1) = 1, then q2 − q + 1 | (q2 − q + 1)(q4 + 2q3 − 3q − 3) + 2. Thus p | 2 which is
impossible. Now assume (3, q+1) = 3, so q2−q+1

3 | q3(q3+1)(q2−1)
q2−q+1 −1, it follows that q2 − q+1 |

3q6 + 3q5 − 3q4 − 3q3 − 3, so q2 − q + 1 | (q2 − q + 1)(3q4 + 6q3 − 9q − 9) + 6 where this
is contradiction. Now, we prove that G is not a 2-Frobenius group. Start from the opposite and
assume that G be a 2-Frobenius group, so G has a normal series 1 �H �K �G such that G/H
and K are Frobenius groups with kernels K/H and H respectively. Set |G/K| = x. Since p is
an isolated vertex of Γ(G), we have |K/H| = p and by lemma 2.2, |G/K| divides |Aut(K/H)|.
Thus |G/K| | p − 1. First, if (3, q + 1) = 1 then |G/K| divides q2 − q. At the same time by
lemma 2.5, (q2 − q, q2 − q+ 1) = 1. Because of that q2 − q+ 1 | |H|. Therefore Ht ⋊K/H is a
Frobenius group with kernel Ht and complement K/H , where t = q2 − q+1. So |K/H| divides
|Ht| − 1. It implies that p | p− 1, but this is a contradiction. For the other case as (3, q+ 1) = 3,
we have a contradiction.

Lemma 3.3. The group G is isomorphic to the group U .

Proof. By lemma 3.1, p is an isolated vertex of Γ(G). Thus t(G) > 1 and G satisfies one of
the cases of lemma 2.3. At the moment by lemma 3.2 and lemma 2.2 implies that G is neither
a Frobenius group and a 2-Frobenius group. Thus only the case (c) of lemma 2.3 occure. So G
has a normal series 1 �H �K �G such that H and G/K are π1-groups, K/H is a non-abelian
simple group. Since p is an isolated vertex of Γ(G), we have p | |K/H|. On the other hand,
5 ∤ |G|, so K/H is isomorphic one of the groups lemma 2.4.
Step 1. Suppose that K/H ∼= A1(q′), q′ ≡ ±2( mod 5). On the other hand, by[30], π(A1(q′)) =

q′ ± 1 or q
′±1
2 . We know that |A1(q′)| divide |G|, q′(q′2−1)

(2,q′−1) | q3(q3+1)(q2−1)
(3,q+1) . First, if (2, q′ − 1) = 1

and (3, q+1) = 1 then, we consider p = q′±1, so q2 −q+1 = q′±1. As aresult q2 −q = q′ and
q2 − q + 2 = q′. Since that |A1(q′)| ∤ |G|, where this is a contradiction. Now, if (2, q′ − 1) = 2,
(3, q + 1) = 3 then q2−q+1

3 = q′±1
2 . It follows that q′ = 2q2−2q+5

3 and q′ = 2q2−2q−1
3 . Since that

|A1(q′)| ∤ |G|, where this is a contradiction. For (2, q′ − 1) = 2 and (3, q + 1) = 1, we have
q′±1

2 = q2−q+1 it follows that q′ = 2q2−2q+3 and q′ = 2q2−2q+1. Since that |A1(q′)| ∤ |G|,
where this is a contradiction. For (2, q′ − 1) = 1 and (3, q + 1) = 3, we have a contradiction.
If K/H ∼= PSL3(q′), then we have a contradiction, similarily.
Step 2. Suppose that K/H ∼= G2(q′) where q′ ≡ ±2(mod 5). On the other hand, by [30],
π(G2(q′) = q′2±q′+1. We know that |G2(q′)| divide |G|, so q′6(q′6−1)(q′2−1) | q3(q3+1)(q2−1)

(3,q+1) .

Now, we consider p = q′2 ± q′ + 1, so q2−q+1
(3,q+1) = q′2 ± q′ + 1. First, if (3, q + 1) = 1 then

q2 − q + 1 = q′2 ± q′ + 1, it follows that q(q − 1) = q′(q′ ± 1). Now since that (q, q − 1) = 1,
so q − 1 = q′. But |G2(q′)| ∤ |G|, where this is a contradiction. Now, if (3, q + 1) = 3, then
q2−q+1

3 = q′2±q′+1. Hence, q2−q+1 = 3q′2±3q′+3. Next, we deduce q2−q−2 = 3q′(q′+1)
and q2 − q − 2 = 3q′(q′ − 1). It follows that (q + 1)(q − 2) = 3q′(q′ ± 1). On the other hand
(q+1, q−2) = 1 or 3, so if (q+1, q−2) = 1, then q−2 = q′−1, q+1 = 3q′. But |G2(q′)| ∤ |G|,
where this is a contradiction. Now, if (q + 1, q − 2) = 3 then q + 1 = 3q′ and q − 2 = q′ ± 1.
But |G2(q′)| ∤ |G|, where this is a contradiction.
Step 3. Suppose that K/H ∼= 3D4(q′), q ≡ ±2(mod 5). On the other hand, by [30], π(3D4(q′)) =
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q′4 − q′2 + 1. We know that |3D4(q′)| divided |G|, so q′12(q′8 + q′4 + 1)(q′6 − 1)(q′2 − 1) |
q3(q3+1)(q2−1)

(3,q+1) . Now, we consider p = q′4−q′2+1, so q2−q+1
(3,q+1) = q′4−q′2+1. Now, if (3, q+1) = 1,

then q2 − q+ 1 = q′4 − q′2 + 1 follows that q(q− 1) = q′2(q′2 − 1). Since that (q, q− 1) = 1, so
q = q′2. But |3D4(q′)| ∤ |G|, where this is a contradiction.
Step 4. Suppose that K/H ∼= 2G2(q′), q ≡ ±2(mod 5). On the other hand, by [30], π(2G2(q′)) =

q′ ±
√

3q′ + 1. We know that |2G2(q′)| divided |G|, so q′3(q′3 + 1)(q′ − 1) | q3(q3+1)(q2−1)
(3,q+1) . Now,

we consider p = q′ ±
√

3q′ + 1, so q2−q+1
(3,q+1) = q′ ±

√
3q′ + 1. Now, if (3, q + 1) = 1, then

q2 − q+ 1 = q′ ±
√

3q′ + 1 follows that q(q− 1) = 32m+1(3m ± 1). Since that (q, q− 1) = 1, so
q−1 = 3m−1 and q = 3m+1. So 3m(3m+1−1) = 32m+1(3m±1), where this is a contradiction.
Hence, K/H ∼= PSU3(q). Now since that |K/H| = |U | = |G| and also p ∈ π(K/H) so
p = p′. So q2−q+1

(3,q+1) = q′2−q′+1
(3,q′+1) . Thus q = q′. On the other hand, 1 �H �K � G, thus H = 1,

G = K ∼= U .
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