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Abstract A graph Z(V,E) with p vertices and q edges is categorized as mean graph if there
is an injective function δ: V (Z) →{0, 1, 2, ..., q} such that the weights {1, 2, ..., q} of all edges
are distinct. Weight of each edge uv can be calculated by equation wt(uv) = ⌈ δ(u)+δ(v)

2 ⌉, u, v ∈
V (Z). In this paper, we prove that different families of comb graph are mean graphs.

1 Introduction

Throughout this paper, we consider finite, simple and undirected graphs. In graph theory, graph
labeling refers to the assignment of labels or values to the vertex set V (G) or edge set E(G) or
both under some certain conditions. These labels or values provide additional information about
the properties and structure of graph. Labeled graphs have vast applications in different models
such as X-ray crystallography, coding theory, circuit design, astronomy, radar and communica-
tion network addressing. For a summary of various graph labelings and their applications, refer
to the latest dynamic survey on graph labeling by Gallian [4].
Mean labeling, introduced by Somasundaram et al. in 2003 [12], was subsequently investigated
by the same authors in [13] during the same year, where it was found that mean labeling does not
exist for some wheel-related graphs. In 2010, Vaidya et al. [18] showed that the graphs obtained
by the composition of paths Pm and P2, the square of path Pn and the middle graph of path Pn

admit mean labeling. Additionally, in their study presented in [20], Vaidya et al. investigated that
the graph obtained by two new operations called mutual duplication of a pair of vertices each
from each copy of cycle Cn as well as mutual duplication of a pair of edges each from each copy
of cycle Cn, shadow graphs of star and bistar graphs admit mean labeling. Furthermore, in [19],
they proved that some cycle related graphs are mean graphs, they also discussed mean labeling in
the context of arbitrary super subdivision of path Pn. In 2010, Vasuki et al. gave further results
on mean graphs in their paper [16]. In 2011, Vaidya et al. [17] proved that step ladder graph,
total graph of path Pn and two copies of cycle graph Cn sharing a common edge are all mean
graphs. For some related study see [2], [5] and [9]. In 2011, Lourdusamy et al. [7] proved that
kCn-snakes, generalised kCn-snakes and super subdivisions of cycles are all mean graphs. Two
years later, Lourdusamy et al. demonstrated that edge linked cyclic snakes and generalised edge
linked cyclic snakes are also mean graphs in their work [8]. In 2014, Avadayappan et al. [1]
proved that double triangular snake graph, balloon of the triangular snake graph, quadrilateral
snake graph, double and triple quadrilateral snake graphs, cycle snake graph and many other
families of graphs are mean graphs. In the same year, Gayathri et al. [3] investigated that differ-
ent cycle related graphs admit mean labeling. Further insights into the mean labeling of various
graphs are presented in the works [10], [11], [14] and [15] of other authors.
Our paper proves that various families of comb graphs, including Cam, Cdm, Cem, Cfm, Ctm,
and Chm, are mean graphs. For further details on the above-mentioned notations of comb graphs,
refer to the relevant papers [6] and [21].
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2 Main Results

Theorem 2.1. Comb graph Cam is mean graph.

Proof: Comb graph Cam is obtained by vertex set V (Cam) = {bkg ; 1 ≤ g ≤ k + 1, 1 ≤ k ≤
m} and edge set E(Cam) = {bk1b

k+1
1 ; 1 ≤ k ≤ m − 1}

⋃
{bkgbkg+1; 1 ≤ k ≤ m, 1 ≤ g ≤ k},

[6, 21]. We have to show that comb graph Cam is mean graph, for this, define a function δ:
V (Cam) →{0, 1, 2, ..., q} such that

δ(bkg) =

{
k2+3k

2 − g, if 1 ≤ g ≤ k + 1; 1 ≤ k ≤ m, odd

k2+k−4
2 + g, if 1 ≤ g ≤ k + 1; 2 ≤ k ≤ m, even.

Now we evaluate weights for all edges as:

wt(bkgb
k
g+1) =

 ⌈k2+3k−2g−1
2 ⌉, if 1 ≤ g ≤ k; 1 ≤ k ≤ m, odd

⌈k2+k+2g−3
2 ⌉, if 1 ≤ g ≤ k; 2 ≤ k ≤ m, even.

wt(bk1b
k+1
1 ) = k2+3k

2 , if 1 ≤ k ≤ m− 1.

It is evident that the function defined above by δ is injective, and all edges possess distinct
weights {1, 2, . . . , q}. Therefore, we can conclude that comb graph Cam is a mean graph. Thus,
the proof is complete.

Theorem 2.2. Comb graph Cdm is mean graph.

Proof: Comb graph Cdm is obtained by vertex set V (Cdm) = {bkg ; 1 ≤ k ≤ m, 1 ≤ g ≤
⌊k+3

2 ⌋} and edge set E(Cdm) = {bkgbkg+1; 1 ≤ k ≤ m , 1 ≤ g ≤ ⌊k+1
2 ⌋}

⋃
{bk1b

k+1
1 ; 1 ≤ k ≤

m−1}, [6, 21]. We have to show that comb graph Cdm is mean graph, for this, define a function
δ: V (Cdm) →{0, 1, 2, ..., q} such that

δ(bkg) =

{
k2+6k+1

4 − g, if 1 ≤ g ≤ ⌊k+3
2 ⌋ ; 1 ≤ k ≤ m, odd

k2+4k−12
4 + (g + 1), if 1 ≤ g ≤ ⌊k+3

2 ⌋ ; 2 ≤ k ≤ m, even.

Now we evaluate weights for all edges as follows:

wt(bkgb
k
g+1) =

 ⌈k2+6k−4g−1
4 ⌉, if 1 ≤ g ≤ ⌊k+1

2 ⌋ ; 1 ≤ k ≤ m, odd

⌈k2+4k+4g−6
4 ⌉, if 1 ≤ g ≤ ⌊k+1

2 ⌋ ; 2 ≤ k ≤ m, even.

wt(bk1b
k+1
1 ) = ⌈k2+6k−1

4 ⌉, 1 ≤ k ≤ m− 1.

It is evident that the function defined above by δ is injective, and all edges possess distinct
weights {1, 2, . . . , q}. Therefore, we can conclude that comb graph Cdm is a mean graph. This
brings us to the end of the proof.

Theorem 2.3. Comb graph Cem is mean graph.

Proof: Comb graph Cem is obtained by vertex set V (Cem) = {bkg ; 1 ≤ k ≤ m, 1 ≤ g ≤
2k+1} and edge set E(Cem) = {bkgbk+1

g+1; 1 ≤ k ≤ m−1, g = k+1}
⋃
{bkgbkg+1; 1 ≤ k ≤ m, 1 ≤

g ≤ 2k}, [6]. We have to show that comb graph Cem is mean graph, for this, define a function
δ: V (Cem) →{0, 1, 2, ..., q} such that

δ(bkg) =

{
k2 + g − 2, if 1 ≤ g ≤ 2k + 1; 1 ≤ k ≤ m, odd

k2 + 2k − g, if 1 ≤ g ≤ 2k + 1; 2 ≤ k ≤ m, even.

Now we evaluate weights for all edges as follows:
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wt(bkgb
k
g+1) =

 ⌈ 2k2+2g−3
2 ⌉, if 1 ≤ g ≤ 2k; 1 ≤ k ≤ m, odd

⌈ 2k2+4k−2g−1
2 ⌉, if 1 ≤ g ≤ 2k; 2 ≤ k ≤ m, even.

wt(bkgb
k+1
g+1) = ⌈ 2k2+2k+2g−3

2 ⌉, if g = k + 1; 1 ≤ k ≤ m− 1.

It is evident that the function defined above by δ is injective, and all edges possess distinct
weights {1, 2, . . . , q}. Therefore, we can conclude that comb graph Cem is a mean graph. This
concludes the demonstration.

Theorem 2.4. Comb graph Cfm is mean graph.

Proof: Comb graph Cfm is obtained by vertex set V (Cfm) = {bkg ; 1 ≤ g ≤ 7, 1 ≤ k ≤ m}
and edge set E(Cfm) = {bk4b

k+1
4 ; 1 ≤ k ≤ m − 1}

⋃
{bkgbkg+1; 1 ≤ k ≤ m, 1 ≤ g ≤ 6},

[6, 21]. We have to show that comb graph Cfm is mean graph, for this, define a function δ:
V (Cfm) →{0, 1, 2, ..., q} such that

δ(bkg) =

 7k + g − 8, if 1 ≤ g ≤ 7; 1 ≤ k ≤ m, odd

7k − g, if 1 ≤ g ≤ 7; 2 ≤ k ≤ m, even.

Now we evaluate weights for all edges as follows:

wt(bkgb
k
g+1) =

 ⌈ 14k+2g−15
2 ⌉, if 1 ≤ g ≤ 6; 1 ≤ k ≤ m, odd

⌈ 14k−2g−1
2 ⌉, if 1 ≤ g ≤ 6; 2 ≤ k ≤ m, even.

wt(bk4b
k+1
4 ) = ⌈ 14k−1

2 ⌉, 1 ≤ k ≤ m− 1.

It is evident that the function defined above by δ is injective, and all edges possess distinct
weights {1, 2, . . . , q}. Therefore, we can conclude that comb graph Cfm is a mean graph. Hence
the required result is proved.

Theorem 2.5. Comb graph Ctm is mean graph.

Proof: Comb graph Ctm is obtained by vertex set V (Ctm) = {bkg ; 1 ≤ k ≤ m, 1 ≤
g ≤ 6} and edge set E(Ctm) = {bkgbkg+1; 1 ≤ k ≤ m, 1 ≤ g ≤ 5}

⋃
{bk4b

k+1
3 ; 1 ≤ k ≤

m − 1, odd}
⋃
{bk3b

k+1
4 ; 2 ≤ k ≤ m − 1, even}, [21]. We have to show that comb graph Ctm is

mean graph, for this, define a function δ: V (Ctm) →{0, 1, 2, ..., q}such that

δ(bkg) =

{
g + 6k − 7, if 1 ≤ g ≤ 6; 1 ≤ k ≤ m, odd

6k − g, if 1 ≤ g ≤ 6; 2 ≤ k ≤ m, even.

Now we evaluate weights for all edges as

wt(bkga
k
g+1) =

 ⌈ 2g+12k−13
2 ⌉, if 1 ≤ g ≤ 5; 1 ≤ k ≤ m, odd

⌈ 12k−2g−1
2 ⌉, if 1 ≤ g ≤ 5; 2 ≤ k ≤ m, even.

wt(bk4b
k+1
3 ) = ⌈ 12k−1

2 ⌉, if 1 ≤ k ≤ m− 1, odd.

wt(bk3b
k+1
4 ) = 6k, if 2 ≤ k ≤ m− 1, even.

It is evident that the function defined above by δ is injective, and all edges possess distinct
weights {1, 2, . . . , q}. Therefore, we can conclude that comb graph Ctm is a mean graph. Hence
the result is established.

Theorem 2.6. Comb graph Chm is mean graph.
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Proof: Comb graph Chm is obtained by vertex set V (Chm) = {bkg ; 1 ≤ g ≤ 3, 1 ≤ k ≤
m, odd}

⋃
{bkg ; 2 ≤ k ≤ m, even, 1 ≤ g ≤ 4} and edge set E(Chm) = {bkgbkg+1; 1 ≤ k ≤

m, odd, 1 ≤ g ≤ 2}
⋃
{bkgbkg+1; 2 ≤ k ≤ m, even, 1 ≤ g ≤ 3}

⋃
{bk1b

k+1
1 ; 1 ≤ k ≤ m− 1}, [21].

We have to show that comb graph Chm is mean graph, for this, define a function δ: V (Chm) →{0, 1, 2, ..., q}
such that

δ(bkg) =

 ⌈ 2g+7k−9
2 ⌉, if 1 ≤ g ≤ 3; 1 ≤ k ≤ m, odd

⌈ 7k−2g
2 ⌉, if 1 ≤ g ≤ 4; 2 ≤ k ≤ m, even.

Now we evaluate weights for all edges as

wt(bkgb
k
g+1) =

 ⌈ 2g+7k−8
2 ⌉, if 1 ≤ g ≤ 2; 1 ≤ k ≤ m, odd

⌈ 7k−2g−1
2 ⌉, if 1 ≤ g ≤ 3; 2 ≤ k ≤ m, even.

wt(bk1b
k+1
1 ) = ⌈ 14k−2

4 ⌉, 1 ≤ k ≤ m− 1.

It is evident that the function defined above by δ is injective, and all edges possess distinct
weights {1, 2, . . . , q}. Therefore, we can conclude that comb graph Chm is a mean graph. This
completes the proof.

3 Conclusion remarks

In this work, we demonstrate that various families of comb graph, including Cam, Cdm, Cem,
Cfm, Ctm, and Chm, are mean graphs as they all admit mean labeling. These findings have
significant implications for various applications, such as network design and optimization. The
demonstration of the mean graphs mentioned above has the potential to provide valuable insights
in the field of graph theory.
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