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Abstract In this paper, we establish the monotonicity of the operator norm and the spectral
radius in some ordered Banach spaces equipped with an absolute value function.

1 Main result

In this paper, we let (E, ∥·∥) be a real Banach space. As usual, L (E) and r(L) refer respectively
to the set of linear bounded self-mappings defined on E and to the spectral radius of a mapping
L ∈ L (E). The Gelfand formula states that

r(L) = lim
n→∞

∥Ln∥1/n
.

Since it has been used to prove several powerful results, such as the inverse map theorem and
Cauchy-Picard theorem, the Banach contraction principle is considered as one of the most im-
portant results in modern Analysis. This theorem states that if a mapping T : Ω → Ω satisfies
the following contraction condition

∥Tx− Ty∥ ≤ k ∥x− y∥ for all x, y ∈ Ω, (1.1)

holds for some k ∈ [0, 1), where Ω is a closed subset of E, then T has a unique fixed point
x ∈ Ω. The power of the Banach contraction principle consists in the fact that under Hypothesis
(1.1), for any x0 ∈ Ω, the corresponding iterative sequence, xn+1 = Txn, converges to x with the
estimate ∥xn − x∥ ≤ kn

1−k ∥x1 − x0∥. This estimate provides the ability to compute the number of
iterations needed to produce approximations of any required accuracy. This is why this theorem
has been extensively used to solve differential equations, PDE’s, integral and integrodifferential
equations, see for instance [8], [11], [12] and [13].

Naturally, many generalizations in various directions of this principle can be found in the
literature, see for example, [2], [3], [4], [9] and [10]. In particular authors of [2], [3] and [4]
introduced a new version of a contraction mapping adapted to the case of ordered Banach spaces
equipped with an absolute value function. Roughly speaking, they proved that if a mapping
T : E → E satisfies |Tx− Ty| ⪯ cL |x− y|, where L is a positive operator with cr(L) < 1,
then T has a unique fixed point in E.

The above condition cr(L) < 1 makes feel the need to have calculation formulas for the
spectral radius of a linear operator. Several authors have already been interested in this question
and estimates of the spectral radius of the sum of two operators have been established, see for
instance, [1], [7], [14] and references therein. The main goal of this paper is to establish the
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monotonicity of the spectral radius as well as an inequality for the spectral radius of the sum of
two operators.

Let us first introduce some concepts related to cones and positivity needed for the statement
of the main result of this work. For detailed presentation, we refer the reader to [5] and [6].

Definition 1.1. A nonempty closed convex subset K of E is said to be a cone in E if (tK) ⊂ K
for all t ≥ 0 and K ∩ (−K) = {0E} .

It is well known that if K is a cone in E, then K induces a partial order in the Banach space
E. We write for all x, y ∈ E : x ⪯K y (or y ⪰K x) if y − x ∈ K and x ≺K y (or y ≻K x) if
y − x ∈ K ∖ {0E}. Consequently, the vectors lying in K ∖ {0E} are said to be positive.

Definition 1.2. Let K be a cone in E. The norm ∥·∥ is said to be monotonic if for all x, y ∈
E, 0E ⪯K x ⪯K y ⇒ ∥x∥ ≤ ∥y∥ .

Definition 1.3. Let K be a cone in E. A mapping |·| : E → K is said to be an absolute value
function on E if

i) |x| = 0E ⇒ x = 0E ,

ii) |tx| = |t| |x| for all x ∈ E and t ∈ R,

iii) |x+ y| ⪯K |x|+ |y| for all x, y ∈ E.

Definition 1.4. Let K be a cone in E and let |·| : E → K be an absolute value function on E.
The supremum of x, y ∈ E is the vector denoted by x⋎ y and defined by

x⋎ y =
1
2
(x+ y + |x− y|) .

In particular for any x ∈ E, the positive part and the negative part of x are respectively the
vectors denoted by x+ and x− and defined by

x+ = x⋎ 0E =
1
2
(x+ |x|) and x− = (−x)⋎ 0E =

1
2
(−x+ |x|) .

Lemma 1.5. Let K be a cone in E and let |·| : E → K be an absolute value function on E. The
following properties hold true.

a) The mapping ∥·∥∗ : x → ∥x∥∗ = ∥|x|∥ define a norm on E.

b) For all x ∈ E,
x = x⋎ x = x+ − x−,

|x| = x⋎ (−x) = x+ + x−.

c) For all x, y, z ∈ E, (x ⪯K z and y ⪯K z) ⇒ x⋎ y ⪯K z.

Proof. Properties a) and b) are obvious. In view of c), let x, y, z ∈ E be such that x ⪯K z and
y ⪯K z. We have

z − x⋎ y = z − 1
2
(x+ y + |x− y|)

=
1
2
((z − x) + (z − y) + |(z − y)− (z − x)|) ⪰K 0E .

Lemma 1.6. Let K be a cone in E and let |·| : E → K be an absolute value function on E. The
following assertions are equivalent.

d) For all x ∈ E, we have −x, x ⪯K |x| .

e) For all x ∈ E, we have x+, x− ⪰K 0E .

f) For all x, y ∈ E, we have x ⪯K x⋎ y.



588 Abdelhamid Benmezai

Proof. At first, notice that the equivalence between Assertions d) and e) is due to the fact that

x+ = x⋎ 0E =
1
2
(|x|+ x) and x− = (−x)⋎ 0E =

1
2
(|x| − x) ⪰K 0E .

e) ⇒ f). Indeed, for all x, y ∈ E we have

x⋎ y − x =
1
2
(x+ y + |x− y|)− x

=
1
2
((y − x) + |y − x|)

= (y − x)
+ ⪰K 0E .

f) ⇒ e). Applying f) with x = 0E , we obtain for any y ∈ E

0E ⪯K 0E ⋎ y = y+ and 0E ⪯K 0K ⋎ (−y) = y−.

Remark 1.7. Notice that Assertion d) implies that for all x ∈ K, we have x− = 0 and x = |x| =
x+. Indeed, for any x ∈ K we have −x ⪯K 0E and 0E ⪯K 0E . Hence, we obtain by Assertion
c), x− = 0E ⋎ (−x) ⪯K 0E . This together with Assertions e) and b) leads to x− = 0E and
x = |x| = x+ ⪰K 0E .

Definition 1.8. Let K be a cone in E. A mapping L ∈ L (E) is said to be positive, if L (K) ⊂ K.

Hereafter for any cone K in E, we denote below by LK (E) the set of all positive operators
in L (E) . Clearly, LK (E) is a closed convex set of L (E) satisfying tLK (E) ⊂ LK (E) for all
t ≥ 0. However, in general LK (E) ∩ (−LK (E)) ̸=

{
0L(E)

}
and LK (E) becomes a cone in

L (E) whenever K is generating, i.e. E = K − K. In the remainder of this paper even if the
cone K is not generator, we still say that LK (E) is a cone in L (E) .

Lemma 1.9. Let K be a cone in E and let |·| : E → K be an absolute value function on E.
Assume that

−x, x ⪯K |x| for all x ∈ E, (1.2)

then for all positive mapping L in L (E) we have

|Lx| ⪯K L |x| for all x ∈ E.

Proof. At first, from Lemma 1.6 we have x+, x− ∈ K for all x ∈ E. Hence, for any x ∈ E, we
obtain from Assertion b) of Lemma 1.5 and Property iii) of the absolute value function,

|Lx| =
∣∣Lx+ − Lx−∣∣ ⪯K

∣∣Lx+∣∣+ ∣∣Lx−∣∣ ⪯K Lx+ + Lx− = L |x| .

The main result of this paper consists of the following theorem.

Theorem 1.10. Let K be a cone in E and let |·| : E → K be an absolute value function on E. If
the norm ∥·∥ is monotonic and the absolute value function |·| satisfies (1.2) and

∥x∥ = ∥x∥∗ for all x ∈ E, (1.3)

then for any A,B ∈ LK (E) we have

i) 0L(E) ⪯LK(F ) A ⪯LK(F ) B implies ∥A∥ ≤ ∥B∥ and r(A) ≤ r(B),

ii) BA ⪯LK(E) AB implies and r(AB) ≤ r(A)r(B) and r(A+B) ≤ r(A) + r(B).
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Proof. At first, for any L ∈ LK (E) we obtain from the monotonicity of the norm ∥·∥, Hypothesis
(1.3) and Lemma 1.9,

∥L∥ = sup
∥x∥=1

∥Lx∥ = sup
∥x∥∗=1

∥Lx∥∗ = sup
∥|x|∥=1

∥|Lx|∥ ≤ sup
∥|x|∥=1

∥L |x|∥ ≤ sup
x∈K,∥x∥=1

∥Lx∥ ≤ ∥L∥ .

This leads to

∥L∥ = sup
x∈K,∥x∥=1

∥Lx∥ .

Now let A,B be two mappings in LK (E) such that A ⪯LK(E) B. We have then

∥A∥ = sup
x∈K,∥x∥=1

∥Ax∥ ≤ sup
x∈K,∥x∥=1

∥Bx∥ = ∥B∥ .

Hence, the monotonicity of the operator norm is proved.
Also, A ⪯LK(E) B implies An ⪯LK(E) B

n for any integer n. Hence the monotonicity of the
operator norm, leads to ∥An∥1/n ≤ ∥Bn∥1/n for any integer n. Passing to the limits as n → ∞,
we obtain r(A) ≤ r(B).

At this stage, if BA ⪯LK(E) AB, then by induction we prove that for all integer n, (AB)
n ⪯LK(E)

AnBn. This together with the normality of the operator norm leads to

∥∥(AB)
n∥∥ 1

n ≤ ∥AnBn∥
1
n ≤ ∥An∥

1
n ∥Bn∥

1
n . (1.4)

Passing to the limits in (1.4) as n → +∞, we get r(AB) ≤ r(A)r(B).
Furthermore, by induction one proves that for any integer n, we have

(A+B)
n ⪯LK(E)

i=n∑
i=0

(
n

i

)
AiBn−i.

This together with the monotonicity of the operator norm leads to

∥∥(A+B)
n∥∥ ≤

i=n∑
i=0

(
n

i

)∥∥Ai
∥∥∥∥Bn−i

∥∥ .
Let ϵ > 0 small enough, there exists n0 such that

∥An∥ ≤ (r(A) + ϵ)
n and ∥Bn∥ ≤ (r(B) + ϵ)

n for all n ≥ n0.

Let δ > 0, such that

∥An∥ ≤ δn and ∥Bn∥ ≤ δn for all n ≥ 1.
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Therefore, for n ≥ 2n0 we have∥∥(A+B)
n∥∥ ≤

i=n−n0∑
i=0

(
n

i

)∥∥Ai
∥∥∥∥Bn−i

∥∥+ i=n−2n0∑
i=n−n0+1

(
n

i

)∥∥Ai
∥∥∥∥Bn−i

∥∥
+

i=n∑
i=n−2n0+1

(
n

i

)∥∥Ai
∥∥∥∥Bn−i

∥∥
≤

i=n−n0∑
i=0

(
n

i

)
δi (r(B) + ϵ)

n−i
+

i=n−2n0∑
i=n−n0+1

(
n

i

)
(r(A) + ϵ)

i
(r(B) + ϵ)

n−i

+
i=n∑

i=n−2n0+1

(
n

i

)
(r(A) + ϵ)

i
δn−i

≤
i=n−n0∑

i=0

(
n

i

)
(r(A) + ϵ)

i
(r(B) + ϵ)

n−i

(
δ

(r(A) + ϵ)

)i

+
i=n−2n0∑
i=n−n0+1

(
n

i

)
(r(A) + ϵ)

i
(r(B) + ϵ)

n−i

+
i=n∑

i=n−2n0+1

(
n

i

)
(r(A) + ϵ)

i
(r(B) + ϵ)

n−i

(
δ

(r(B) + ϵ)

)n−i

≤ η

i=n∑
i=0

(
n

i

)
(r(A) + ϵ)

i
(r(B) + ϵ)

n−i

= η (r(A) + r(A) + 2ϵ)n ,

where

η = max

(
1, max

1≤i≤n0

(
δ

min (r(A), r(B)) + ϵ

)i
)
.

At the end, passing to the limits in∥∥(A+B)
n∥∥ 1

n ≤ η
1
n (r(A) + r(B) + 2ϵ) ,

as n → +∞, we obtain r(A + B) ≤ r(A) + r(A) + 2ϵ. Since ϵ is arbitrary, we conclude that
r(A+B) ≤ r(A) + r(B).

Remark 1.11. Since for any equivalent norm ∥·∥2 we have

r(L) = lim
n→+∞

(
sup

∥x∥=1
∥Lnx∥

) 1
n

= lim
n→+∞

(
sup

∥x∥2=1
∥Lnx∥2

) 1
n

,

the monotonicity of the spectral radius as well as inequalities in ii) of Theorem 1.10 hold true if
we replace Hypothesis (1.3) by that ∥·∥ and ∥·∥∗ are equivalent norm.

2 Examples

(i) For any open bounded subset Ω of Rn, C
(
Ω,R

)
and Lp (Ω) (p ≥ 1) are typical spaces

where Theorem 1.10 is applicable.

(ii) Let E = C ([0, 1] ,R) equipped with its sup-norm ∥·∥∞ , and let K be the cone of nonneg-
ative functions in E. Consider A,B : E → E the operators defined by

Au(t) =

∫ t

0

(
e−t +

1√
s

)
u(s)ds,

Bu(t) =

∫ t

0
esu(s)ds.
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Clearly A,B ∈ LK (E) .

For all u ∈ K we have

ABu(t) =

∫ t

0

(
e−t +

1√
s

)∫ s

0
eξu(ξ)dξds

≤
∫ t

0

(
e−t +

1√
s

)
es
∫ s

0
u(ξ)dξds

≤
∫ t

0
es
∫ s

0

(
e−s +

1√
ξ

)
u(ξ)dξds

= BAu(t).

By induction we show that for all n ∈ N,

∥Bn∥ = ∥Bn (1)∥∞ = e−
k=n−1∑
k=0

1
k!

→ 0 as n → ∞.

Since r(B) = 0 and by Theorem 1.10 we have r(AB) ≤ r(A)r(B) and r(B) ≤ r(A+B) ≤
r(A) + r(B), we conclude that

r(AB) = 0 and r(A+B) = r(A).
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