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Abstract: In the present paper, we introduce a method of q-analogue ofAr-matrix of order r.
Using this method, we obtain topological properties and some inclusion relations. Additionally,
the alpha dual the beta dual and the gamma dual of the newly defined sequence spaces are
calculated and their basis have been determined. Finally, the necessary and sufficient conditions
on an infinite matrix from newly defined sequence spaces to any of the spaces c, c0, ℓ∞ and ℓp
have been examined.

1 Introduction

Let s represents the space of all complex valued sequences. The well-known classical sequence
spaces are the set of all bounded sequences ℓ∞, the null sequences c0, the convergent sequences
c and the p-absolutely summable sequences ℓp, where 1 ≤ p < ∞. We also indicate the spaces
of all convergent and bounded series by cs and bs respectively. A Banach sequence space with
continuous co-ordinates is a BK-space. For instance, the space ℓp is a BK-space furnished by
the norm ∥u∥ℓp = (

∑
k |uk|

p)1/p. We assume throughout that for 1 ≤ p <∞ and p′ is conjugate
number of p such that p−1 + p′−1 = 1.
For any sequence space µ and infinite matrix A, the matrix domain of A is defined as

µA = {u ∈ s : Au ∈ µ}. (1.1)

Throughout the text, N is the set of natural numbers including zero.
If a normed linear space U contains a sequence (bm), then for every u ∈ U there is a unique
sequence of scalars (αm) such that

∥u− (α1b1 + α2b2 + · · ·+ αmbm)∥ → 0 as m→ ∞,

then (bm) is known as the Schauder basis for U . The series
∑∞

m=0 αmbm has the sum u known
as the expansion of u about the basis (bm), and we write u =

∑∞
m=0 αmbm, (see, [8]).

Let U and V be any two sequence spaces. Then, the multiplier space M(U ,V) is given as

M(U ,V) = {(am) ∈ s : av = (amvm) ∈ V, for every v ∈ U} .

Thus, the α-dual, the β-dual and the γ-dual of U are denoted as

Uα = M(U , ℓ1), Uβ = M(U , cs), Uγ = M(U , bs).

An infinite matrix can be observed as the linear operator from a sequence space into another
sequence space. For this, let U and V be any arbitrary subsets of s. Let A = (amk) is an infinite
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matrix with complex entries (amk). By A(u) = (Am(u)) = (Au)m, we write the A−transforms
of a sequence u = (uk), if the series Am(u) =

∑
k amkuk is convergent for m ≥ 0.

If Au ∈ V with u ∈ U , then A defines a matrix mapping from U into V . Further, (U ,V)
indicates the family of all infinite matrices that maps U into V . Thus, A is in (U ,V) if and only
if Au = ((Au)m) ∈ V , ∀ u ∈ U , that is, A ∈ (U ,V) if and only if Am ∈ Uβ , ∀ m (see, [20]).
In the literature, several authors have constructed the sequence spaces via the domain of some
special matrices. One may refer to ([1], [2], [5], [11], [14], [16], [18]) and references therein.

2 q-sequence spaces

The purpose of this paper is primarily focuses on the q-analogue of Ar matrices and to acquire
the new results akin to the q-analogue. Let us embark with q-integer definition, following [12].

Definition 2.1. A q-integer is defined as

[m]q =

{
1−qm

1−q , q ∈ R+ \ {1}
m, q = 1

This is known as the q-analogue of m. It is trivial that if q → 1−, then [m]q → m. We indicate
[m]q briefly by [m].

Given q > 0, define Nq = {[m] : m ∈ N}. Then it can be seen from [m]q that

Nq =
{

0, 1, 1 + q, 1 + q + q2, 1 + q + q2 + q3, · · ·
}
. (2.1)

It is clear that when we put q = 1 in (2.1), then Nq reduces to be the set of natural numbers and
the set of all non-negative integers N.

Definition 2.2. For any integer m and n with m ≥ n ≥ 0, the q-binomial coefficient is defined
as [

m

n

]
=

{
m!

[m−n]![n]! , 0 ≤ n ≤ m

0, otherwise

where q-factorial of [m]! of m is defined as

[m]! =

{∏m
k=1[k], m = 1, 2, 3, · · ·

1, m = 0

Proposition 2.3. There are two types of Pascal rules namely[
m

j

]
=

[
m− 1
j − 1

]
+ qj

[
m− 1
j

]

and [
m

j

]
= qm−j

[
m− 1
j − 1

]
+

[
m− 1
j

]

where, 1 ≤ j ≤ n− 1.

It is found that studies including q-integers and its applications have become an functioning
research areas. Several authors published many research papers on the q-analogs and the exist-
ing theories, following ([7], [9], [15], [17]). The q-analogue of Cesàro sequence spaces were
defined and studied by Demiriz and Şahin [6] and Yaying et al. [21] . There are several ways to
define the Cesàro matrices via q-analogs. However, the following Theorem provides a suitable
q-analogs of the Cesàro matrices of order one.
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Theorem 2.4. [3] C1(qk) = (c1
mk(q

k)) such that

c1
mk(q

k) =

{
qk

[m+1]q
, 0 ≤ k ≤ m

0, k > m

for all m, k ∈ N.

In [4], Başar introduced the new class Ar = (armk) of Toeplitz matrices given as

armk =

{
1+rk

m+1 , 0 ≤ k ≤ m

0, k > m

for all m, k ∈ N. It is known that the matrices Ar is regular for 0 < r < 1 and is stronger than
the Cesàro matrices of order one. In the rest of the paper, our main target is on the Ar-matrices
by means of q-analogs which has explicitly the following form

Ar(qk) =



[2]q 0 0 0 · · · 0
[2]q
[2]q

[1+r]qq
[2]q

0 0 · · · 0
[2]q
[3]q

[1+r]qq
[3]q

[1+r2]qq
2

[3]q
0 · · · 0

...
...

...
...

...
[2]q

[m+1]q
[1+r]qq
[m+1]q

[1+r2]qq
2

[m+1]q
· · · [1+rm]qq

m

[m+1]q
0

...
...

...
...

...



3 The q-sequence spaces [ar
p], [a

r
0 ], [a

r
c] and [ar

∞]

This section involves the introduction and completeness of Ar(qk) space via q-analogue. Addi-
tionally, we also give linearly isomorphism, inclusion relations and construct the Schauder basis
for the newly identified spaces. Let us now define the sequence spaces [arp], [ar0], [a

r
c] and [ar∞] as

the set of all sequences such that Ar(qk)-transforms of them are in the spaces arp, ar0, a
r
c and ar∞

respectively, i. e,

[arp] =

{
u = (uk) ∈ s :

∑
m

∣∣∣∣∣ 1
[m+ 1]q

m∑
k=0

[1 + rk]qq
kuk

∣∣∣∣∣
p

<∞

}
, (0 < p <∞)

[ar0] =

{
u = (uk) ∈ s : lim

m→∞

1
[m+ 1]q

m∑
k=0

[1 + rk]qq
kuk = 0

}
,

[arc] =

{
u = (uk) ∈ s : lim

m→∞

1
[m+ 1]q

m∑
k=0

[1 + rk]qq
kuk exists

}
,

[ar∞] =

{
u = (uk) ∈ s : sup

m∈N

∣∣∣∣∣ 1
[m+ 1]q

m∑
k=0

[1 + rk]qq
kuk

∣∣∣∣∣ <∞

}
,

where Ar(qk) is the method of q-sequence space of Ar-matrix of order r. Let us redefine the se-
quence spaces with definition of matrix domain (1.1) by [arp] = {arp}Ar(qk), [a

r
0] = {ar0}Ar(qk), [a

r
c] =

{arc}Ar(qk) and [ar∞] = {ar∞}Ar(qk).
If U is any normed sequence space, then we say that the matrix domain {U}Ar(qk) as the q-
analogs of Ar sequence space. Let us define the sequence v = (vk) by the Ar(qk) transform of
a sequence u = (uk), i.e.,

vqk =
1

[k + 1]q

k∑
i=0

[1 + ri]qui (k ∈ N). (3.1)

Now we may have the following result:
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Theorem 3.1. The sets [arp], [a
r
0], [a

r
c] and [ar∞] are linear spaces with the coordinate wise ad-

dition and scalar multiplication which are BK-spaces with the norm ∥u∥[ar
p]

= ∥Aru∥p and
∥u∥[ar

0 ]
= ∥u∥[ar

c ]
= ∥u∥[ar

∞].

Proof. The proof of the first part is trivial. Since arp, ar0, a
r
c and ar∞ are BK-spaces accompanied

by natural norm, and armm(qk) ̸= 0 and armm(qk) = 0, k > m,∀ k,m ∈ N. Therefore by
Wilansky ([20], Theorem 4.3.2) it gives us to the fact that the spaces [arp], [ar0], [a

r
c] and [ar∞] are

BK-spaces.

As a consequence the absolute property does not hold on the spaces [arp], [ar0], [a
r
c] and [ar∞],

they are the spaces of the non-absolute type.

Theorem 3.2. The spaces [arp], [ar0], [a
r
c] and [ar∞] are linearly isomorphic to the spaces ℓp, c0, c

and ℓ∞.

Proof. Since the transformation ψ defined by the condition (3.1) from [arp] to ℓp by u → v =
ψu = Aru is a linear bijection and norm preserving. Therefore it shows the spaces [arp], [ar0], [a

r
c] and [ar∞]

are linearly isomorphic, as desired.

Now, we may give the following results on the inclusion relations involving the spaces [arp], [ar0], [a
r
c]

and [ar∞].

Theorem 3.3. The inclusions c0 ⊂ [ar0] and c ⊂ [arc] strictly hold for every q ∈ R+.

Proof. We consider the case c0 ⊂ [ar0], let us take v ∈ c0. Since Ar(qk) is regular, we immedi-
ately see that Ar(qk)v ∈ c0 which shows that v ∈ [ar0]. Hence c0 ⊂ [ar0] hold. Now, consider the
sequence u = {uk(q)} defined as

uk(q) =

{ 3√
k

q[1+rk]q
, k = n3, n ∈ N

0, k ̸= n3 ∈ N

for each q ∈ R+. Then we have

{Ar(qk)u}m =
1

[m+ 1]q

m∑
k=0

[1 + rk]qq
kuk(q)

=
1

[m+ 1]q

n∑
k=0

qk(k)
1
q
=

n(n+ 1)
2[m+ 1]q

qn−1, (n3 ≤ m < (n+ 1)3, n ∈ N),

which shows Ar(qk)u→ 0, as m→ ∞ and so Ar(qk)u ∈ c0 which implies that u ∈ [ar0] but not
in c0.
The inclusion c ⊂ [arc] can be proved in the similar lines.

We now state the following Lemma which is required in proving the inclusion relation involv-
ing the space [arp].

Lemma 3.4. [10] Let (am) is a sequence of non-negative term, and Am = a0 + a1 + · · · +
am, ∀m ∈ N. Then the following inequality

∑
m

(
Am

m+ 1

)p

<

(
p

p− 1

)∑
m

apm

holds, for p > 1.

Theorem 3.5. The inclusions ℓp ⊂ [arp] strictly holds for 1 ≤ p <∞.
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Proof. In order to prove the validity of the inclusion ℓp ⊂ [arp] for 1 ≤ p < ∞, it is sufficient to
show the existence of a number M > 0 with ∥u∥[ar

p]
≤M ∥u∥p for all u ∈ ℓp. For this, let u ∈ ℓp

for 1 < p <∞. Then considering the inequality and using Lemma 3.4∣∣∣∣∣ 1
[k + 1]q

k∑
i=0

[1 + ri]qq
iui

∣∣∣∣∣
p

≤

(
2

k∑
i=0

qi |ui|
[k + 1]q

)p

∑
k

∣∣∣∣∣ 1
[k + 1]q

k∑
i=0

[1 + ri]qq
iui

∣∣∣∣∣
p

≤
(

2p
p− 1

)p∑
k

qi |ui|p

which gives the fact that ∥u∥[ar
p]
≤ 2p ∥u∥p, and so ∥u∥[ar

p]
≤ M ∥u∥p for M = 2p for 1 < p <

∞. Therefore, the inclusion ℓp ⊂ [arp] holds.

Now, let us define the sequence uk(q) =
(−1)k

[1+rk]qq
for every k ∈ N. Then

∑
m

∣∣∣∣∣
m∑
k=0

[1 + rk]q
[m+ 1]q

qkuk

∣∣∣∣∣
p

=
∑
m

∣∣∣∣∣
m∑
k=0

qk(−1)k

q[m+ 1]q

∣∣∣∣∣
p

=
∑
m

∣∣∣∣1 − (−1)m+1

2[m+ 1]q

∣∣∣∣p <∞

which yields us that u ∈ [arp] but not in ℓp. That is to say u is in [arp] \ ℓp, thus the inclusion
ℓp ⊂ [arp] is strict.
Similarly, it is easy to prove the inclusion relation ℓ1 ⊂ [ar1] is also strict.

Theorem 3.6. If 1 ≤ p < t, then [arp] ⊂ [art ].

Proof. Suppose u ∈ [arp] and 1 ≤ p < t. Using the relation (3.1) and since [arp]
∼= ℓp yields the

fact that v ∈ ℓp. Also ℓp ⊂ ℓt implies that v ∈ ℓt. This gives that u ∈ [art ] and thus [arp] ⊂ [art ]
holds.

Theorem 3.7. The inclusions ℓ∞ ⊂ [ar∞] and [arp] ⊂ [ar∞] are strictly hold.

Proof. Let u ∈ ℓp. Then

∥u∥[ar
∞] = sup

m∈N

∣∣∣∣∣
m∑
k=0

[1 + rk]q
[m+ 1]q

qkuk

∣∣∣∣∣
≤ ∥qu∥∞

(
sup
m∈N

∑
k

[1 + rk]q
[m+ 1]q

)

= ∥qu∥∞

{
sup
m∈N

[
1 +

[1 − rm+1]q
[m+ 1]q[1 − r]q

]}
≤ 2 ∥qu∥∞

which gives us that u ∈ [ar∞] and thus ℓ∞ ⊂ [ar∞].
Further, let us define the sequence u = uk(q)

uk(q) = (−1)k
2k + 1

[1 + rk]qq
, (k ∈ N)

is in [ar∞], but not in ℓ∞. Therefore, the space [ar∞] strictly includes the space ℓ∞.
Next, let u is in [arp] for 1 ≤ p < ∞. Then clearly v = [Aru] ∈ ℓp ⊂ ℓ∞ which gives us the
fact that u is in [ar∞]. Hence [arp] ⊂ [ar∞] holds. Also, take the sequence u = e = (1, 1, 1, ....)
belongs to the set [ar∞] \ [arp], then [arp] ⊂ [ar∞] also strictly holds.

As a consequence of isomorphism ψ in Theorem 3.2 is onto and inverse image of the basis of
those spaces, ℓp, c0 and c, are the basis of new spaces [arp], [ar0], [a

r
c], respectively.
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Theorem 3.8. Define the sequence b(k)(q) = {b(k)m (q)}m∈N of the space [ar0] given as

b(k)m (q) =

{
(−1)m−k [m+1]q

qk[1+rk]q
, k ≤ m ≤ k + 1

0, k > m or m > k + 1
(3.2)

for every fixed k ∈ N.
(i) The sequence {b(k)(q)}k∈N be a basis for [arp] and [ar0] and any u ∈ [arp] or [ar0] is uniquely
expressed as u =

∑
k γk(q)b

(k)(q), where γk(q) = {Ar(qk)u}k, ∀k ∈ N.
(ii) The set {t, b(k)(q)}k∈N be a basis for the space [arc] and any u ∈ [arc] is uniquely expressed
as u = ℓt+

∑
k [γk(q)− ℓ] b(k)(q), where t = 1

qk[1+rk]q
and ℓ = limk→∞{Ar(qk)u}k.

4 Duals of the q-spaces [ar
p], [a

r
0 ], [a

r
c] and [ar

∞]

In the current segment, we deal with portrayal of the α-dual, the β-dual and the γ-dual of the
spaces [arp], [ar0], [a

r
c] and [ar∞] of non-absolute type. Firstly, let us state the following Lemmas.

Lemma 4.1. [19] A = (amk) ∈ (c0 : ℓ1) = (c : ℓ1) if and only if

sup
K,N∈G

∣∣∣∣∣∑
n∈N

∑
k∈K

amk

∣∣∣∣∣ <∞,

where G indicates the family of all finite subsets of N.

Lemma 4.2. [19] A = (amk) ∈ (c : c) if and only if ∃ αk, α ∈ C such that

lim
m→∞

amk = αk for each k ∈ N, (4.1)

sup
m∈N

∑
k

|amk| <∞, (4.2)

lim
m→∞

∑
k

amk = α. (4.3)

Lemma 4.3. [13] Let X be a sequence space . Then
(i) X is monotone if and only, if t0X ⊂ X , where t0 is the span of the set of all sequences of
zeroes and ones, and t0X = {au = (akuk) : a ∈ t0, u ∈ X}.
(ii) X is perfect ⇒ X is normal ⇒ X is monotone.
(iii) X is normal ⇒ Xα = xγ .
(iv) X is monotone ⇒ Xα = xβ .

Theorem 4.4. Define the following sets

ϕr1(q) =

{
a = ak ∈ s : sup

k∈N

∣∣∣∣ [k + 1]q
qk[1 + rk]q

ak

∣∣∣∣ <∞
}
,

ϕr2(q) =

{
a = ak ∈ s :

∑
k

∣∣∣∣ [k + 1]q
qk[1 + rk]q

ak

∣∣∣∣ <∞

}
,

ϕr3(q) =

{
a = ak ∈ s : sup

K∈G

∑
m

∣∣∣∣∣∑
k∈K

(−1)m−k [k + 1]q
qm[1 + rm]q

am

∣∣∣∣∣ <∞

}
.

Then
(i) {[ar0]}α = {[arc]}α = ϕr3(q).
(ii) {[arp]}α = ϕr1(q) for 0 < p ≤ 1.
(iii) {[arp]}α = ϕr2(q) for 1 < p <∞.
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Proof. Let a = (am) ∈ s and define the matrix C = (crmk) via the sequence a = (am) as

crmk =

{
(−1)m−k [k+1]q

qm[1+rm]q
am, m− k ≤ k ≤ m

0, 0 ≤ k < m− 1 or k > m

for every m, k ∈ N. Thus the relation (3.1) bearing in mind, let us immediately see that

amum =
m∑

k=m−1

(−1)m−k [k + 1]q
qm[1 + rm]q

amvk = (Cv)m (4.4)

for every m ∈ N. Therefore, we see by (4.4) that au = (amum) ∈ ℓ1 whenever u ∈ [ar0] or [arc]
if and only if Cv ∈ ℓ1 whenever v ∈ c0 or c. Then using Lemma 4.1, we observe that

sup
K∈G

∑
m

∣∣∣∣∣∑
k∈K

(−1)m−k [k + 1]q
qm[1 + rm]q

am

∣∣∣∣∣ <∞

which implies the fact that {[ar0]}α = {[arc]}α = ϕr3(q).
By similar fashion, Part (ii) and Part (iii) can be proved.

Theorem 4.5. Define the sets ϕr4(q), ϕ
r
5(q), ϕ

r
6(q) and ϕr7(q) as follows

ϕr4(q) =

{
a = ak ∈ s :

∑
k

∣∣∣∣∆( ak
qk[1 + rk]q

)
[k + 1]q

∣∣∣∣p′

<∞

}
,

ϕr5(q) =

{
a = ak ∈ s :

∑
k

∣∣∣∣∆( ak
qk[1 + rk]q

)
[k + 1]q

∣∣∣∣ <∞

}
,

ϕr6(q) =

{
a = ak ∈ s :

(
ak

[1 + rk]q

)
∈ cs

}
,

ϕr7(q) =

{
a = ak ∈ s :

(
[k + 1]q
[1 + rk]q

ak

)
∈ ℓ∞

}
,

where

∆

(
ak

qk[1 + rk]

)
=

(
ak

qk[1 + rk]
− ak+1

qk+1[1 + rk+1]

)
for all k ∈ N.

Then
(i) {[ar0]}β = ϕr5(q) ∩ ϕr7(q).
(ii) {[arc]}β = ϕr5(q) ∩ ϕr6(q).
(iii) {[arp]}β = ϕr1(q) for 0 < p ≤ 1.
(iv) {[arp]}β = ϕr1(q) ∩ ϕr4(q) for 1 < p <∞.

Proof. Let us consider the case for the space [arc], the other parts can be obtained in the similar
way.
Let u ∈ [arc] and a ∈ s. Then, consider the equality

m∑
k=0

akuk =
m∑
k=0

[
[k + 1]q
[1 + rk]q

vk − [k]q
[1 + rk]q

vk−1

]
ak
qk

(4.5)

m∑
k=0

akuk =
m−1∑
k=0

∆

(
ak

qk[1 + rk]q

)
[k + 1]qvk +

[m+ 1]q
[1 + rm]q

amvm

= (Dv)m

for all m ∈ N, where D = (drmk) is defined as

drmk =


∆

(
ak

qk[1+rk]q

)
[k + 1]q, 0 ≤ k ≤ m− 1

[m+1]q
[1+rm]q

am, k = m

0, k > m
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for every m, k ∈ N. Thus by Lemma 4.2 and from (4.5), we deduce that au = (akuk) ∈ cs
whenever u = (uk) ∈ [arc] if and only if Dv ∈ c whenever v = (vk) ∈ c. Evidently, the columns
of the matrix D are in the sequence space c. Therefore, as a consequence we derive from (4.2)
and (4.3) that ∑

k

∣∣∣∣∆( ak
qk[1 + rk]q

)
[k + 1]q

∣∣∣∣ <∞ (4.6)

(
[k + 1]q
[1 + rk]q

ak

)
∈ ℓ∞ (4.7)

(
ak

[1 + rk]q

)
∈ cs (4.8)

respectively. However, the equation (4.7) is redundant, and thus by combining equations (4.6)
and (4.8) we obtained that {[ar0]}β = ϕr5(q) ∩ ϕr7(q).

Theorem 4.6. The γ-dual of the spaces [arp], [ar0], [a
r
c] are as follows

(i) {[ar0]}γ = {[arc]}γ = ϕr5(q) ∩ ϕr6(q).
(ii) {[arp]}γ = ϕr1(q) for 0 < p ≤ 1.
(iii) {[arp]}γ = ϕr1(q) ∩ ϕr4(q) for 1 < p <∞.

Proof. The proof is in similar lines as the proof of the Theorem 4.5, we leave out the details for
the reader.

By combining Theorem 4.4 and Theorem 4.5 with Lemma 4.3, we derive the following Corol-
lary.

Corollary 4.7. The set [arp] is not monotone, and hence it is neither perfect nor normal.

5 Matrix mappings on the q-spaces [ar
p] and [ar

c]

In this segment, we now desire to characterize some matrix mappings related to q-analogue from
the spaces [arp] and [arc], into some of the known sequence spaces. Here in what follows, we shall
write for brevity that

ãmk = ∆

(
amk

qk[1 + rk]

)
[k + 1]q =

(
amk

qk[1 + rk]
− am,k+1

qk+1[1 + rk+1]

)
[k + 1]q

and

a(m, k) =
m∑
i=0

aik ∀ m, k ∈ N.

Let us now state the following Lemmas due to Wilansky [20].

Lemma 5.1. The matrix mappings between the BK-spaces are continuous.

Lemma 5.2. A = (amk) ∈ (c : ℓp) if and only if

sup
F∈G

∑
m

∣∣∣∣∣∑
k∈F

amk

∣∣∣∣∣
p

<∞, for 1 ≤ p <∞. (5.1)

Theorem 5.3. Let 1 < p <∞. Then, A ∈ ([arp] : ℓ∞) if and only if

sup
k∈N

∣∣∣∣ [k + 1]q
[1 + rk]q

amk

∣∣∣∣ <∞ for each m ∈ N, (5.2)

sup
m∈N

|ãmk|p
′
<∞. (5.3)
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Proof. Suppose the conditions (5.2) and (5.3) hold and let us take any u ∈ [arp]. Then {amk}k∈N ∈
{[arp]}β for every fixed m ∈ N, and this shows the existence of Au.
Now, consider the following equality obtained from the nth partial sum of the series

∑
k amkuk.

n∑
k=0

amkuk =
n−1∑
k=0

ãmkvk +
[n+ 1]q
[1 + rn]q

amnvn, ∀m,n ∈ N. (5.4)

Therefore as n→ ∞, we derive from (5.4) with (5.2) that∑
k

amkuk =
∑
k

ãmkvk, ∀m ∈ N. (5.5)

Thus by taking supremum over m ∈ N in (5.5), we get by using the Hölder’s inequality with
(5.3) that

sup
m∈N

∥Au∥ ≤ ∥v∥p

 sup
m∈N

(∑
k

|ãmk|p
′

)1/p′ <∞,

which provides the sufficiency of (5.2) and (5.3).
Conversely, suppose that A ∈ ([arp] : ℓ∞). Then by hypothesis (amk) ∈ {[arp]}β for all m ∈ N
and necessity of (5.2) is trivial and (5.5) holds. Let us consider the continuous function gm
defined on [arp] by the sequence (am) as gm(u) =

∑
k amkuk ∀ m ∈ N. Since [arp]

∼= ℓp, it
follows that ∥gn∥ = ∥ãm∥p′ , with (5.5). This implies that the functional defined by rows of A
in [arp] are pointwise bounded. Hence by uniform boundedness principle, they are uniformly
bounded which implies that there exists a constant K such that ∥gm∥ ≤ K for every m ∈ N.

Then, it follows that
(∑

k |ãmk|p
′)1/p′

= ∥gm∥ ≤ K hold for all m ∈ N, which gives the
necessity of (5.3).

Theorem 5.4. Let 1 < p <∞. Then A ∈ ([arp] : c) if and only if (5.2) and (5.3) hold and

lim
m→∞

ãmk = βk for each k ∈ N. (5.6)

Proof. Suppose the condition (5.2), (5.3) and (5.6) hold, and let us take any u ∈ [arp]. Then Au
exists and by condition (5.6), we have that limm→∞ |ãmk|p

′
= |βk|p

′
for each k ∈ N, which

gives us the fact that with (5.3)

k∑
i=0

|βk|p
′
≤ sup

m∈N

∑
i

|ãmi|p
′
= K <∞

holds for every k ∈ N. This implies that (βk) ∈ ℓp. Since by hypothesis (uk) ∈ [arp] and [arp]
∼= ℓp

leads us the fact that (vk) ∈ ℓp. Thus we obtain by using Hölder inequality that (βkvk) ∈ ℓ1 for
each (vk) ∈ ℓp. Given any ϵ > 0, choose a fixed k0 ∈ N with

 ∞∑
k=k0+1

|vk|p
1/p

<
ϵ

4K1/p′

Then there is some m0 with (5.6) such that∣∣∣∣∣
m0∑
k=0

(ãmk − βk)vk

∣∣∣∣∣ < ϵ/2
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for every m ≥ m0. Thus∣∣∣∣∣∑
k

ãmkuk −
∑
k

βkvk

∣∣∣∣∣ =
∣∣∣∣∣∑

k

(ãmk − βk)vk

∣∣∣∣∣
≤

∣∣∣∣∣
k0∑
k=0

(ãmk − βk)vk

∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
k=k0+1

(ãmk − βk)vk

∣∣∣∣∣∣
< ϵ/2 +

 ∞∑
k=k0+1

(|ãmk|+ |βk|)p
′

1/p′  ∞∑
k=k0+1

|vk|p
1/p

< ϵ/2 + 2K1/p′ ϵ

4K1/p′ = ϵ

for all sufficiently large m. Therefore, Au ∈ c.
Conversely, suppose that A ∈ ([arp] : c). Since c ⊂ ℓ∞, the necessity of (5.2) and (5.3) are
immediately yield from Theorem 5.3. To prove the necessity of (5.6), take the sequence b(k)(q)
given in (3.2) which is in [arp], for every k ∈ N. Since Au exists and is in c, for every u ∈ [arp], it
is evident that Ab(k)(q) = (ãmk) ∈ c, for all k ∈ N which shows the necessity of (5.6).

If the space c is replaced by the sequence space c0 in Theorem 5.4, then we have the following
Corollary.

Corollary 5.5. Let 1 < p <∞. Then A ∈ ([arp] : c0) if and only if (5.2) and (5.3) hold, and (5.6)
also holds with βk = 0, ∀ k ∈ N.

Theorem 5.6. A ∈ ([arc] : ℓp) if and only if
(i) For 1 ≤ p <∞,

sup
F∈G

∑
m

∣∣∣∣∣∑
k∈F

ãmk

∣∣∣∣∣
p

<∞ (5.7)

∑
k

|ãmk| <∞ for all m ∈ N (5.8)

(
amk

[1 + rk]q

)
k∈N

∈ cs for all m ∈ N. (5.9)

(ii) For p = ∞, (5.9) holds and
sup
m∈N

∑
k

|ãmk| <∞. (5.10)

Proof. First, suppose that (5.7), (5.8) and (5.9) hold, and let us take any sequence (uk) ∈ [arc].
Then (amk) ∈ {[arc]}β for every m ∈ N and this implies the existence of Au. Let us now define
the matrix T = (tmk) with tmk = ãmk, for every m, k ∈ N. Then since (5.1) is satisfied for the
matrix T ∈ (c : ℓp). Reconsider the equality (5.4), obtained from the nth-partial sum of series∑

k amkuk. Following the same procedure as in the proof of Theorem 4.5, one can easily obtain
by combining the (5.8) and (5.9) such that{

[n+ 1]q
[1 + rn]q

amn

}
n∈N

∈ c0

for every m ∈ N. Therefore, keeping in mind the fact that as n → ∞ in (5.4), the second term
on right side approaches to zero and we again get the condition (5.5), which obtain by taking
p-norm such that ∥Au∥p = ∥Tv∥p <∞. This shows A ∈ ([arc] : ℓp).
Conversely, suppose that A ∈ ([arc] : ℓp). Then since [arc] and ℓp are BK-spaces, so by Lemma
5.2, ∃ some real constant M > 0 that

∥Au∥ℓp ≤M ∥u∥[ar
c ]

for all u ∈ [arc]. (5.11)
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In addition, condition (5.11) is satisfied for u = (uk) =
∑

k∈F b
(k)(q) belonging to [arc], where

b(k)(q) = {b(k)m (q) is given in (3.2). Thus we have for any F ∈ G

∥Au∥p =

(∑
m

∣∣∣∣∣∑
k∈F

ãmk

∣∣∣∣∣
p)1/p

≤M ∥u∥[ar
c ]

which gives the necessity of (5.7). Furthermore, A is applicable to space [arc] by hypothesis, so
the necessity of (5.8) and (5.9) is obvious. This proves Part (i).
Part (ii) can be obtained along the lines similar to that of part (i).

Theorem 5.7. A = (amk) ∈ ([arc] : c) if and only if (5.6), (5.9) and (5.10) hold and

lim
m→∞

∑
k

ãmk = β. (5.12)

Proof. Suppose that the matrix A satisfies the conditions (5.6), (5.9), (5.10) and (5.12). Let us
take any u ∈ [arc]. Then Au exists and, it is clear that v = (vk) is connected with u = (uk) by
the condition (3.1) is in c with vk → t as k → ∞. We immediately see from (5.6) and (5.10) that

k∑
i=0

|βi| ≤ sup
m∈N

∑
i

|ãmi| <∞

holds, for all k ∈ N. This implies to the fact that (βk) ∈ ℓ1. Now considering (5.5), we write∑
k

amkuk =
∑
k

ãmk(vk − t) + t
∑
k

ãmk. (5.13)

Thus, as m → ∞ in (5.13) we observe the first term on right side approaches to
∑

k βk(vk −
t) by (5.10) and (5.4) and second term approaches to tβ by (5.12). Therefore, we obtain
limm→∞(Au)m =

∑
k βk(vk − t) + tβ which gives that A ∈ ([arc] : c).

Conversely, suppose that A ∈ ([arc] : c). Also c ⊂ ℓ∞ and so the necessity of (5.9) and (5.10) are
immediately yield from the Theorem 5.6. To show the necessity of (5.5), let us take the sequence
u = u(k) = {u(k)m (q)}m∈N ∈ [arc] given as

u(k)m (q) =

{
(−1)m−k [k+1]q

[1+rk]q
, k ≤ m ≤ k + 1

0, 0 ≤ m < k − 1 or m > k + 1

for every k ∈ N. As Au exists and is in c for all u ∈ [arc], we can observe that Au(k) =
(ãmk)m∈N ∈ c, for all k ∈ N gives the necessity of (5.6). Similarly, putting u = e in (5.5), we
have Au = (

∑
k ãmk)m∈N which belongs to c, and this gives the necessity of (5.12).

6 Conclusion

This paper aims to study new transformations of the q-analogue of Ar-matrix of order r. In
addition, some topological properties and inclusion relations have been discussed. In addition
to this, the Toeplitz duals and matrix transformations have been examined. Therefore, the results
of this work are variant, significant, and so future research may focus on generalizing them with
other special number sequences and thus studying their topological properties and examining
their duals, matrix transformation and compact operators.
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