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Abstract In this paper, by using a differential operator we give some properties on the r-
Dowling polynomials, also we derive new congruences on these polynomials.

1 Introduction

The theory of differential operators studies algebraic properties of various sequences of numbers,
polynomials and functions. Specially, the differential operators can be applied to solve ordinary
differential equations, to generalize some known identities and to obtain congruences modulo a
prime number, see for instance [1, 8, 9, 10]. In this paper we use a differential operator to present
some properties and congruences concerning the r-Dowling polynomials. To start, let us give a
short introduction on these polynomials. Recall that the Dowling lattices introduced by Dowling
[7] are denoted by Qn (G) , where n is a positive integer and G is a finite group of order m > 0.
The r-Dowling polynomials are defined by

Dm,r (n, x) =
n∑

k=0

Wm,r (n, k)x
k, (1.1)

where Wm,r (n, k) is the r- Whitney numbers of the second kind introduced by Cheon and Jung
[5]. When x = 1, the number

Dm,r (n, 1) := Dm,r (n) =
n∑

k=0

Wm,r (n, k) , (1.2)

is the n-th r-Dowling number. In particular, for r = 1 or r = 1 and x = 1, the polynomial
Dm,1 (n, x) := Dm (n, x) and the number Dm,1 (n, 1) := Dm (n) are, respectively, the n-th
Dowling polynomial and the n-th Dowling number, see [2, 3].
Recall the r-Dowling polynomials and the r- Whitney numbers of the second kind satisfy the
following relations, see [5]∑

n≥0

Dm,r (n, x)
tn

n!
= exp

(
rt+ x

emt − 1
m

)
, (1.3)

Dm,r (n+ 1, x) = rDm,r (n, x) + x

n∑
i=0

(
n

i

)
mn−iDm,r (i, x) , (1.4)

Wm,r (n, k) =
1

mkk!

k∑
j=0

(−1)j
(
k

j

)
(m (k − j) + r)

n
, (1.5)

Wm,r (n, k) = Wm,r (n− 1, k − 1) + (r +mk)Wm,r (n− 1, k) , (1.6)

Wm,r (n, k) =
n∑

i=k

(
n

i

)
mi−krn−i

{
i

k

}
, (1.7)
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where
{
n
k

}
is the (n, k)-th Stirling number of the second kind which counts the number of parti-

tion of the set [n] := {1, · · · , n} into k non-empty subsets, see [4].
Also, recall that it is known that [6] for any prime p, we have{

p

k

}
≡ 0 (mod p) , 1 < k < p, and

{
p

0

}
= 0,

{
p

p

}
=

{
0
0

}
=

{
p

1

}
= 1,

which give for p not dividing mr :

Wm,r (p, k) ≡ 0 (mod p) , for 2 ≤ k ≤ p− 1, (1.8)

Wm,r (p, 0) ≡ r (mod p) , (1.9)

Wm,r (p, 1) ≡ Wm,r (p, p) ≡ 1 (mod p) , (1.10)

Wm,r (p− 1, k) ≡ 0 (mod p) , for 1 ≤ k ≤ p− 2. (1.11)

The first few r-Dowling polynomials are

Dm,r (0, x) = 1,

Dm,r (1, x) = x+ r,

Dm,r (2, x) = x2 + (m+ 2r)x+ r2,

Dm,r (3, x) = x3 + (3m+ 3r)x2 +
(
m2 + 3mr + 3r2)x+ r3.

2 Some properties involving r-Dowling polynomials

In this section, we use a differential operator to establish some properties of the r-Dowling
polynomials.

Lemma 2.1. The r-Dowling polynomials satisfy the following identity

Dm,r (n+ 1, x) = (x+ r)Dm,r (n, x) +mx
d

dx
Dm,r (n, x) . (2.1)

Proof. By (1.6), we have

Dm,r (n+ 1, x) =
n+1∑
k=0

Wm,r (n+ 1, k)xk

=
n+1∑
k=0

[Wm,r (n, k − 1) + (r +mk)Wm,r (n, k)]x
k

= x

n∑
k=0

Wm,r (n, k)x
k + r

n∑
k=0

Wm,r (n, k)x
k +mx

n∑
k=0

kWm,r (n, k)x
k−1.

Let D = d
dx be the differential operator and let Q be the differential operator defined by

Q = x+ r +mxD. (2.2)

.

Proposition 2.2. For any non-negative integers n, s, the following identities hold

Qn1 = Dm,r (n, x) , (2.3)

Qs (Dm,r (n− s, x)) = Dm,r (n, x) , 0 ≤ s ≤ n, (2.4)

Qn+11 = (x+ r)Qn1 +mx
d

dx
Qn1, (2.5)

Qn+11 = rQn1 + x (Q+m)
n 1. (2.6)
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Proof. For (2.3), we proceed by induction on n. Indeed, for n = 0, we have

Q01 = 1 = Dm,r (0, x) ,

and for n = 1 or n = 2, we get

Q11 = ((x+ r) +mxD) 1 = x+ r = Dm,r (1, x) ,

Q21 = Q
(
Q11

)
= Q (x+ r) = (x+ r)

2
+mx = Dm,r (2, x) .

Assume that Qn1 = Dm,r (n, x) . Then

Qn+11 = Q (Qn1)

= ((x+ r) +mxD)

(
n∑

k=0

Wm,r (n, k)x
k

)

=
n+1∑
k=0

Wm,r (n, k − 1)xk + r

n∑
k=0

Wm,r (n, k)x
k +

n∑
k=0

mkWm,r (n, k)x
k

=
n+1∑
k=0

[Wm,r (n, k − 1) + (r +mk)Wm,r (n, k)]x
k

=
n+1∑
k=0

Wm,r (n+ 1, k)xk

= Dm,r (n+ 1, x) ,

which completes the step induction. For (2.4), we have

Dm,r (n, x) = Qn1 = Q
(
Qn−11

)
= QDm,r (n− 1, x) = · · · = QsDm,r (n− s, x) .

The identities (2.5) and (2.6) can be obtained easily from (2.1) and (1.4).

Lemma 2.3. The r-Dowling polynomials satisfy the following identity

Dm,r (n, x) = e−
x
m

∑
k≥0

xk

k!mk
(mk + r)

n
. (2.7)

Proof. By (1.3), we have∑
n≥0

Dm,r (n, x)
tn

n!
= exp

(
rt+ x

emt − 1
m

)

= e−
x
m exp (rt) exp

(
xemt

m

)
= e−

x
m

∑
s≥0

rs
ts

s!

∑
k≥0

xk

mkk!

∑
n≥0

(mk)
n tn

n!

= e−
x
m

∑
k≥0

xk

mkk!

∑
n≥0

(
n∑

s=0

(mk)
s

s!
rn−s

(n− s)!

)
tn

=
∑
n≥0

e−
x
m

∑
k≥0

xk

mkk!
(mk + r)

n

 tn

n!
.

By comparing the coefficient of tn on both sides, we get the desired result.

Proposition 2.4. For any polynomial f and any non-negative integer s, there holds

f (Q+ s) 1 = e−
x
m

∑
i≥0

f (mi+ r + s)
(x/m)

i

i!
. (2.8)
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Proof. Let f =
∑n

k=0 akx
k be a polynomial. Then by Lemma 2.3, we have

f (Q+ s) 1 =
n∑

k=0

ak

k∑
j=0

(
k

j

)
sk−jQj1

=
n∑

k=0

ak

k∑
j=0

(
k

j

)
sk−jDm,r (j, x)

= e−
x
m

∑
i≥0

n∑
k=0

k∑
j=0

(
k

j

)
sk−j xi

i!mi
ak (mi+ r)

j

= e−
x
m

∑
i≥0

n∑
k=0

ak (mi+ r + s)
k xi

i!mi

= e−
x
m

∑
i≥0

f (mi+ r + s)
(x/m)

i

i!
.

Proposition 2.5. For any polynomial f and any non-negative integer s, we have
s∑

i=0

(
s

i

)
mi di

dxi
f (Q) 1 = e−

x
m

∑
i≥0

f (mi+ r + sm)
(x/m)

i

i!
. (2.9)

In particular, for f = xn or f = xn and s = 1, we get
s∑

i=0

(
s

i

)
mi di

dxi
Dm,r (n, x) = Dm,r+sm (n, x) , (2.10)

Dm,r (n, x) +m
d

dx
Dm,r (n, x) = Dm,r+m (n, x) . (2.11)

Proof. By (2.8), we have

e
x
m f (Q) 1 =

∑
i≥0

f (mi+ r)
(x/m)

i

i!
.

Then

d

dx

(
e

x
m f (Q) 1

)
=

d

dx

∑
i≥0

f (mi+ r)
(x/m)

i

i!

=
1
m

∑
i≥0

f (mi+ r +m)
(x/m)

i

i!
,

and by induction on s ≥ 0, we get

ds

dxs

(
e

x
m f (Q) 1

)
=

1
ms

∑
i≥0

f (mi+ r + sm)
(x/m)

i

i!
.

On the other hand, we have

ds

dxs

(
e

x
m f (Q) 1

)
=

s∑
i=0

(
s

i

)
ds−i

dxs−i
ex/m

di

dxi
f (Q) 1

=
e

x
m

ms

s∑
i=0

(
s

i

)
mi di

dxi
f (Q) 1.

This completes the proof.
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Hence, by setting r = 1 in Proposition 2.5, we get:

Corollary 2.6. For any non-negative integer s, there holds
s∑

i=0

(
s

i

)
mi di

dxi
Dm (n, x) = Dm,1+sm (n, x) , (2.12)

Dm (n, x) +m
d

dx
Dm (n, x) = Dm,1+m (n, x) . (2.13)

Proposition 2.7. Let f be a polynomial with real coefficients . If the polynomial f (Q) 1 has only
real zeros, then the polynomial f (Q+m) 1 also has only real zeros.

Proof. From (2.8), we have

d

dx

(
e

x
m f (Q) 1

)
=

d

dx

∑
k≥0

f (mk + r)
(x/m)

k

k!


=

1
m

∑
k≥0

f (mk + r +m)
(x/m)

k

k!

=
ex/m

m
f (Q+m) 1.

So the proof can be obtained by application of Rolle’s theorem on the function e
x
m f (Q) 1.

Example 2.8. For f = xn, f (Q) 1 = Dm,r (n, x) has only real zeros [5], hence the polynomial∑n
k=0 (

n
k) (m)

n−k
Dm,r (k, x) has only real zeros.

3 Congruences on the r-Dowling polynomials

In this section, we give some congruences on the r-Dowling polynomials.

Lemma 3.1. For any polynomial f in Z [x] and any prime number p not dividing mr, there holds

(Qp −Q) f (Q) 1 ≡ xpf (Q) 1 (mod pZ [x]) . (3.1)

More generally, for any integer s ≥ 1, we have(
Qps

−Q
)
f (Q) 1 ≡

(
xp + · · ·+ xps

)
f (Q) 1 (mod pZ [x]) . (3.2)

Proof. For (3.1) it suffices to take f (x) = xn and we proceed by induction on n. For n =
0 or n = 1, by (1.8), (1.9) and (1.10), we have

Qp1 =
p∑

k=0

Wm,r (p, k)x
k

≡ Wm,r (p, 0)x0 +Wm,r (p, 1)x+Wm,r (p, p)x
p

≡ r + x+ xp

= Q11 + xpQ01 (mod pZ [x]) ,

and by (1.4), we have

Q1+p1 = Dm,r (1 + p, x)

= rDm,r (p, x) + x

p∑
i=0

(
p

i

)
mp−iDm,r (i, x)

≡ r (r + x+ xp) + x (m+ r + x+ xp)

= x2 + (m+ 2r)x+ r2 + (x+ r)xp

= Q21 + xpQ11 (mod pZ [x]) .
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Assume that Qn (Qp −Q) 1 ≡ xpQn1 (mod pZ [x]) . Then by (2.3) and (2.5), we have

Qn+1 (Qp −Q) 1 = Q [Qn (Qp −Q) 1]

=

(
x+ r +mx

d

dx

)
(Qn (Qp −Q) 1)

= (x+ r)Qn (Qp −Q) 1 +mx
d

dx
Qn (Qp −Q) 1

≡ (x+ r)xpQn1 +mx
d

dx
(xpQn1)

≡ xp

[
(x+ r)Qn1 +mx

d

dx
Qn1

]
= xp

[
(x+ r)Qn1 +Qn+11 − (x+ r)Qn1

]
= xpQn+11 (mod pZ [x]) .

For (3.2) it suffices to take f (x) = xn and we proceed by induction on s ≥ 1. By (3.1) clearly
the property is true for s = 1. Assume that(

Qps

−Q
)
Qn1 ≡

(
xp + · · ·+ xps

)
Qn1 (mod pZ [x]) .

Then (
Qps+1

−Q
)
Qn1 =

[(
Qps

−Q+Q
)p

−Q
]
Qn1

=
(
Qps

−Q+Q
)p

Qn1 −QQn1

≡
(
Qps

−Q
)p

Qn1 + (Qp −Q)Qn1

≡
(
xp + · · ·+ xps

)(
Qps

−Q
)p−1

Qn1 + xpQn1

...

≡
(
xp + · · ·+ xps

)p
Qn1 + xpQn1

≡
(
xp2

+ · · ·+ xps+1
)
Qn1 + xpQn1

=
(
xp + xp2

+ · · ·+ xps+1
)
Qn1 (mod pZ [x]) ,

hence, the proof is completed.

So, by choosing f(x) = xn in Lemma 3.1 we may state the following theorem.

Theorem 3.2. For any integers n ≥ 0, s ≥ 1 and any prime number p not dividing mr, the
following congruence holds

Dm,r (n+ ps, x) ≡ Dm,r (n+ 1, x) +
(
xp + · · ·+ xps

)
Dm,r (n, x) (mod pZ [x]) .

In particular for r = 1, we get

Dm (n+ ps, x) ≡ Dm (n+ 1, x) +
(
xp + · · ·+ xps

)
Dm (n, x) (mod pZ [x]) .

When x = 1 or x = 1 and r = 1, we obtain

Dm,r (n+ ps) ≡ Dm,r (n+ 1) + sDm,r (n) (mod p) , (3.3)

Dm (n+ ps) ≡ Dm (n+ 1) + sDm (n) (mod p) . (3.4)
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Corollary 3.3. For any integers n ≥ 0, v ≥ 0, s ≥ 1 and any prime number p not dividing mr,
we have

Dm,r (n+ vps, x) ≡
v∑

k=0

(
v

k

)(
xp + · · ·+ xps

)k
Dm,r (n+ v − k, x) (mod pZ [x]) .

In particular for r = 1, we have

Dm (n+ vps, x) ≡
v∑

k=0

(
v

k

)(
xp + · · ·+ xps

)k
Dm (n+ v − k, x) (mod pZ [x]) .

In the case x = 1 or x = 1 and r = 1, we get

Dm,r (n+ vps) ≡
v∑

k=0

(
v

k

)
skDm,r (n+ v − k) (mod p) , (3.5)

Dm (n+ vps) ≡
v∑

k=0

(
v

k

)
skDm (n+ v − k) (mod p) . (3.6)

Proof. The above congruence results from the following identity

Dm,r (n+ vps, x) = Qn
(
Qps

−Q+Q
)v

1 =
v∑

k=0

(
v

k

)
Qn+v−k

(
Qps

−Q
)k

1.

Corollary 3.4. Let n ≥ 0, s ≥ 1 be integers and let p be a prime number not dividing mr. Then

Dm,r

(
n+ ps+1 − ps

)
≡

p−1∑
k=0

(−s)
k
(Dm,r (n− k) +Dm,r (n− 1 − k)) (mod p) ,

Dm,r

(
n+ ps+1 − 2ps

)
≡

p−2∑
k=0

(−s)
k
(1 + k) (Dm,r (n− 1 − k) +Dm,r (n− 2 − k)) (mod p) ,

Dm,r (n+ pNp) ≡ Dm,r (n+Np) (mod p) ,

Np∑
k=1

(
Np

k

)
Dm,r (n+Np − k) ≡ 0 (mod p) ,

where
Np = 1 + p+ · · ·+ pp−1.

Proof. Replace v by p− 1 or p− 2 in (3.5) and use (3.3) and the congruences(
p− 1
k

)
≡ (−1)k (mod p) ,

(
p− 2
k

)
≡ (−1)k (1 + k) (mod p) .

The last congruence follows by setting v = Np and s = 1 in (3.5).

Corollary 3.5. For any prime number p not dividing mr, there holds

Dm,r (n, x) +m
dp

dxp
Dm,r (n, x) ≡ Dm,r+pm (n, x) (mod pZ [x]) ,

p−1∑
i=0

(−1)i mi di

dxi
Dm,r (n, x) ≡ Dm,r+(p−1)m (n, x) (mod pZ [x]) ,

p−2∑
i=0

(−1)i (1 + i)mi di

dxi
Dm,r (n, x) ≡ Dm,r+(p−2)m (n, x) (mod pZ [x]) .
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Proof. Replace s by p, p− 1 or p− 2 in (2.10) and use the congruences(
p

k

)
≡ 0 (mod p) , 1 ≤ k ≤ p− 1,(

p− 1
k

)
≡ (−1)k (mod p) ,

(
p− 2
k

)
≡ (−1)k (1 + k) (mod p) .

Proposition 3.6. For any prime p not dividing mr, we have

x

p−1∑
k=0

Dm,r (k, x)

(−m)
k

≡ xp − rxp−1 + x (mod pZ [x]) .

In particular for r = 1 or r = 1 and x = 1, we get

x

p−1∑
k=0

Dm (k, x)

(−m)
k

≡ xp − xp−1 + x (mod pZ [x]) ,

p−1∑
k=0

Dm (k)

(−m)
k

≡ 1 (mod p) .

Proof. By (1.8) and (1.11), we have

Dm,r (p, x) ≡ xp + x+ r (mod pZ [x]) , Dm,r (p− 1, x) ≡ 1 + xp−1 (mod pZ [x]) .

On the other hand by using (2.6), we get

x

p−1∑
k=0

Dm,r (k, x)

(−m)
k

= x

p−1∑
k=0

(−m)
−k

Dm,r (k, x)

≡ x

p−1∑
k=0

(
p− 1
k

)
mp−1−kQk1

= x (Q+m)
p−1 1

= Qp1 − rQp−11

= Dm,r (p, x)− rDm,r (p− 1, x)

≡ xp − rxp−1 + x (mod pZ [x]) .

4 Conclusion

In our present investigation, we studied some properties and congruences involving the r-Dowling
polynomials. These polynomials are used in different mathematical frameworks, specially in
combinatorics which are linked to the number of colored partitions on a finite set. One way to
study such sequence of polynomials, the differential operators make easer such study. As it is
shown above, we conclude that the differential operator used here can be considered an inter-
esting mathematical tool and that the results obtained combine existing and new results. Other
differential operators can be used similarly to study other sequences of polynomials such the
geometric polynomials, Laguerre polynomials, etc.
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