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Abstract An algebraic system is a structure which consists of a nonempty set together with
a sequence of operations and a sequence of relations on this set. The properties of the structure
are expressed by terms and relational terms. The set of all generalized relational hypersubsti-
tutions for algebraic systems of type (τ, τ ′) together with a binary operation defined on the set
and its identity forms a monoid. In this paper, we determine the set of all completely regular el-
ements and intra-regular elements of the monoid of all generallized relational hypersubstitution
for algebraic systems of type ((n), (m)) for arbitrary natural number n,m ⩾ 2. Furthermore,
the relationship between some regular submonoids of the monoid of all generalized relational
hypersubstitutions for algebraic systems of type ((n), (m)) is presented.

1 Introduction

Varieties are collections of algebras that are classified by identities. Hypervarities are collections
of varieties that are classified by hyperidentities. The main tool which is used to study hyper-
identities and hypervarieties is the concept of hypersubstitutions introduced by W. Taylor [9].
The notation of hypersubstitutions of a given type (τ) in universal algebras was originated by K.
Denecke et al. [2] in 1991. On the other hand, to classify algebraic systems into subclasses by
logical sentences we can use the concept of hypersubstitutions for algebraic systems. The con-
cept of hypersubstitutions for algebraic systems of a given type (τ, τ ′) was first introduced by K.
Denecke and D. Phusanga [3] in 2008. In this paper, we use the notation of algebraic systems
in the sense of Mal’cev [4]. An algebraic system of type (τ, τ

′
) is a triple (A, (fA

i )i∈I , (γA
j )j∈J)

consisting of a nonempty set A, a sequence (fA
i )i∈I of ni-ary operations defined on A and a

sequence (γA
j )j∈J of mj-ary relations on A, where τ = (ni)i∈I is a sequence of the arities of

each operation fA
i and τ

′
= (mj)j∈J is a sequence of the arities of each relation γA

j . The pair
(τ, τ

′
) is called the type of an algebraic system, see more details in [5, 6].

A hypersubstitution for algebraic systems is a mapping that assigns any operation symbol to a
term and assigns any relation symbol to a formula which preserves the arity. In 2016 [7] D. Phu-
sanga et al. extended this concept to generalized hypersubstitutions for algebraic systems of type
(τ, τ ′). Later, D. Phusanga and J. Koppitz introduced the concept of relational hypersubstitutions
for algebraic systems of type (τ, τ ′) and proved that the set of all relational hypersubstitutions for
algebraic systems of type (τ, τ ′) together with an associative binary operation and the identity
element forms a monoid [8]. To study algebraic systems, first main approach is to produce new
algebraic systems of the same type from given one, the second main approach is to study the
semigroup properties. In semigroup theory, the principle special study of a regular element are
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inverse of an element and a completely regular element with a great diversity of their various
generalization. The present paper will determine the set of all completely regular elements and
intra-regular elements of generalized relational hypersubstitutions for algebraic systems of type
((n), (m)). Finally, we show that the set of all completely regular elements and the set of all
intra-regular elements of generalized relational hypersubstitutions for algebraic systems of type
((n), (m)) are the same.

Let X := {x1, x2, . . .} be a countably infinite set of symbols called variables. For each
n ≥ 1, let Xn := {x1, . . . , xn} be an n-element set which is called an n-element alphabet. Let
{fi : i ∈ I} be the set of ni-ary operation symbols indexed by the indexed set I , where ni ≥ 1
is a natural number. Let τ be a function which assigns to every fi the natural number ni as its
arity. The function τ = (ni)i∈I is called a type. An n-ary term of type τ is defined inductively
as follows.

(i) Every variable xk ∈ Xn is an n-ary term of type τ .

(ii) If t1, . . . , tni
are n-ary terms of type τ and fi is an ni-ary operation symbol, then fi(t1, . . . , tni

)
is an n-ary term of type τ .

We denote the set of all n-ary terms of type τ which contains x1, . . . , xn and is closed under
finite application of (ii), by Wτ (Xn) and let Wτ (X) :=

⋃
n∈N+ Wτ (Xn) be the set of all terms

of type τ .

2 The Monoid of Generalized Relational Hypersubstitutions for Algebraic
Systems

Any generalized relational hypersubstitution for algebraic systems is a mapping that assigns any
operation symbol to a term and assigns any relation symbol to a relational term which does not
necessarily preserve the arity.

Definition 2.1 ([5]). Let I, J be indexed sets. If i ∈ I, j ∈ J and t1, t2, ..., tmj
are n−ary terms

of type τ = (ni)i∈I and γj is an mj−ary relation symbol, then γj(t1, t2, ..., tmj ) is an n−ary
relational term of type ((ni)i∈I , (mj)j∈J).

We denote the set of all n−ary relational terms of type (τ, τ
′
) by F ∗

τ ′(Wτ (Xn)) and let
F ∗
τ ′(Wτ (X)) := ∪n∈NF

∗
τ ′(Wτ (Xn)) be the set of all relational terms of type (τ, τ

′
).

A generalized relational hypersubstitution for algebraic systems of type (τ, τ
′
) is a mapping

σ : {fi| i ∈ I} ∪ {γj | j ∈ J} → Wτ (X) ∪ F ∗
τ ′(Wτ (X)),

where σ(fi) ∈ Wτ (X) and σ(γj) ∈ F ∗
τ ′(Wτ (X)).

The set of all generalized relational hypersubstitutions for algebraic systems of type (τ, τ
′
)

is denoted by RelhypG(τ, τ
′
). To define a binary operation on this set, we define inductively the

concept of a superposition of terms Sn : Wτ (X)× (Wτ (X))n → Wτ (X) by the following steps.
For any t, t1, . . . , tni

, s1, . . . , sn ∈ Wτ (X),

(i) if t = xj for 1 ≤ j ≤ n, then Sn(t, s1, . . . , sn) := sj ;

(i) if t = xj for n < j, then Sn(t, s1, . . . , sn) := xj ;

(ii) if t = fi(t1, . . . , tni
), then

Sn(t, s1, . . . , sn) := fi(Sn(t1, s1, . . . , sn), . . . , Sn(tni
, s1, . . . , sn)).

For any t ∈ Wτ (X) and F = γj(s1, . . . , smj
) ∈ F ∗

τ ′(Wτ (X)), we define the superposition of
relational terms Rn : (Wτ (X) ∪ F ∗

τ ′(Wτ (X)))× (Wτ (X))n → Wτ (X) ∪ F ∗
τ ′(Wτ (X)) by

(i) Rn(t, t1, . . . , tn) := Sn(t, t1, . . . , tn),

(ii) Rn(F, t1, . . . , tn) := γj(Sn(s1, t1, . . . , tn), . . . , Sn(smj
, t1, . . . , tn)).

Every generalized relational hypersubstitution for algebraic systems σ can be extended to a
mapping σ̂ : Wτ (X) ∪ F ∗

τ ′(Wτ (X)) → Wτ (X) ∪ F ∗
τ ′(Wτ (X)) as follows:
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(i) σ̂[xi] := xi for i ∈ N;

(ii) σ̂[fi(t1 . . . , tni)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni ]),
where i ∈ I and t1, . . . , tni

∈ Wτ (X), i.e., any occurrence of the variable xk in σ(fi) is
replaced by the term σ̂[tk], 1 ≤ k ≤ ni;

(iii) σ̂[γj(s1 . . . , smj )] := Rmj (σ(γj), σ̂[s1], . . . , σ̂[smj ]), where j ∈ J , s1, . . . , smj ∈ Wτ (X),
i.e., any occurrence of the variable xk in σ(γj) is replaced by the term σ̂[sk], 1 ≤ k ≤ mj .

We define a binary operation ◦g on RelhypG(τ, τ
′
) by σ ◦g α := σ̂ ◦ α where ◦ is the usual

composition of mappings and σ, α ∈ RelhypG(τ, τ
′
). Let σid be the hypersubstitution which

maps each ni-ary operation symbol fi to the term fi(x1, . . . , xni
) and maps each mj-ary re-

lation symbol γj to the relational term γj(x1, . . . , xmj ). Then the structure RelhypG(τ, τ ′) =

(RelhypG(τ, τ ′), ◦g, σid) forms a monoid.

Throughout this paper, we focus on the algebraic systems of type ((n), (m)). Let f be
an n−ary operation symbol and γ be an m−ary relation symbol. We denote the generalized
relational hypersubstitution for algebraic systems of type ((n), (m)) which maps f to a term
t ∈ W(n)(X) and maps γ to a relational term F ∈ F ∗

(m)(W(n)(X)) by σt,F .

For t = f(t1, . . . , tn) ∈ W(n)(X) and F = γ(s1, . . . , sm) ∈ F ∗
(m)(W(n)(X)), we introduce

the following notation:
var(t):= the set of all variables occurring in the term t.
var(F ):= the set of all variables occurring in the relational term F .
I(t):= the set of all indices of variables occur in var(t) ∩Xn.
I(F ):= the set of all indices of variables occur in var(F ) ∩Xm.
var(t)Xn := {ti | ti ∈ X for some i = 1, . . . , n}.
var(F )Xm := {sj | sj ∈ X for some j = 1, . . . ,m}.

To determine the set of all completely regular elements and intra-regular elements of
RelhypG((n), (m)) in Section 3 and Section 4, we need the concept of the i−most of terms and
the concept of subterms which were defined as the following definition.

Definition 2.2 ([12]). Let τ = (n) be a type with an n-ary operation symbol f , t ∈ W(n)(X) and
1 ≤ i ≤ n. An i−most(t) is defined inductively as follows:

(i) if t is a variable, then i−most(t) = t;
(ii) if t = f(t1, . . . , tn) where t1, . . . , tn ∈ W(n)(X), then i−most(t) := i−most(ti).

Example 2.3. Let τ = (3) with a ternary operation symbol f . Let t = f(f(x5, x1, x2),
x3, f(x8, x1, x9)). Then 1 − most(t) = 1 − most(f(x5, x1, x2)) = x5, 2 − most(t) = 2 −
most(x3) = x3 and 3 −most(t) = 3 −most(f(x8, x1, x9)) = x9.

Lemma 2.4 ([12]). Let s, t ∈ W(n)(X). If j −most(t) = xk ∈ Xn and k −most(s) = xi, then
j −most(σ̂t[s]) = xi.

The above lemma can be applied to any generalized relational hypersubstitution for algebraic
systems of type ((n), (m)), such as the following. Let s, t ∈ W(n)(X) and F ∈ F ∗

(m)(W(n)(X)).
If i−most(t) = xj , then i−most(σ̂t,F [s]) = j −most(s).

Lemma 2.5 ([11]). Let t, u ∈ W(n)(X) and F,H ∈ F ∗
(m)(W(n)(X)) such that t = σ̂t,F [u] and

F = σ̂t,F [H] with xi ∈ var(t) and xj ∈ var(F ). Then we have
(i) if t = xk ∈ Xn, then k −most(ui) = xi and k −most(hj) = xj;
(ii) if t ∈ W(n)(X)\X , then ui = xi and hj = xj .

Definition 2.6 ([1]). Let t ∈ W(n)(X), a subterm of t is defined inductively by the following.
(i) Every variable x ∈ var(t) is a subterm of t;
(ii) if t = f(t1, . . . , tn) then t itself, t1, . . . , tn are subterms of t.

The set of all subterms of t is denoted by sub(t).
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Example 2.7. Let τ = (3) with a ternary operation symbol f . Let t = f(t1, t2, t3) such that
t1 = f(x5, f(x1, x7, x3), x2), t2 = x3 and t3 = f(x8, x1, x9). Then

sub(t1) = {t1, x5, f(x1, x7, x3), x1, x7, x3, x2},
sub(t2) = {x3},
sub(t3) = {t3, x8, x1, x9},
sub(t) = {t, t1, t2, t3, x5, f(x1, x7, x3), x1, x7, x2, x8, x9}.

3 All Completely Regular Elements in RelhypG((n), (m))

To determine the set of all completely regular elements of the monoid RelhypG((n), (m)), we
first consider the structure of regular elements of the monoid. An element σt,F ∈ RelhypG((n),
(m)) is called regular if and only if there exists σu,H ∈ RelhypG((n), (m)) such that σt,F =
σt,F ◦g σu,H ◦g σt,F . In this section, we use the concept of regular elements as a tool to determine
the set of all completely regular elements of the monoid of all generalized relational hypersub-
stitutions for algebraic systems of type ((n), (m)) and we have that a completely regular element
is both a left regular and a right regular element of the monoid of all generalized relational hy-
persubstitutions for algebraic systems of type ((n), (m)). For any σt,F ∈ RelhypG((n), (m)),
where t ∈ W(n)(X) and F ∈ F ∗

(m)(W(n)(X)), σt,F is called completely regular if and only if
there exists σu,H ∈ RelhypG((n), (m)) such that

σt,F = σt,F ◦g σu,H ◦g σt,F and
σt,F ◦g σu,H = σu,H ◦g σt,F .

Theorem 3.1. [11] Let t = xi ∈ Xn and F = γ(s1, . . . , sm) ∈ F ∗
(m)(W(n)(X)). Then σt,F is

regular if and only if one of the following conditions is satisfied:
(i) var(F ) ∩Xm = {xb1 , . . . , xbj} such that k −most(sb′l) = xbl where {b′1, . . . , b′j}

⊆ {1, . . . ,m};
(ii) var(F ) ∩Xm = ∅.

Theorem 3.2. [11] Let t ∈ W(n)(X\Xn) and F = γ(s1, . . . , sm) ∈ F ∗
(m)(W(n)(X)). Then σt,F

is regular if and only if one of the following conditions is satisfied:
(i) var(F ) ∩Xm = {xb1 , . . . , xbj} such that sb′l = xbl where {b′1, . . . , b′j} ⊆ {1, . . . ,m};
(ii) var(F ) ∩Xm = ∅.

Theorem 3.3. [11] Let t ∈ W(n)(X)\X such that var(t) ∩ Xn = {xa1 , . . . , xai} and F =
γ(s1, . . . , sm) ∈ F ∗

(m)(W(n)(X)). Then σt,F is regular if and only if ta′
k
= xak

where {a′1, . . . , a′i}
⊆ {1, . . . , n} and var(F ) ∩ Xm = {xb1 , . . . , xbj} such that sb′l = xbl where {b′1, . . . , b′j} ⊆
{1, . . . ,m} or var(F ) ∩Xm = ∅.

Theorem 3.4. Let t = xi ∈ Xn and F = γ(s1, . . . , sm) ∈ F ∗
(m)(W(n)(X)). Then σt,F is

completely regular if and only if one of the following conditions is satisfied:
(i) var(F ) ∩ Xm = {xb1 , . . . , xbj} such that i − most(sbl) = xϕ(bl) where ϕ is a bijective

map on {b1, . . . , bj};
(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F be completely regular. Then there exists σu,H ∈ RelhypG((n), (m)) such that

σt,F = σt,F ◦g σu,H ◦g σt,F , (3.1)

and
σt,F ◦g σu,H = σu,H ◦g σt,F . (3.2)

Assume that var(F ) ∩ Xm ̸= ∅, and let var(F ) ∩ Xm = {xb1 , . . . , xbj}. We will show that
i−most(sbl) = xϕ(bl) for all l = 1, . . . , j where ϕ is a bijective map on {b1, . . . , bj}. Consider

(σu,H ◦g σt,F )(γ) = σ̂u,H [F ]

= Rm(H, σ̂u,H [s1], . . . , σ̂u,H [sm])

= γ(Sm(h1, σ̂u,H [s1], . . . , σ̂u,H [sm]), . . . ,

Sm(hm, σ̂u,H [s1], . . . , σ̂u,H [sm]))

= γ(a1, . . . , am)
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where ai = Sm(hi, σu,H [s1], . . . , σu,H [sm]) for all i = 1, . . . ,m.
Then F = (σt,F ◦g σu,H ◦g σt,F )(γ) = σ̂t,F [γ(a1, . . . , am)] and var(F )∩Xm = {xb1 , . . . , xbj}.
By Lemma 2.5(i), we have i−most(abl) = xbl for all l = 1, . . . , j. So xbl = i−most(Sm(hbl ,
σu,H [s1], . . . , σu,H [sm])). Without loss of generality, we may assume that i − most(hbl) =
xbl ∈ var(F ) for all l = 1, . . . , j. Then xbl = σ̂u,H [sbl ], so there exist elements xb1 , . . . , xbj

which all are distinct, since if xbp = xbq for some p ̸= q ∈ {1, . . . , j} then xbp = σ̂u,H [sbp ] =
σ̂u,H [sbq ] = xbq but xbp ̸= xbq . Hence all b1, . . . , bj are distinct. We can define a bijective map
ϕ : {b1, . . . , bj} → {b1, . . . , bj} by ϕ(bl) = bl. Hence i−most(sbl) = xbl = xϕ(bl).

Conversely, choose σu,H ∈ F ∗
(m)(W(n)(X)) where u = xi, H = γ(h1, . . . , hm) with var(H) =

var(F ). If var(F ) ∩ Xm = ∅ then we choose hk = sk for all k = 1, . . . ,m. And if i −
mots(sbl) = xϕ(bl), we choose i − most(hbl) = xϕ−1(bl). By Theorem 3.1, we have σt,F ◦g
σu,H ◦g σt,F = σt,F . Next we will show that σt,F ◦g σu,H = σu,H ◦g σt,F . Consider

(σt,F ◦g σu,H)(γ) = Rn(F, i−most(h1), . . . , i−most(hm))

= γ(w1, . . . , wm),

where wi = Sm(si, i−most(h1), . . . , i−most(hm)) for all i = 1, . . . ,m.

σu,H ◦g σt,F )(γ) = Rn(H, i−most(s1), . . . , i−most(sm))

= γ(v1, . . . , vm),

where vi = Sm(hi, i−most(s1), . . . , i−most(sm)) for all i = 1, . . . ,m.
Consider

i−most(wi) = i−most(Sm(si, i−most(h1), . . . , i−most(hm)))

= Sm(i−most(si), i−most(h1), . . . , i−most(hm))

= Sm(xϕ(bl), i−most(h1), . . . , i−most(hm))

= i−most(hϕ(bl))(i−most(hϕ(bl)) = xϕ(ϕ−1(bl))),

and

i−most(vi) = i−most(Sm(hi, i−most(s1), . . . , i−most(sm)))

= Sm(i−most(hi), i−most(s1), . . . , i−most(sm))

= Sm(xϕ−1(bl), i−most(s1), . . . , i−most(sm))

= i−most(sϕ−1(bl))(i−most(sϕ−1(bl)) = xϕ−1(ϕ(bl))).

Thus wi = vi for all i = 1, . . . ,m. So σt,F ◦g σu,H = σu,H ◦g σt,F . Therefore σt,F is completely
regular.

Theorem 3.5. Let t ∈ W(n)(X\Xn) and F = γ(s1, . . . , sm) ∈ F ∗
(m)(W(n)(X)). Then σt,F is

completely regular if and only if one of the following conditions is satisfied:
(i) var(F ) ∩ Xm = {xb1 , . . . , xbj} such that sbl = xϕ(bl) for all l = 1, . . . , j where ϕ is a

bijective map on {b1, . . . , bj};
(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F be completely regular. Then there exists σu,H ∈ RelhypG((n), (m)) such that

σt,F = σt,F ◦g σu,H ◦g σt,F , (3.3)

and
σt,F ◦g σu,H = σu,H ◦g σt,F . (3.4)

Assume that var(F ) ∩ Xm ̸= ∅, and let var(F ) ∩ Xm = {xb1 , . . . , xbj} such that sbl ̸= xϕ(bl)
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where ϕ is a bijective map on {b1, . . . , bj}. Consider

(σt,F ◦g σu,H ◦g σt,F )(γ) = σ̂t,F [σ̂u,H [F ]]

= σ̂t,F [R
m(H, σ̂u,H [s1], . . . , σ̂u,H [sm])]

= σ̂t,F [γ(a1, . . . , am)]

= γ(Sm(s1, σ̂t,F [a1], . . . , σ̂t,F [am]), . . . ,

Sm(sm, σ̂t,F [a1], . . . , σ̂t,F [am])).

By (3.3), we have σ̂t,F [abl ] = xbl . Since xbl ∈ var(F ), we have to replace a variable xbl in the
relational term F by σ̂t,F [abl ]. Since σ̂t,F [abl ] = σ̂t,F [Sm(hbl , σ̂u,H [s1], . . . , σ̂u,H [sm])], then
hbl ∈ Xm for all l = 1, . . . , j. Without loss of generality, we may assume that hbl = xbl . So

σ̂t,F [abl ] = σ̂t,F [S
m(xbl , σ̂u,H [s1], . . . , σ̂u,H [sm])]

= σ̂t,F [σ̂u,H [sbl ]]

̸= xbl .

So sbl = xbl . By using this process, we obtain elements xb1 , . . . , xbj which all are distinct. We
can define a bijective map ϕ : {b1, . . . , bj} → {b1, . . . , bj} by ϕ(bl) = bl. Hence sbl = xϕ(bl).

Conversely, let tk ∈ sub(t). Choose σu,H ∈ RelhypG((n), (m)) where var(t) = var(u),uk =
tk, and hϕ(bl) = xbl for all l = 1, . . . , j, var(H) = var(F ). Let sl ∈ sub(sq), hl ∈ sub(hq) for
all q ∈ {1, . . . ,m}\{b1, . . . , bj}. If var(sl)∩Xm = ∅ then we choose hl = sl. And if sl = xϕ(bq)

and ϕ(bq) = bl then we choose hϕ(bl) = xbl . If var(F )∩Xm = ∅ then we choose hi = si for all
i = 1, . . . ,m. By Theorem 3.2, we have σt,F ◦g σu,H ◦g σt,F = σt,F . Next, we will show that
σt,F ◦g σu,H = σu,H ◦g σt,F . Consider

(σt,F ◦g σu,H)(f) = Sn(t, σ̂t,F [u1], . . . , σ̂t,F [un])

= f(w1, . . . , wn)

where wi = Sn(ti, σ̂t,F [u1], . . . , σ̂t,F [un]) for all i = 1, . . . , n.

(σu,H ◦g σt,F )(f) = Sn(u, σ̂u,H [t1], . . . , σ̂u,H [tn])

= f(w̃1, . . . , w̃n)

where w̃i = Sn(ui, σ̂u,H [t1], . . . , σ̂u,H [tn]) for all i = 1, . . . , n.

(σt,F ◦g σu,H)(γ) = Rm(F, σ̂t,F [h1], . . . , σ̂t,F [hm])

= γ(v1, . . . , vm)

where vj = Rm(sj , σ̂t,F [h1], . . . , σ̂t,F [hm]) for all j = 1, . . . ,m.

(σu,H ◦g σt,F )(γ) = Rm(H, σ̂u,H [s1], . . . , σ̂u,H [sm])

= f(ṽ1, . . . , ˜vm)

where ṽj = Rm(hj , σ̂u,H [s1], . . . , σ̂u,H [sm]) for all j = 1, . . . ,m.
We will show that f(w1, . . . , wn) = f(w̃1, . . . , w̃n) and γ(v1, . . . , vm) = γ(ṽ1, . . . , ˜vm).
Case 1 var(F ) = {xb1 , . . . , xbj} such that sbl = xϕ(bl):

Case 1.1 l ∈ {1, . . . , j}:

vbl = Sm(sbl , σ̂t,F [h1], . . . , σ̂t,F [hm])

= Sm(xϕ(bl), σ̂t,F [h1], . . . , σ̂t,F [hm])

= σ̂t,F [hϕ(bl)]

= xbl
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and

ṽbl = Sm(hbl , σ̂u,H [s1], . . . , σ̂u,H [sm])

= Sm(xϕ−1(bl), σ̂u,H [s1], . . . , σ̂u,H [sm])

= σ̂u,H [sϕ−1(bl)]

= xbl .

Case 1.2 l ∈ {1, . . . ,m}\{b1, . . . , bj}:
Let sl ∈ sub(sq) and hl ∈ sub(hq) for all l = {1, . . . ,m}. Then vq = Sm(sq, σ̂t,F [h1], . . . ,
σ̂t,F [hm]) and ṽq = Sm(hq, σ̂u,H [s1], . . . , σ̂u,H [sm]). If var(sl) ∩ Xm = ∅, then vl = sl and
ṽl = hl = sl. If sl = xϕ(bq) and ϕ(bq) = bl, then

vl = Sm(sl, σ̂t,F [h1], . . . , σ̂t,F [hm]) = σ̂t,F [hϕ(bl)] = xbl and

ṽl = Sm(hl, σ̂u,H [s1], . . . , σ̂u,H [sm]) = σ̂u,H [sl] = xϕ(bq) = xbl .

Hence vbl = ṽbl .
Case 2 var(F ) ∩ Xm = ∅: It is easily to calculate that γ(v1, . . . , vm) = γ(ṽ1, . . . , ˜vm). By
straightforward calculation, we obtain f(w1, . . . , wn) = f(w̃1, . . . , w̃n). Thus σt,F ◦g σu,H =
σu,H ◦g σt,F . Therefore σt,F is completely regular.

Theorem 3.6. Let t ∈ W(n)(X)\X such that var(t)∩Xn = {xa1 , . . . , xai
} and F = γ(s1, . . . , sm)

∈ F ∗
(m)(W(n)(X)). Then σt,F is completely regular if and only if tak

= xπ(ak) for all k = 1, . . . , i
where π is a bijective map on {a1, . . . , ai} and var(F ) ∩Xm = {xb1 , . . . , xbj} such that sbl =
xϕ(bl) for all l = 1, . . . , j where ϕ is a bijective map on {b1, . . . , bj} or var(F ) ∩Xm = ∅.

Proof. Let σt,F be completely regular. Then there exists σu,H ∈ RelhypG((n), (m)) such that

σt,F = σt,F ◦g σu,H ◦g σt,F , (3.5)

and
σt,F ◦g σu,H = σu,H ◦g σt,F . (3.6)

If u ∈ X , then t = (σt,F ◦g σu,H ◦g σt,F )(f) = u ∈ X . This is a contradiction with t ∈
W(n)(X)\X . So u = f(u1, . . . , un) ∈ W(n)(X)\X . Consider

(σu,H ◦g σt,F )(f) = Sn(u, σ̂u,H [t1], . . . , σ̂u,H [tn])

= Sn(f(u1, . . . , un), σ̂u,H [t1], . . . , σ̂u,H [tn])

= f(Sn(u1, σ̂u,H [t1], . . . , σ̂u,H [tn]), . . . ,

Sn(un, σ̂u,H [t1], . . . , σ̂u,H [tn]))

= f(w1, . . . , wn)

where wi = Sn(ui, σ̂u,H [t1], . . . , σ̂u,H [tn]) for all i = 1, . . . , n. Then

t = σ̂t,F [f(w1, . . . , wn)]

= Sn(f(t1, . . . , tn), σ̂t,F [w1], . . . , σ̂t,F [wn])

where ti = Sn(ti, σ̂t,F [w1], . . . , σ̂t,F [wn]) for all i = 1, . . . , n. Since var(t)∩Xn = {xa1 , . . . , xai}
by Lemma 2.5(ii), we have xak

= σ̂t,F [wak
] for all k = 1, . . . , i. Since t ∈ W(n)(X)\X and

wak
= xak

. Hence xak
= wak

= Sn(ui, σ̂u,H [t1], . . . , σ̂u,H [un]). If uak
= f(uak1

, . . . , uakn
) ∈

W(n)(X), then xak
= Sn(uak

, σ̂u,H [t1], . . . , σ̂u,H [tn]) ∈ W(n)(X)\X , a contradition. So uak
=

xak
∈ var(t) for some ak ∈ {a1, . . . , ai}, then xak

= wak
= Sn(uak

, σ̂u,H [t1], . . . , σ̂u,H [tn]).
Thus tak

= xak
for all ak ∈ {a1, . . . , ai}, by using this prosess we obtain elements xa1 , . . . , xai

which all are distinct. We can define a bijective map π : {a1, . . . , ai} → {a1, . . . , ai} by
π(ak) = ak. Hence tak

= xak
= xπ(ak). The proof of sbl = xϕ(bl) is similary of Theorem

3.2.
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Conversely, choose σu,H ∈ RelhypG((n), (m)) where uπ(ak) = xak
for all k = 1, . . . , i,

var(t) = var(u) and hϕ(bl) = xbl for all l = 1, . . . , j, var(H) = var(F ). Let tk ∈ sub(tp),
uk ∈ sub(up) for all p ∈ {1, . . . , n}\{a1, . . . , ai}. If var(tk) ∩Xn = ∅ then we choose uk = tk.
And, if tk = xπ(ap) and π(ap) = ak then we choose uπ(ak) = xak

. Let sl ∈ sub(sq), hl ∈ sub(hq)
for all q ∈ {1, . . . ,m}\{b1, . . . , bj}. If var(sl) ∩ Xm = ∅ then we choose hl = sl. And if
sl = xϕ(bq) and ϕ(bq) = bl then we choose hϕ(bl) = xbl . If var(F ) ∩ Xm = ∅ then we choose
hi = si for all i = 1, . . . ,m. By Theorem 3.3, we have σt,F ◦g σu,H ◦g σt,F = σt,F . Next we
will show that σt,F ◦g σu,H = σu,H ◦g σt,F . Consider

(σt,F ◦g σu,H)(f) = Sn(t, σ̂t,F [u1], . . . , σ̂t,F [un])

= f(w1, . . . , wn)

where wi = Sn(ti, σ̂t,F [u1], . . . , σ̂t,F [un]) for all i = 1, . . . , n.

(σu,H ◦g σt,F )(f) = Sn(u, σ̂u,H [t1], . . . , σ̂u,H [tn])

= f(w̃1, . . . , w̃n)

where w̃i = Sn(ui, σ̂u,H [t1], . . . , σ̂u,H [tn]) for all i = 1, . . . , n.

(σt,F ◦g σu,H)(γ) = Rm(F, σ̂t,F [h1], . . . , σ̂t,F [hm])

= γ(v1, . . . , vm)

where vj = Rm(sj , σ̂t,F [h1], . . . , σ̂t,F [hm]) for all j = 1, . . . ,m.

(σu,H ◦g σt,F )(γ) = Rm(H, σ̂u,H [s1], . . . , σ̂u,H [sm])

= f(ṽ1, . . . , ˜vm)

where ṽj = Rm(hj , σ̂u,H [s1], . . . , σ̂u,H [sm]) for all j = 1, . . . ,m.
We will show that f(w1, . . . , wn) = f(w̃1, . . . , w̃n) and γ(v1, . . . , vm) = γ(ṽ1, . . . , ˜vm).
Consider var(t) = {xa1 , . . . , xai

} such that tak
= xϕ(ak):

Case 1 k ∈ {1, . . . , i}:

wak
= Sn(tak

, σ̂t,F [u1], . . . , σ̂t,F [un])

= Sn(xπ(ak), σ̂t,F [u1], . . . , σ̂t,F [un])

= σ̂t,F [uπ(ak)]

= xak

and

w̃ak
= Sn(uπ(ak), σ̂u,H [t1], . . . , σ̂u,H [tn])

= Sn(xak
, σ̂u,H [t1], . . . , σ̂u,H [tn])

= σ̂u,H [tak
]

= xπ(ak).

Case 2 k ∈ {1, . . . , n}\{a1, . . . , ai}:
Let tk ∈ sub(tp). Then wk = Sn(tk, σ̂t,F [u1], . . . , σ̂t,F [un]) and w̃k = Sn(uk, σ̂u,H [t1], . . . ,
σ̂u,H [tn]) for all k = 1, . . . , n. If var(tk) ∩ Xm = ∅, then wk = tk and w̃k = uk = tk. If
tk = xπ(ak), then

wk = Sn(tk, σ̂t,F [u1], . . . , σ̂t,F [un]) = σ̂t,F [uπ(ak)] = xak
and

w̃k = Sn(uk, σ̂u,H [t1], . . . , σ̂u,H [tn]) = σ̂u,H [tπ−1(ak)] = xak
.

Hence wak
= w̃ak

, so f(w1, . . . , wn) = f(w̃1, . . . , w̃n). Similary we have f(v1, . . . , vm)
= f(ṽ1, . . . , ˜vm). Thus σt,F ◦g σu,H = σu,H ◦g σt,F . Therefore σt,F is completely regular.
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4 All Intra-regular Elements in RelhypG((n), (m))

It is well-known in semigroup theory that every completely regular element is an intra-regular
element. In general, every intra-regular element need not be a completely regular element. In
this section, we use the concept in Section 3 to show that every intra-regular element of the
monoid of all generalized relational hypersubstitutions for algebraic systems of type ((n), (m))
is a completely regular element. Moreover, we show that completely regular, left regular, right
regular and intra-regular elements of the monoid of all generalized relational hypersubstitutions
for algebraic systems of type ((n), (m)) are the same.

Lemma 4.1. ([1]) Let t, u ∈ W(n)(X)\(X). Then
∣∣var(σ̂t[u])Xn

∣∣ ≤ ∣∣var(t)Xn
∣∣.

Lemma 4.2. ([10]) Let F,H ∈ F ∗
(m)(W(n)(X)). Then

∣∣var(σ̂t,F [H])Xm
∣∣ ≤ ∣∣var(F )Xm

∣∣.
Theorem 4.3. Let t = xi ∈ Xn and F = γ(s1, . . . , sm) ∈ F ∗

(m)(W(n)(X)). Then σt,F is intra-
regular if and only if one of the following conditions is satisfied:

(i) var(F ) ∩Xm = {xb1 , . . . , xbj} such that i−most(sbl) = xϕ(bl) where ϕ is bijective map
on {b1, . . . , bj};

(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F be intra-regular. Then there exist σu,H , σv,G ∈ RelhypG((n), (m)) such that

σt,F = σu,H ◦g σt,F ◦g σt,F ◦g σv,G. (4.1)

Assume that var(F ) ∩Xm ̸= ∅. Let var(F ) ∩Xm = {xb1 , . . . , xbj} and i−most(sbl) ̸= xϕ(bl)

where ϕ is bijective map on {b1, . . . , bj}. Consider

(σt,F ◦g σt,F ) = σ̂xi,F [F ]

= Rm(F, σ̂xi,F [s1], . . . , σ̂xi,F [sm])

= γ(Sm(s1, i−most(s1), . . . , i−most(sm)), . . . ,

Sm(sm, i−most(s1), . . . , i−most(sm))).

Since every variable xbk ∈ var(F ) is replaced by i−most(sbk) but xϕ(bl) /∈ {i−most(sbk) : k =
1, . . . , j}, xbl /∈ var((σt,F ◦g σt,F )(γ)). This implies that |var((σt,F ◦g σt,F )(γ))| < |var(F )|.
Consider

(σ2
t,F ◦g σv,G)(γ) = σ̂2

t,F [G]

= Rm(σ̂2
t,F , i−most(g1), . . . , i−most(gm)).

Since every vaiable xbk ∈ σ2
t,F is replaced by i − most(gbk), so |var((σ2

t,F ◦g σv,G)(γ))| ⩽
|var(σ2

t,F (γ))| < |var(F )|. By (4.1) and var(F ) = var((σu,H◦gσ2
t,F ◦gσv,G)(γ)) ⊆ var((σ2

t,F ◦g
σv,G)(γ)), so |var(F )| ⩽ |var((σ2

t,F ◦g σv,G)(γ))| < |var(F )|, this is contradiction. Hence
i−most(sbl) = xϕ(bl). Conversely , by Theorem 3.4, σt,F is completely regular. It follows that
σt,F is intra-regular.

Theorem 4.4. Let t ∈ W(n)(X\Xn) and F = γ(s1, . . . , sm) ∈ F ∗
(m)(W(n)(X)). Then σt,F is

regular if and only if one of the following conditions is satisfied:
(i) var(F ) ∩ Xm = {xb1 , . . . , xbj} such that sbl = xϕ(bl) for all l = 1, . . . , j where ϕ is

bijective map on {b1, . . . , bj};
(ii) var(F ) ∩Xm = ∅.

Proof. Let σt,F be intra-regular. Then there exist σu,H , σv,G ∈ RelhypG((n), (m)) such that

σt,F = σu,H ◦g σt,F ◦g σt,F ◦g σv,G. (4.2)

Consider

(σt,F ◦g σt,F )(γ) = γ(w′
1, . . . , w

′
m) where w′

j = Rm(sj , σ̂t,F [s1], . . . , σ̂t,F [sm])
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and

(σ2
t,F ◦g σv,G)(γ) = γ(z′1, . . . , z

′
m) where z′j = Rm(w′

j , σ̂
2
t,F [g1], . . . , σ̂

2
t,F [gm])

for all j = 1, . . . ,m.
Assume var(F ) ∩ Xm ̸= ∅. Let var(F ) ∩ Xm = {xb1 , . . . , xbj} such that sbl ̸= xϕ(bl) for all
l = 1, . . . , j where ϕ is bijective map on {b1, . . . , bj}. We consider two cases:

(1) xϕ(bl) /∈ var(F )Xm .
(2) sb1 , . . . , sbj ∈ var(F ) such that sp = sq for some p, q ∈ {b1, . . . , bj}.

Case 1 Assume that the condition (1) holds. Then var(σ̂t,F [F ])Xm ⊆ var(F )Xm = {xb1 , . . . , xbj}
and |var(σ̂t,F [F ])Xm | ⩽ |var(F )Xm |. Fisrt, we will show that xϕ(bi) /∈ var(σ̂t,F [F ])Xm . Con-
sider (σt,F ◦g σt,F )(γ) = γ(w′

1, . . . , w
′
m) where w′

j = Rm(sj , σ̂t,F [s1], . . . , σ̂t,F [sm]) for all j =
1, . . . ,m. If xϕ(bi) ∈ var(σ̂t,F [F ])Xm , then wk = xϕ(bi). So there exists k ∈ {b1, . . . , bj} such
that sk = xϕ(bl) and xϕ(bl) ∈ var(σ̂t,F [F ])Xm , which contradicts to xϕ(bl) /∈ var(F )Xm . Hence
xϕ(bi) /∈ var(σ̂t,F [F ])Xm . Then var(σ̂t,F [F ])Xm ⊂ var(F )Xm . Therefore |var(σ̂t,F [F ])Xm | <
|var(F )Xm |. Finally, we will show that σt,F ̸= σu,H ◦g σ2

t,F ◦g σv,G for all σu,H , σv,G ∈
RelhypG((n), (m)). By Lemma 4.2, we have |var(σ2

t,F ◦g σv,G)Xm | ⩽ |var(σ2
t,F )

Xm | and
|var(σu,H ◦g σ2

t,F ◦g σv,G)Xm | ⩽ |var(σ2
t,F ◦g σv,G)Xm |. Hence |var(σu,H ◦g σ2

t,F ◦g σv,G)Xm |
< |var(F )Xm |. It follows that σt,F is not intra-regular.
Case 2 sb1 , . . . , sbj ∈ var(F ) such that sp = sq for all p, q ∈ {b1, . . . , bj}. Then there ex-
ist at least one element of var(F ) which is not an element of the set {sb1 , . . . , sbj}, say xbl . So
xbl /∈ σ̂t,F [sk] for all k = b1, . . . , bj . Consider (σt,F ◦gσt,F )(γ) = Rm(F, σ̂t,F [s1], . . . , σ̂t,F [sm]).
We will replace every xk in the term F by σ̂t,F [sk]. But xbl /∈ σ̂t,F [sk] for all k = b1, . . . , bj ,
so xbl /∈ var((σt,F ◦g σt,F )(γ)). Thus |var((σt,F ◦g σt,F )(γ))| ⩽ |var(F )| − 1. Let A = {p ∈
I(F )|sp ̸= sq for all q = 1, . . . ,m}, B = {p ∈ I(F )|w′

p ∈ var(F ) and wp ̸= wq for all q =

1, . . . ,m}, B̃ = {p′|w′
p = xp′ for all p ∈ B}. Then A,B, B̃ ̸= ∅ and B = B̃. By the definition

of the set B, we can consider 2 cases.
Case 2.1: gp′ = xj for all p′ ∈ B̃. Then |var((σ2

t,F ◦g σv,G)(γ))| ⩽ |var((σ2
t,F )(γ))| ⩽

|var(F )| − 1. Since var((σu,H ◦g σ2
t,F ◦g σv,G)(γ)) ⊆ var((σ2

t,F ◦g σv,G)(γ)), |var((σu,H ◦g
σ2
t,F ◦g σv,G)(γ))| ⩽ |var((σ2

t,F ◦g σv,G)(γ))|. But F = σt,F (γ) = (σu,H ◦g σ2
t,F ◦g σv,G)(γ).

So var(F ) = |var((σu,H ◦g σ2
t,F ◦g σv,G)(γ))| ⩽ |var(F )| − 1, this is a contradiction.

Case 2.2: There is p′ ∈ B such that gp′ ∈ W(m)(X)\X . Let C = {p|z′p ∈ Xm, z′p ̸=
z′q for all q = 1, . . . ,m}. Then |C| ⩽ |B̃| − 1 = |B| − 1, because qp is replaced by σ̂t,F [gp′ ].
Since F = (σu,H ◦g σ2

t,F ◦g σv,G)(γ), var(F ) ⊆ var((σ2
t,F ◦g σv,G)(γ)). So |A| ⩽ |C|, but

|A| ⩾ |B| ⩾ |B| − 1 ⩾ |C| ⩾ |A|, this is a contradiction.
Conversely, by Theorem 3.5 σt,F is completely regular. It follows that σt,F is intra-regular.

Theorem 4.5. Let t ∈ W(n)(X)\X such that var(t)∩Xn = {xa1 , . . . , xai
} and F = γ(s1, . . . , sm)

∈ F ∗
(m)(W(n)(X)). Then σt,F is intra-regular if and only if tak

= xπ(ak) for all k = 1, . . . , i
where π is a bijective map on {a1, . . . , ai} and var(F ) ∩Xm = {xb1 , . . . , xbj} such that sbl =
xϕ(bl) for all l = 1, . . . , j where ϕ is a bijective map on {b1, . . . , bj} or var(F ) ∩Xm = ∅.

Proof. Let σt,F be intra-regular. Then there exist σu,H , σv,G ∈ RelhypG((n), (m)) such that

σt,F = σu,H ◦g σt,F ◦g σt,F ◦g σv,G (4.3)

Consider

(σt,F ◦g σt,F )(f) = f(w1, . . . , wn) where wi = Sn(ti, σ̂t,F [t1], . . . , σ̂t,F [tn])

and
(σ2

t,F ◦g σv,G)(f) = f(z1, . . . , zn) where zi = Sn(wi, σ̂
2
t,F [v1], . . . , σ̂

2
v,F [vn])

for all i = 1, . . . , n.

(σt,F ◦g σt,F )(γ) = γ(w′
1, . . . , w

′
m) where w′

j = Rm(sj , σ̂t,F [s1], . . . , σ̂t,F [sm])

and

(σ2
t,F ◦g σv,G)(γ) = γ(z′1, . . . , z

′
m) where z′j = Rm(qj , σ̂

2
t,F [g1], . . . , σ̂

2
t,F [gm])
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for all j = 1, . . . ,m.
Assume var(t) ∩ Xn = {xa1 , . . . , xai

} such that tak
̸= xπ(ak) for all k = 1, . . . , i where π is

bijective map on {a1, . . . , ai} and var(F ) ∩Xm ̸= ∅, var(F ) ∩Xm = {xb1 , . . . , xbj} such that
sbl ̸= xϕ(bl) for all l = 1, . . . , j where ϕ is bijective map on {b1, . . . , bj}. We consider four cases:

(1) xπ(ak) /∈ var(t)Xn .
(2) ta1 , . . . , tai

∈ var(t) such that tc = td for some c, d ∈ {a1, . . . , ai}.
(3) xϕ(bl) /∈ var(F )Xm .
(4) sb1 , . . . , sbj ∈ var(F ) such that sp = sq for some p, q ∈ {b1, . . . , bj}.

Case 1 Assume that the condition (1) holds. Then var(σ̂t,F [t])Xn ⊆ var(t)Xn = {xa1 , . . . , xai}
and |var(σ̂t,F [t])Xn | ⩽ |var(t)Xn |. Fisrt, we will show that xπ(aj) /∈ var(σ̂t,F [t])Xn . Consider
(σt,F ◦g σt,F )(f) = f(w1, . . . , wn) where wi = Sn(ti, σ̂t,F [t1], . . . , σ̂t,F [tn]) for all i = 1, . . . , n.
If xπ(aj) ∈ var(σ̂t,F [t])Xn , then wp = xπ(aj). So there exists p ∈ {a1, . . . , ai} such that tp =

xπ(ak) and xπ(ak) ∈ var(σ̂t,F [t])Xn , which contradicts to xπ(ak) /∈ var(t)Xn . Hence xπ(aj) /∈
var(σ̂t,F [t])Xn . Then var(σ̂t,F [t])Xn ⊂ var(t)Xn . Therefore |var(σ̂t,F [t])Xn | < |var(t)Xn |. Fi-
nally, we will show that σt,F ̸= σu,H ◦g σ2

t,F ◦g σv,G for all σu,H , σv,G ∈ RelhypG((n), (m)). By
Lemma 4.1, we have |var(σ2

t,F ◦gσv,G)Xn | ⩽ |var(σ2
t,F )

Xn | and |var(σu,H ◦gσ2
t,F ◦gσv,G)Xn | ⩽

|var(σ2
t,F ◦g σv,G)Xn |. Hence |var(σu,H ◦g σ2

t,F ◦g σv,G)Xn | < |var(F )Xn |. It folows that σt,F

is not intra-regular.
Case 2 ta1 , . . . , tai

∈ var(t) such that tc = td for all c, d ∈ {a1, . . . , ai}. Then there exist at least
one element of var(t) which is not an element of the set {ta1 , . . . , tai}, say xak

. So xak
/∈ σ̂t,F [tj ]

for all j = a1, . . . , ai. Consider (σt,F ◦g σt,F )(f) = Sn(t, σ̂t,F [t1], . . . , σ̂t,F [tn]). We will re-
place every xj in the term t by σ̂t,F [tj ]. But xak

/∈ σ̂t,F [tj ] for all j = a1, . . . , ai, so xak
/∈

var((σt,F ◦g σt,F )(f)). Thus |var((σt,F ◦g σt,F )(f))| ⩽ |var(t)| − 1. Let A = {c ∈ I(t)|tc ̸=
td for all d = 1, . . . , n}, B = {c ∈ I(t)|wc ∈ var(t) and wc ̸= wd for all d = 1, . . . , n},
B̃ = {c′|wc = wc′ for all c ∈ B}. Then A,B, B̃ ̸= ∅ and B = B̃. By definition of the set B, we
can consider 2 cases.

Case 2.1: vc′ = xj for all c′ ∈ B̃. Then |var((σ2
t,F ◦g σv,G)(f))| ⩽ |var((σ2

t,F )(f))| ⩽
|var(t)| − 1. Since var((σu,H ◦g σ2

t,F ◦g σv,G)(f)) ⊆ var((σ2
t,F ◦g σv,G)(f)), |var((σu,H ◦g

σ2
t,F ◦g σv,G)(f))| ⩽ |var((σ2

t,F ◦g σv,G)(f))|. But t = σt,F (f) = (σu,H ◦g σ2
t,F ◦g σv,G)(f). So

var(t) = |var((σu,H ◦g σ2
t,F ◦g σv,G)(f))| ⩽ |var(t)| − 1, this is a contradiction.

Case 2.2: There is c′ ∈ B such that vc′ ∈ W(n)(X)\X . Let C = {c|zc ∈ Xn, zc ̸=
zd for all d = 1, . . . , n}. Then |C| ⩽ |B̃| − 1 = |B| − 1, because wc is replaced by σ̂t,F [vc′ ].
Since t = (σu,H ◦g σ2

t,F ◦g σv,G)(f), var(t) ⊆ var((σ2
t,F ◦g σv,G)(f)). So |A| ⩽ |C|, but

|A| ⩾ |B| ⩾ |B| − 1 ⩾ |C| ⩾ |A|, this is a contradiction. The proof of Case 3 and 4 are similar
to Case 1 and 2 of Theorem 4.4, respectively. Conversely, by Theorem 3.6 σt,F is completely
regular. It follows that σt,F is intra-regular.

Corollary 4.6. Let σt,F ∈ Relhyp((m), (n)). Then the following statements are equivalent:
(i) σt,F is completely regular in RelhypG((n), (m));
(ii) σt,F is left regular in RelhypG((n), (m));
(iii) σt,F is right regular in RelhypG((n), (m));
(iv) σt,F is intra-regular in RelhypG((n), (m)).

5 Conclusion remarks

This paper aims is to determine the set of all completely regular elements and intra-regular
elements of RelhypG((n), (m)). Furthermore, we show that the sets of all completely regular
elements, left(right) regular elements and intra-regular elements of the monoid of all generallized
relational hypersubstitution for algebraic systems of type ((n), (m)) are the same.
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