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Abstract In this work, we investigate the inclusion relationships between two sets, S1 and
S2, where S1 is the set of least-rank solutions of the matrix equation AXB = C, while S2 is the

set of solutions of the form Γ =
X11 +X22 +X33 +X44

4
, where X11, X22, X33 and X44 are the

least-rank solutions of the four smaller equations derived from the original equation AXB = C.
Then, we deduce the necessary and sufficient conditions for the following relations to hold:
S1 ∩ S2 ̸= ∅, S1 ⊆ S2 and S1 ⊇ S2.

1 Introduction

In this work, Cn×m represents the set of all n×m complex matrices. In addition, we denote A∗

and r (A) as the conjugate transpose and the rank of matrix A, respectively. The Moore-Penrose
inverse of matrix A ∈ Cn×m is defined as the unique m × n complex matrix denoted by A+

satisfying the following four equations:

AA+A = A, A+AA+ = A+,
(
AA+

)∗
= AA+,

(
A+A

)∗
= A+A.

Extensive studies and results regarding matrix inversion and generalized inverses see e.g. ([1, 2,
3]).

Additionally, we introduce two orthogonal projectors induced by A ∈ Cm×n, namely FA =
In −A+A and EA = Im −AA+.

Consider the matrix equation:

AXB = C (1.1)

where A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q are given matrices, and X ∈ Cn×p is an unknown
matrix.

Linear matrix equations have been examined in various situations. For example, in [16], the
author presented necessary and sufficient conditions for the existence of Hermitian nonnegative
definite or positive-definite solutions to (1.1) and representations of these solutions. In [9], Tian
studied the relations between two approximate solutions of (1.1), namely, least-squares and least-
rank solutions, in [6] the authors studied the problem of finding solutions to a system of linear
quaternion or octonion equations. For further related works one may refer to ([4, 10, 12, 11]).

Tian proposed the notion of least-rank solutions to matrix equations in [13, 14] based on the
minimal rank of the linear matrix function A− BXC. The least-rank solutions have since been
investigated by many researchers. For instance, in [5], the authors derived the necessary and suf-
ficient conditions for the systems A1XB1 = C1 and A2XB2 = C2 to have a common least-rank
solution. In [15], Xu et al. used the Moore-Penrose inverse to deduce the necessary and suffi-
cient conditions for the existence of Hermitian (skew-Hermitian), Re-nonnegative (Re-positive)
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definite, and Re-nonnegative (Re-positive) definite least-rank solutions to (1.1) and presented ex-
plicit representations of the general solutions in cases for which the solvability conditions were
satisfied.

To elucidate more properties of the least-rank solutions of (1.1), we can express the matrices
A, B, and C with the following partitioned forms:

A =

[
A11

A22

]
, B =

[
B11 B22

]
, C =

[
C11 C22

C33 C44

]
.

By comparing both sides of Equation (1.1), we obtain four individual equations:

A11XB11 = C11, A11XB22 = C22, A22XB11 = C33, A22XB22 = C44. (1.2)

We can consider Equation (1.1) as a combination of these four smaller equations. However,
notably, the fourth equation in (1.2) may not have a common solution. In this case, we can
rewrite (1.2) as four independent matrix equations:

A11X11B11 = C11, A11X22B22 = C22, A22X33B11 = C33, A22X44B22 = C44. (1.3)

The conditions for these four matrix equations to be consistent may not be the same as those for
Equation (1.1). Hence, the possible relationships between the four equations in (1.1) and (1.3)
should be investigated for general cases.

Based on the results of Li and Tian in [7], in this paper, we decompose the least-rank solution
X of Equation (1.1) into the sum of the least-rank solutions of the equations in (1.3) as follows:

Γ =
X11 +X22 +X33 +X44

4
. (1.4)

We aim to determine the existence of additional solutions in the combined set by investigating
these connections. The results of this study improve our understanding of the properties of
solutions to (1.1).

We first introduce the following important lemmas:

Lemma 1.1. [8, 12] Let A ∈ Cs×r, B ∈ Cs×k, C ∈ Cl×r, D ∈ Cl×k. Then,

r
[
A, B

]
= r (A) + r (EAB) = r (B) + r (EBA) , (1.5)

r

[
A

C

]
= r (A) + r (CFA) = r (C) + r (AFC) , (1.6)

r

[
A B

C 0

]
= r (B) + r (C) + r (EBAFC) . (1.7)

The following formulas are derived from (1.5), (1.6) and (1.7):

r

[
A BFN

ERC 0

]
= r

 A B 0
C 0 R

0 N 0

− r (N)− r (R) ,

r

[
M L

ERA ERB

]
= r

[
M L 0
A B R

]
− r (R) ,

r

[
M AFN

L BFN

]
= r

 M A

L B

O N

− r (N) .
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Lemma 1.2. [11] Let D ∈ Cs×r, E ∈ Cs×k and H ∈ Cl×r be given matrices. Then,

min
X∈Ck×r

Y ∈Cs×l

r (D − EX − Y H) = r

[
D E

H 0

]
− r (E)− r (H) . (1.8)

Lemma 1.3. [10] Let D ∈ Cs×r, E1 ∈ Cs×l1 , E2 ∈ Cs×l2 , K1 ∈ Ck1×r, K2 ∈ Ck2×r be
matrices, such that R (E1) ⊂ R (E2) and R (K∗

2 ) ⊂ R (K∗
1 ). Then,

max
X1∈Cl1×k1

X2∈C
l2×k2

r (D − E1X1K1 − E2X2K2) = min

{
r
[
D E2

]
, r

[
D

K1

]
, r

[
D E1

K2 0

]}
.

(1.9)

2 Relationships between least-rank solutions of the matrix equation
AXB = C and its four smaller equations

Lemma 2.1. [9] Let A ∈ Cm×n, B ∈ Cp×q and C ∈ Cm×q be given matrices. The least-rank
solution of (1.1) can be expressed as follows:

X = −TM+S + T̂U + V Ŝ, (2.1)

where M =

[
C A

B 0

]
, T =

[
0 In

]
, S =

[
0
Ip

]
, T̂ = TFM , Ŝ = EMS, U ∈ C(q+n)×p

and V ∈ Cn×(m+p) are arbitrary matrices.

The following notations are adopted for the sets of least-rank solutions to the equations in
(1.1) and (1.3):

S1 =
{
X ∈ Cn×p / r (AXB − C) = min

}
, (2.2)

S2 =

Γ =
(X11 +X22 +X33 +X44)

4
∈ Cn×p /

r (A11X11B11 − C11) = min
r (A11X22B22 − C22) = min
r (A22X33B11 − C33) = min
r (A22X44B22 − C44) = min

 . (2.3)

Based on these notations, the results can be obtained as follows:

Theorem 2.2. Let X and X11, X22, X33 and X44 be the least-rank solutions to (1.1) and (1.3)
respectively, define S1 and S2 as in (2.2) and (2.3) respectively. Denote

H1=



C A 0 0 0 0 0 0 0 0
0 0 C11 A11 0 0 0 0 0 0

−B 0 B11 0 0 0 0 0 0 0
0 0 0 0 C22 A11 0 0 0 0

−B 0 0 0 B22 0 0 0 0 0
0 0 0 0 0 0 C33 A22 0 0

−B 0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 0 C44 A22

−B 0 0 0 0 0 0 0 B22 0


,
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H2=



C 0 −A 0 −A 0 −A 0 −A

B 0 0 0 0 0 0 0 0
0 C11 A11 0 0 0 0 0 0
0 B11 0 0 0 0 0 0 0
0 0 0 C22 A11 0 0 0 0
0 0 0 B22 0 0 0 0 0
0 0 0 0 0 C33 A22 0 0
0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 C44 A22

0 0 0 0 0 0 0 B22 0



,

L =



−C −A 0 0 0 0 0 0 0 0
−B 0 0 0 0 0 0 0 0 0

0 0 1
4C11

1
4A11 0 0 0 0 0 0

0 0 1
4B11 0 0 0 0 0 0 0

0 0 0 0 1
4C22

1
4A11 0 0 0 0

0 0 0 0 1
4B22 0 0 0 0 0

0 0 0 0 0 0 1
4C33

1
4A22 0 0

0 0 0 0 0 0 1
4B11 0 0 0

0 0 0 0 0 0 0 0 1
4C44

1
4A22

0 0 0 0 0 0 0 0 1
4B22 0



,

D1=



C11 A11 0 0 0 0 0 0
0 0 C22 A11 0 0 0 0

−B11 0 B22 0 0 0 0 0
0 0 0 0 C33 A22 0 0

−B11 0 0 0 B11 0 0 0
0 0 0 0 0 0 C44 A22

−B11 0 0 0 0 0 B22 0


,

D2=



C11 0 −A11 0 −A11 0 −A11

B11 0 0 0 0 0 0
0 C22 A11 0 0 0 0
0 B22 0 0 0 0 0
0 0 0 C33 A22 0 0
0 0 0 B11 0 0 0
0 0 0 0 0 C44 A22

0 0 0 0 0 B22 0


Then, the following hold.
a) S1 ∩ S2 ̸= ∅ if and only if

r

[
0 H1

H2 L

]
= r (H1) + r (H2) .

b) S2 ⊆ S1 if and only if

r (M) = r

[
C

B

]
, or r (M) = r

[
C A

]
,

or r

[
0 H1

H2 L

]
= r

[
C

B

]
+ r

[
C A

]
+ 2

4∑
i=1

r (Mi) .
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c) S1 ⊆ S2 if and only if

r (D1) =
4∑

i=1

r (Mi) , or r (D2) =
4∑

i=1

r (Mi) ,

or r

[
0 H1

H2 L

]
= r (D2) + r (D1) + 2r (M) .

Proof. a) The intersection S1 ∩ S2 ̸= ∅ implies that the minimum rank of the matrix expression
X − Γ is zero, that is:

min
Γ∈S2, X∈S1

r (X − Γ) = 0. (2.4)

According to (2.1), the general expressions for the least-rank solutions of the four matrix equa-
tions in (1.3) can be written as follows:

X11 = −T1M
+
1 S1 + T11U1 + V1S11,

X22 = −T2M
+
2 S2 + T22U2 + V2S22,

X33 = −T3M
+
3 S3 + T33U3 + V3S33,

X44 = −T4M
+
4 S4 + T44U4 + V4S44.

where

M1 =

[
C11 A11

B11 0

]
, M2 =

[
C22 A11

B22 0

]
, M3 =

[
C33 A22

B11 0

]
, M4 =

[
C44 A22

B22 0

]
,

Ti =
[

0 In

]
, Si =

[
0
Ip

]
, Tii = TiFMi

, Sii = EMi
Si, for i = 1, 2, 3, 4.

We can rewrite the expression X − Γ as follows:

X − Γ = −TM+S +
T1M

+
1 S1

4
+

T2M
+
2 S2

4
+

T3M
+
3 S3

4
+

T4M
+
4 S4

4
+ T̂U + V Ŝ

− T11U1 − V1S11 − T22U2 − V2S22 − T33U3 − V3S33 − T44U4 − V4S44

= −TM+S +
T1M

+
1 S1

4
+

T2M
+
2 S2

4
+

T3M
+
3 S3

4
+

T4M
+
4 S4

4

+
[
T̂ T11 T22 T33 T44

]


U

−U1

−U2

−U3

−U4

+
[
V −V 1 −V 2 −V 3 −V 4

]


Ŝ

S11

S22

S33

S44


= G+NZ +WK, (2.5)

where

G = −TM+S +
T1M

+
1 S1

4
+

T2M
+
2 S2

4
+

T3M
+
3 S3

4
+

T4M
+
4 S4

4
,

N =
[
T̂ T11 T22 T33 T44

]
, K =


Ŝ

S11

S22

S33

S44

 ,
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and Z =
[
U∗ −U∗

1 −U∗
2 −U∗

3 −U∗
4

]∗
, W =

[
V −V1 −V2 −V3 −V4

]
are ar-

bitrary with appropriate sizes.
By applying (1.8) in Lemma (1.2) to Equation (2.5), we can deduce the following:

min
X∈S1,Γ∈S2

r (X − Γ) = min
Z,W

r (G+NZ +WK) = r

[
G N

K 0

]
− r (N)− r (K) . (2.6)

By applying Lemma (1.1) and three elementary block matrix operations, we obtain

r

[
G N

K 0

]
= r



−TM+S+
T1M

+
1 S1

4 +
T2M

+
2 S2

4 +
T3M

+
3 S3

4 +
T4M

+
4 S4

4 T̂ T11 T22 T33 T44

Ŝ 0 0 0 0 0
S11 0 0 0 0 0
S22 0 0 0 0 0
S33 0 0 0 0 0
S44 0 0 0 0 0



= r



−TM+S+
T1M

+
1 S1

4 +
T2M

+
2 S2

4

+
T3M

+
3 S3

4 +
T4M

+
4 S4

4

TFM T1FM1 T2FM2 T3FM3 T4FM4

EMS 0 0 0 0 0
EM1S1 0 0 0 0 0
EM2S2 0 0 0 0 0
EM3S3 0 0 0 0 0
EM4S4 0 0 0 0 0



= r



−TM+S+
T1M

+
1 S1

4 +
T2M

+
2 S2

4

+
T3M

+
3 S3

4 +
T4M

+
4 S4

4

T T1 T2 T3 T4 0 0 0 0 0

S 0 0 0 0 0 M 0 0 0 0
S1 0 0 0 0 0 0 M1 0 0 0
S2 0 0 0 0 0 0 0 M2 0 0
S3 0 0 0 0 0 0 0 0 M3 0
S4 0 0 0 0 0 0 0 0 0 M4

0 M 0 0 0 0 0 0 0 0 0
0 0 M1 0 0 0 0 0 0 0 0
0 0 0 M2 0 0 0 0 0 0 0
0 0 0 0 M3 0 0 0 0 0 0
0 0 0 0 0 M4 0 0 0 0 0


−2

4∑
i=1

r (Mi)−2r (M)

= r



0 T T1 T2 T3 T4 0 0 0 0 0
S 0 0 0 0 0 M 0 0 0 0
S1 0 0 0 0 0 0 M1 0 0 0
S2 0 0 0 0 0 0 0 M2 0 0
S3 0 0 0 0 0 0 0 0 M3 0
S4 0 0 0 0 0 0 0 0 0 M4

0 M 0 0 0 0 −M 0 0 0 0
0 0 M1 0 0 0 0 1

4M1 0 0 0
0 0 0 M2 0 0 0 0 1

4M2 0 0
0 0 0 0 M3 0 0 0 0 1

4M3 0
0 0 0 0 0 M4 0 0 0 0 1

4M4



−2
4∑

i=1

r (Mi)−2r (M)
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= p+ n+ r



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
C 0 −A 0 −A 0 −A 0 −A

B 0 0 0 0 0 0 0 0
0 C11 A11 0 0 0 0 0 0
0 B11 0 0 0 0 0 0 0
0 0 0 C22 A11 0 0 0 0
0 0 0 B22 0 0 0 0 0
0 0 0 0 0 C33 A22 0 0
0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 C44 A22

0 0 0 0 0 0 0 B22 0

C A 0 0 0 0 0 0 0 0
0 0 C11 A11 0 0 0 0 0 0

−B 0 B11 0 0 0 0 0 0 0
0 0 0 0 C22 A11 0 0 0 0

−B 0 0 0 B22 0 0 0 0 0
0 0 0 0 0 0 C33 A22 0 0

−B 0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 0 C44 A22

−B 0 0 0 0 0 0 0 B22 0
−C −A 0 0 0 0 0 0 0 0
−B 0 0 0 0 0 0 0 0 0

0 0 1
4C11

1
4A11 0 0 0 0 0 0

0 0 1
4B11 0 0 0 0 0 0 0

0 0 0 0 1
4C22

1
4A11 0 0 0 0

0 0 0 0 1
4B22 0 0 0 0 0

0 0 0 0 0 0 1
4C33

1
4A22 0 0

0 0 0 0 0 0 1
4B11 0 0 0

0 0 0 0 0 0 0 0 1
4C44

1
4A22

0 0 0 0 0 0 0 0 1
4B22 0


− 2

4∑
i=1

r (Mi)−2r (M)

= p+ n+ r

[
0 H1

H2 L

]
− 2

4∑
i=1

r (Mi)− 2r (M) . (2.7)
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r (K) = r


Ŝ

S11

S22

S33

S44

 = r


S M 0 0 0 0
S1 0 M1 0 0 0
S2 0 0 M2 0 0
S3 0 0 0 M3 0
S4 0 0 0 0 M4

−
4∑

i=1

r (Mi)− r (M)

= r



0 C A 0 0 0 0 0 0 0 0
Ip B 0 0 0 0 0 0 0 0 0
0 0 0 C11 A11 0 0 0 0 0 0
Ip 0 0 B11 0 0 0 0 0 0 0
0 0 0 0 0 C22 A11 0 0 0 0
Ip 0 0 0 0 B22 0 0 0 0 0
0 0 0 0 0 0 0 C33 A22 0 0
Ip 0 0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 0 0 C44 A22

Ip 0 0 0 0 0 0 0 0 B22 0



−
4∑

i=1

r (Mi)− r (M)

= p+ r



C A 0 0 0 0 0 0 0 0
0 0 C11 A11 0 0 0 0 0 0

−B 0 B11 0 0 0 0 0 0 0
0 0 0 0 C22 A11 0 0 0 0

−B 0 0 0 B22 0 0 0 0 0
0 0 0 0 0 0 C33 A22 0 0

−B 0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 0 C44 A22

−B 0 0 0 0 0 0 0 B22 0


−

4∑
i=1

r (Mi)− r (M)

= p+ r (H1)−
4∑

i=1

r (Mi)− r (M) . (2.8)

r (N) = r
[
T̂ T11 T22 T33 T44

]

= r



0 In 0 In 0 In 0 In 0 In

C A 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0
0 0 C11 A11 0 0 0 0 0 0
0 0 B11 0 0 0 0 0 0 0
0 0 0 0 C22 A11 0 0 0 0
0 0 0 0 B22 0 0 0 0 0
0 0 0 0 0 0 C33 A22 0 0
0 0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 0 C44 A22

0 0 0 0 0 0 0 0 B22 0



−
4∑

i=1

r (Mi)− r (M)
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= n+ r



C 0 −A 0 −A 0 −A 0 −A

B 0 0 0 0 0 0 0 0
0 C11 A11 0 0 0 0 0 0
0 B11 0 0 0 0 0 0 0
0 0 0 C22 A11 0 0 0 0
0 0 0 B22 0 0 0 0 0
0 0 0 0 0 C33 A22 0 0
0 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 C44 A22

0 0 0 0 0 0 0 B22 0



−
4∑

i=1

r (Mi)− r (M)

= n+ r (H2)−
4∑

i=1

r (Mi)− r (M) . (2.9)

By substituting (2.7)-(2.9) into (2.6), we obtain

min
X∈S1
Γ∈S2

r (X − Γ) = r

[
0 H1

H2 L

]
− r (H2)− r (H1) . (2.10)

By substituting (2.10) into (2.4), we obtain (a).
b) Note that S1 ⊇ S2 is equivalent to

max
Γ∈S2

min
X∈S1

r (X − Γ) = 0. (2.11)

Then, we have

min
X∈S1

r (X − Γ) = min
U,V

r
(
−TM+S − Γ + T̂U + V Ŝ

)
. (2.12)

Applying (1.8) to (2.12) yields

min
X∈S1

r (X − Γ) = r

[
−TM+S − Γ T̂

Ŝ 0

]
− r

(
T̂
)
− r

(
Ŝ
)

. (2.13)

According to (1.5) and (1.6), we have

r
(
T̂
)
= r (TFM ) = r

 0 In

C A

B 0

− r (M) = r

[
C

B

]
− r (M) + n, (2.14)

r
(
Ŝ
)
= r (EMS) =

[
0 C A

IP B 0

]
− r (M) = r

[
C A

]
− r (M) + p. (2.15)

The 2 × 2 block matrix on the right-hand side of (2.13) can be rewritten as[
−TM+S − Γ T̂

Ŝ 0

]

=

[
G+T̂U+V Ŝ − T11U1−V 1S11−T 22U2−V 2S22−T 33U3−V 3S33−T 44U4−V 4S44 T̂

Ŝ 0

]
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=

[
G T̂

Ŝ 0

]
−

[
T11 T22 T33 T44

0 0 0 0

]
U1

U2

U3

U4

[
Ip 0

]

−

[
In

0

] [
V1 V2 V3 V4

]
S11 0
S22 0
S33 0
S44 0

 . (2.16)

In addition, we have

r

[
In T11 T22 T33 T44

0 0 0 0 0

]
= r

[
In

0

]
,

r


Ip 0
S11 0
S22 0
S33 0
S44 0

 =
[
Ip 0

]
.

Thus, R

[
T11 T22 T33 T44

0 0 0 0

]
⊆ R

[
In

0

]
and R

[
S∗

11 S∗
22 S∗

33 S∗
44

0 0 0 0

]
⊆ R

[
Ip

0

]
.

Hence, by applying (1.9) to (2.16), we obtain

max
Γ∈S2

r

[
−TM+S − Γ T̂

Ŝ 0

]

= min


r

[
G T̂ In

Ŝ 0 0

]
, r

 G T̂

Ŝ 0
Ip 0

 , r



G T̂ T11 T22 T33 T44

Ŝ 0 0 0 0 0
S11 0 0 0 0 0
S22 0 0 0 0 0
S33 0 0 0 0 0
S44 0 0 0 0 0




= min

{
n+ r

(
Ŝ
)

, p+ r
(
T̂
)

, r

[
G N

K 0

]}
. (2.17)

Combining (2.17) and (2.13) yields

max
Γ∈S2

min
X∈S1

r (X − Γ)

= min

{
n− r

(
T̂
)

, p− r
(
Ŝ
)

, r

[
G N

K 0

]
− r

(
T̂
)
− r

(
Ŝ
)}

= min


r (M)− r

[
C

B

]
, r (M)− r

[
C A

]
,

r

[
0 H1

H2 L

]
− r

[
C

B

]
− r

[
C A

]
− 2

4∑
i=1

r (Mi)

 . (2.18)

By substituting (2.18) into (2.11), we obtain (b).
(c) The inclusion S1 ⊆ S2 is equivalent to

max
X∈S1

min
Γ∈S2

r (X − Γ) = 0. (2.19)
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Applying (1.8) to the matrix expression X − Γ yields

min
Γ∈S2

r (X − Γ)

= min
Γ∈S2



(
X+

T1M
+
1 S1

4 +
T2M

+
2 S2

4 +
T3M

+
3 S3

4 +
T4M

+
4 S4

4

)
−

[
T11 T22 T33 T44

]
U1

U2

U3

U4

−
[
V1 V2 V3 V4

]
S11

S22

S33

S44





= r


X+

T1M
+
1 S1

4 +
T2M

+
2 S2

4 +
T3M

+
3 S3

4 +
T4M

+
4 S4

4 T11 T22 T33 T44

S11 0 0 0 0
S22 0 0 0 0
S33 0 0 0 0
S44 0 0 0 0



− r
[
T11 T22 T33 T44

]
− r


S11

S22

S33

S44

 . (2.20)

The 5 × 5 block matrix in (2.20) can be rewritten as
X+

T1M
+
1 S1

4 +
T2M

+
2 S2

4 +
T3M

+
3 S3

4 +
T4M

+
4 S4

4 T11 T22 T33 T44

S11 0 0 0 0
S22 0 0 0 0
S33 0 0 0 0
S44 0 0 0 0



=


G T11 T22 T33 T44

S11 0 0 0 0
S22 0 0 0 0
S33 0 0 0 0
S44 0 0 0 0

+


T̂

0
0
0
0

U
[
Ip 0 0 0 0

]

+


In

0
0
0
0

V
[
Ŝ 0 0 0 0

]
. (2.21)

Applying (1.9) to (2.21) yields

max
X∈S1

r


X+

T1M
+
1 S1

4 +
T2M

+
2 S2

4 +
T3M

+
3 S3

4 +
T4M

+
4 S4

4 T11 T22 T33 T44

S11 0 0 0 0
S22 0 0 0 0
S33 0 0 0 0
S44 0 0 0 0
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= min



r


G T11 T22 T33 T44 In

S11 0 0 0 0 0
S22 0 0 0 0 0
S33 0 0 0 0 0
S44 0 0 0 0 0

 , r



G T11 T22 T33 T44

S11 0 0 0 0
S22 0 0 0 0
S33 0 0 0 0
S44 0 0 0 0
Ip 0 0 0 0


,

r



G T11 T22 T33 T44 T̂

S11 0 0 0 0 0
S22 0 0 0 0 0
S33 0 0 0 0 0
S44 0 0 0 0 0
Ŝ 0 0 0 0 0





= min

n+ r


S11

S22

S33

S44

 , p+ r
[
T11 T22 T33 T44

]
, r

[
G N

K 0

] . (2.22)

Furthermore, we have

r


S11

S22

S33

S44

 = r


S1 M1 0 0 0
S2 0 M2 0 0
S3 0 0 M3 0
S4 0 0 0 M4

−
4∑

i=1

r (Mi)

= r



0 C11 A11 0 0 0 0 0 0
Ip B11 0 0 0 0 0 0 0
0 0 0 C22 A11 0 0 0 0
Ip 0 0 B22 0 0 0 0 0
0 0 0 0 0 C33 A22 0 0
Ip 0 0 0 0 B11 0 0 0
0 0 0 0 0 0 0 C44 A22

Ip 0 0 0 0 0 0 B22 0


−

4∑
i=1

r (Mi)

= p+ r



C11 A11 0 0 0 0 0 0
0 0 C22 A11 0 0 0 0

−B11 0 B22 0 0 0 0 0
0 0 0 0 C33 A22 0 0

−B11 0 0 0 B11 0 0 0
0 0 0 0 0 0 C44 A22

−B11 0 0 0 0 0 B22 0


−

4∑
i=1

r (Mi)

= p+ r (D1)−
4∑

i=1

r (Mi) , (2.23)
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r
[
T11 T22 T33 T44

]

= r


T1 T2 T3 T4

M1 0 0 0
0 M2 0 0
0 0 M3 0
0 0 0 M4

−
4∑

i=1

r (Mi)

= r



0 In 0 In 0 In 0 In

C11 A11 0 0 0 0 0 0
B11 0 0 0 0 0 0 0
0 0 C22 A11 0 0 0 0
0 0 B22 0 0 0 0 0
0 0 0 0 C33 A22 0 0
0 0 0 0 B11 0 0 0
0 0 0 0 0 0 C44 A22

0 0 0 0 0 0 B22 0


−

4∑
i=1

r (Mi)

= n+ r



C11 0 −A11 0 −A11 0 −A11

B11 0 0 0 0 0 0
0 C22 A11 0 0 0 0
0 B22 0 0 0 0 0
0 0 0 C33 A22 0 0
0 0 0 B11 0 0 0
0 0 0 0 0 C44 A22

0 0 0 0 0 B22 0


−

4∑
i=1

r (Mi)

= n+ r (D2)−
4∑

i=1

r (Mi) . (2.24)

Substituting (2.23) and (2.24) into (2.20) and combining (2.22) and (2.20) yields

max
X∈S1

min
Γ∈S2

r (X − Γ)

= min

{
4∑

i=1

r (Mi)− r (D2) ,
4∑

i=1

r (Mi)− r (D1) , r

[
0 H1

H2 L

]
− r (D2)− r (D1)− 2r (M)

}
.

(2.25)

Finally, by substituting (2.25) into (2.19), we obtain the desired results in (c).

3 Conclusion

In the previous section we studied a problem relating to the relations between the original matrix
equation in (1.1) and its four smaller equations in (1.3), by using various well-known formulas
concerning rank and Moore-penrose inverses. These results give some profound investigations
into the properties of the least-rank solutions of Equation (1.1).
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