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Abstract An algebraic system is a structure which consists of a nonempty set together with
a sequence of operations and a sequence of relations on this set. The properties of the structure
are expressed by terms and relational terms. The set of all generalized relational hypersubsti-
tutions for algebraic systems of type (7,7’) together with a binary operation defined on the set
and its identity forms a monoid. In this paper, we determine the set of all completely regular el-
ements and intra-regular elements of the monoid of all generallized relational hypersubstitution
for algebraic systems of type ((n), (m)) for arbitrary natural number n, m > 2. Furthermore,
the relationship between some regular submonoids of the monoid of all generalized relational
hypersubstitutions for algebraic systems of type ((n), (m)) is presented.

1 Introduction

Varieties are collections of algebras that are classified by identities. Hypervarities are collections
of varieties that are classified by hyperidentities. The main tool which is used to study hyper-
identities and hypervarieties is the concept of hypersubstitutions introduced by W. Taylor [9].
The notation of hypersubstitutions of a given type () in universal algebras was originated by K.
Denecke et al. [2] in 1991. On the other hand, to classify algebraic systems into subclasses by
logical sentences we can use the concept of hypersubstitutions for algebraic systems. The con-
cept of hypersubstitutions for algebraic systems of a given type (7, 7’) was first introduced by K.
Denecke and D. Phusanga [3] in 2008. In this paper, we use the notation of algebraic systems
in the sense of Mal’cev [4]. An algebraic system of type (7,7 ) is a triple (A, (f{)ier, (v)jer)
consisting of a nonempty set A, a sequence (f{1);cs of n;-ary operations defined on A and a
sequence ("yj‘) jes of mj-ary relations on A, where 7 = (n;);cs is a sequence of the arities of

each operation f{* and 7 = (m;);c is a sequence of the arities of each relation 'yf. The pair
(, 7-/) is called the rype of an algebraic system, see more details in [5, 6].

A hypersubstitution for algebraic systems is a mapping that assigns any operation symbol to a
term and assigns any relation symbol to a formula which preserves the arity. In 2016 [7] D. Phu-
sanga et al. extended this concept to generalized hypersubstitutions for algebraic systems of type
(7,7"). Later, D. Phusanga and J. Koppitz introduced the concept of relational hypersubstitutions
for algebraic systems of type (7, 7’) and proved that the set of all relational hypersubstitutions for
algebraic systems of type (7, 7’) together with an associative binary operation and the identity
element forms a monoid [8]. To study algebraic systems, first main approach is to produce new
algebraic systems of the same type from given one, the second main approach is to study the
semigroup properties. In semigroup theory, the principle special study of a regular element are
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inverse of an element and a completely regular element with a great diversity of their various
generalization. The present paper will determine the set of all completely regular elements and
intra-regular elements of generalized relational hypersubstitutions for algebraic systems of type
((n),(m)). Finally, we show that the set of all completely regular elements and the set of all
intra-regular elements of generalized relational hypersubstitutions for algebraic systems of type
((n), (m)) are the same.

Let X := {z,z2,...} be a countably infinite set of symbols called variables. For each
n > 1,let X,, := {«1,...,z,} be an n-element set which is called an n-element alphabet. Let
{fi : i € I} be the set of n;-ary operation symbols indexed by the indexed set I, where n; > 1
is a natural number. Let 7 be a function which assigns to every f; the natural number n; as its
arity. The function 7 = (n;);c; is called a type. An n-ary term of type 7 is defined inductively
as follows.

(i) Every variable z;, € X,, is an n-ary term of type 7.

(i) Ifty,...,t,, are n-ary terms of type 7 and f; is an n;-ary operation symbol, then f;(¢1, ..., tp,)
is an n- ary term of type 7.

We denote the set of all n-ary terms of type = which contains zy, ..., z, and is closed under
finite application of (ii), by W-(X,,) and let W (X) := U,,cn+ Wr(X,,) be the set of all terms
of type 7.

2 The Monoid of Generalized Relational Hypersubstitutions for Algebraic
Systems

Any generalized relational hypersubstitution for algebraic systems is a mapping that assigns any
operation symbol to a term and assigns any relation symbol to a relational term which does not
necessarily preserve the arity.

Definition 2.1 ([S]). Let I, J be indexed sets. If i € I,j € J and ty,3, ..., t,,, are n—ary terms
of type 7 = (n;)ier and v, is an m;—ary relation symbol, then ~; (¢, 2, ...,tm].) is an n—ary
relational term of type ((n;)icr, (m;)jer)-

We denote the set of all n—ary relational terms of type (7,7 ) by F* (W,(X,)) and let
F*(Wr(X)) := UnenF5 (W (X,,)) be the set of all relational terms of type (7,7 ).

A generalized relational hypersubstitution for algebraic systems of type (7, 7'/) is a mapping
o {fili € Iy ULyl j € T} = Wo(X) U F2 (W2 (X)),
where o(f;) € W (X) and o(v;) € F5(W-(X)).

The set of all generalized relational hypersubstitutions for algebraic systems of type (7, T/)
is denoted by Relhypg (T, 7'/). To define a binary operation on this set, we define inductively the
concept of a superposition of terms S™ : W, (X) x (W, (X))" — W,(X) by the following steps.
For any t,1q,... ,tm,sl, o, 8 € WT(X

(i) ift =x; for 1 <j <n,then S™(¢,s1,...,8,) = S;;
(i) ift = xj forn < j, then S™(t, s1,...,8,) 1= 2}
(ii) ift = fi(t1,...,tn,), then
Sn(t, Sly--- ,87,,) = fi(Sn(tl, Sly--- ,S,,,), RN Sn(tm,sh R Sn))

Forany t € W (X) and F = v;(s1,...,5m,) €
relational terms R" : (W, (X) U F (W, (X))) x

1) R™(t, b1, ty) = S™(t,t1,. .., tn),
(i) R™(F,t1,... tn) =7 (S™ (1, b1, stn)see s S™(Smyotty . tn)).

F*,(W-(X)), we define the superposition of
W) = W(X) U F2 (Wr(X)) by

Every generalized relational hypersubstitution for algebraic systems o can be extended to a
mapping o : W, (X) U F5 (W, (X)) = W (X) U F5 (W, (X)) as follows:
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(i) olx;] :==; fori e N;
(i) o[fi(ti ... tn,)] := S™ (o (fi),Tlta],- -, T[tn.]),

where i € I and ¢y,...,t,, € W,(X), i.e., any occurrence of the variable z, in o(f;) is
replaced by the term 7 [tx], 1 < k < n;;

(iii) [y (s1...,8m;)] := R™(0(v;),0[s1],...,0[sm,]), where j € J, s1,...,5m, € W,(X),
i.e., any occurrence of the variable xz;, in o (v, ) is replaced by the term 7[sg], 1 < k < m;.

We define a binary operation o, on Relhypg (7,7 ) by 0 0, e := & o o where o is the usual
composition of mappings and o, € Relhypg (7,7 ). Let 0.4 be the hypersubstitution which
maps each n;-ary operation symbol f; to the term f;(x,...,z,,) and maps each m;-ary re-
lation symbol ~; to the relational term v;(x1,..., %y, ). Then the structure Relhypg(7,7') =
(Relhypa (,7"), 04, 04q) forms a monoid.

Throughout this paper, we focus on the algebraic systems of type ((n),(m)). Let f be
an n—ary operation symbol and v be an m—ary relation symbol. We denote the generalized
relational hypersubstitution for algebraic systems of type ((n), (m)) which maps f to a term
t € W,)(X) and maps ~ to a relational term F* € F(’:M(W(R)(X )) by o4 .

Fort = f(t1,...,tn) € Wi)(X) and F = y(s1,...,8m) € F(’:n>(W(n)(X)), we introduce
the following notation:

var(t):= the set of all variables occurring in the term ¢.

var(F):= the set of all variables occurring in the relational term F'.

I(t):= the set of all indices of variables occur in var(t) N X,,.

I(F):=the set of all indices of variables occur in var(F) N X,,.

var(t)Xn := {t; | t; € X forsomei =1,...,n}.

var(F)Xm = {s; | s; € X forsome j = 1,...,m}.

To determine the set of all completely regular elements and intra-regular elements of
Relhypg((n), (m)) in Section 3 and Section 4, we need the concept of the i — most of terms and
the concept of subterms which were defined as the following definition.

Definition 2.2 ([12]). Let 7 = (n) be a type with an n-ary operation symbol f, ¢ € W(,(X) and
1 <4 <n. Ani— most(t) is defined inductively as follows:

(i) if ¢ is a variable, then 7 — most(t) = t;

(i) if t = f(t1,...,tn) Where t1,...,t,, € W(,)(X), then i — most(t) := i — most(t;).

Example 2.3. Let 7 = (3) with a ternary operation symbol f. Let t = f(f(zs, z1, 72),
x3, f(xg,1,29)). Then 1 — most(t) = 1 — most(f(xs,z1,22)) = x5,2 — most(t) = 2 —
most(z3) = z3 and 3 — most(t) = 3 — most(f(xg,x1,79)) = 9.

Lemma 2.4 ([12]). Let s,t € W(,,y(X). If j — most(t) = x € X,, and k — most(s) = x;, then
J — most(Jy[s]) = z;.

The above lemma can be applied to any generalized relational hypersubstitution for algebraic
systems of type ((n), (m)), such as the following. Let s, € W(,,)(X) and F' € F(’fm)(W(n)(X)).

If i — most(t) = x;, then i — most(oy,r[s]) = j — most(s).

Lemma 2.5 ([11]). Let t,u € W,,y(X) and F,H € F(*;n)(W(n)(X)) such that t = 6, p[u] and
F =6, p[H| with x; € var(t) and x; € var(F'). Then we have

(i) ift = x, € X,,, then k — most(u;) = x; and k — most(h;) = x;;

(i) if t € Wi, (X)\X, then u; = x; and hj = x;.

Definition 2.6 ([1]). Let t € W(,)(X), a subterm of ¢ is defined inductively by the following.
(i) Every variable € var(t) is a subterm of ¢;
(i) if ¢t = f(ty,...,t,) then ¢ itself, ¢y, ..., ¢, are subterms of ¢.

The set of all subterms of ¢ is denoted by sub(t).
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Example 2.7. Let 7 = (3) with a ternary operation symbol f. Let ¢t = f(¢1,t,t3) such that
ty = f(wxs, f(z1,27,23),22), o = x3 and t3 = f(xg, 1, T9). Then

sub(t) = {t1, x5, f(x1, 27, 23), 21,27, 23, T2},

sub(ty) = {x3},

sub(t3) = {t3,l‘8,$1,$9},

sub(t) = {t, t] 5 tz, t3, x5, f(l’[ , L7, .CE3), T1,T7,T2,T8, 1‘9}.

3 All Completely Regular Elements in Relhypg((n), (m))

To determine the set of all completely regular elements of the monoid Relhypa((n), (m)), we
first consider the structure of regular elements of the monoid. An element o r € Relhypc((n),
(m)) is called regular if and only if there exists o,y € Relhype((n), (m)) such that oy p =
01,F Og 0y, H O 0, . In this section, we use the concept of regular elements as a tool to determine
the set of all completely regular elements of the monoid of all generalized relational hypersub-
stitutions for algebraic systems of type ((n), (m)) and we have that a completely regular element
is both a left regular and a right regular element of the monoid of all generalized relational hy-
persubstitutions for algebraic systems of type ((n), (m)). For any o, p € Relhypa((n), (m)),
where t € W(,,)(X) and F € F(’;n)(Wm)(X )), ovF is called completely regular if and only if
there exists o, g € Relhypg((n), (m)) such that

Ot,F = Ot,F Og Oy,H Og O¢,F and
0t,F Og Ou,H — Oy,H Og Ot F-

Theorem 3.1. [11] Let ¢t = z; € X,, and F' = ~(s1,...,8m) € F(’;n)(W(n)(X)). Then oy ¢ is
regular if and only if one of the following conditions is satisfied:

() var(F) N Xy = {xp,, ..., 2p, } such that k — most(sb;) = xp, where {bj,..., b}
C{l,...,m};

(ii) var(F) N X, = 0.
Theorem 3.2. [11] Let t € W(,,)(X\X,,) and F' = y(s1,...,8m,) € F(*;n>(W<n)(X)). Then o4
is regular if and only if one of the following conditions is satisfied:

(i) var(F) N Xom = {xb,, ..., 7, } such that s,; = x, where {b,..., b7} C{1,...,m};

(ii) var(F) N X, = 0.
Theorem 3.3. [11] Let t € W, (X)\X such that var(t) N X,, = {z4,,...,%4,} and F =

Y(S1y---y8m) € F(*;n)(W(n)(X)). Then oy, is regular if and only if t,; = x,, where {aj, ..., q;
C {1,...,n} and var(F) N X;, = {xp,,...,x,} such that s,; = xp, where {f,...,b;} C
{1,...,m} orvar(F)N X, = 0.
Theorem 3.4.Let t = x; € Xy and F' = (s1,...,8m) € F,\(Wn)(X)). Then ovp is
completely regular if and only if one of the following conditions is satisfied:

(i) var(F) N Xy, = {xp,, ..., xp, } such that i — most(sy,) = x4,) where ¢ is a bijective

map on {bi,...,b;};
(ii) var(F) N X, = 0.

Proof. Let oy r be completely regular. Then there exists o, g € Relhypa((n), (m)) such that

Ot,F = O F Og Oy, H Og Ot F, 3.1
and

Ot,F Og Oy, H = Oy,H Og Ot,F- (3.2)
Assume that var(F) N X, # 0, and let var(F) N X, = {xp,,..., 23, }. We will show that
i —most(sy,) = Ty, foralll = 1,...,j where ¢ is a bijective map on {by, ..., b;}. Consider

(0w 09 01,7) (V) = Gum [F]

= Rm(H7 awH[sl]a v aa’\u,H[Sm])
=y(S"(h1,Gu,uls1]; -, Cum[sm]), - - -
Sm(hmaau,H[Sl]y cee ;3U,H[5m]))

=~(at,...,am)
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where a; = S™(hi, 04 1 [S1],. .., 0um[sm]) foralli =1,... m.

Then F = (0, 0g 0u,i g 01, 7)(7) = G, p[y(ar, ... ,am)] and var(F) N X, = {zy,, ..., zp, }.
By Lemma 2.5(i), we have i — most(ay,) = xp, foralll = 1,..., 7. So xp, = i — most(S™ (hy,,
ouwnls)y. .. oum[sm])). Without loss of generality, we may assume that i — most(hy,) =
xy, € var(F) foralll = 1,...,5. Then xy, = Gy m[sy,], so there exist elements zy,,...,zp,
which all are distinct, since if z;,, = x3, for some p # ¢ € {1,...,j} thenz, = Gy mlss,] =
Ou, H[sbq} = mp, but y, # xp,. Hence all by, ..., b; are distinct. We can define a bijective map

qb . {bl, ceey bj} — {bl, ey bj} by ¢(bl) = bl. Hence i — mOSt(Sbl) = T, = Ty(b,)-

Conversely, choose oy, 17 € F{;, ) (W) (X)) wherew = 23, H = y(hu, ..., hin) withvar(H) =
var(F). If var(F) N X, = () then we choose hy = s, forall k = 1,...,m. And if i —
mots(sy,) = Ty(p,), We choose i — most(hy,) = Ty-1(,)- By Theorem 3.1, we have oy r o,
Ou,H ©g 01,5 = 0y . Next we will show that oy p oy 04,5 = 04,1 04 04, . Consider

(01,F 0g 0w 1) () = R"(F,i —most(hi),...,i —most(hy,))

=y(wi, ...y W),
where w; = S™(s;,4 — most(hy),...,i —most(hy,)) foralli=1,...,m.
ouH 99 01,7) () = R"(H,i—most(s1),...,i —most(sm))
=5(vi,...,0m),
where v; = S™(h;, i — most(s1),...,1 — most(sy,)) foralli =1,... m.
Consider
i — most(w;) =i — most(S™ (s;,1 — most(hy),...,i — most(hy)))
= S™(i — most(s;),i — most(hy),...,i —most(hy,))
= S"™(xg(p,), 1 — most(hy),...,i —most(hm))
=i —most(hyp,)) (i — most(hgp,)) = Tg-1m)))>
and
i —most(v;) =i —most(S™ (hi,i — most(sy),...,i —most(sy)))
= 8" (i — most(h;),i — most(s1),...,i — most(sm))
= 5" (xg-1(6), 1 — most(s1),...,i —most(s,,))
= ’L — mOSt(S(p—](bl))(i — mOSt(S¢— l(bl)) = l‘(zg— 1(¢(bl)))
Thus w; = v; foralli = 1,...,m. So 0y F 04 04, i = 0u,H o4 0¢,F. Therefore o, r is completely
regular. .

Theorem 3.5. Let t € W,,\(X\X,,) and F = ~(s1,...,5m) € F(*;n)(W(n)(X)). Then oy f is
completely regular if and only if one of the following conditions is satisfied:

(i) var(F) N Xy, = {xp,,..., 2, } such that sy, = x40, foralll = 1,...,j where ¢ is a
bijective map on {by,...,b;};

(ii) var(F) N X, = 0.

Proof. Let o r be completely regular. Then there exists o, g € Relhypa((n), (m)) such that
Ot,F — O0t,F Og Oy,H Og Ot,F, (33)

and

Ot,F Og Oy,H = Oy ,H Og Ot F- (34)

Assume that var(F) N X, # 0, and let var(F) N X, = {x,, ..., 2y, } such that sp, # x4,
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where ¢ is a bijective map on {by, ..., b;}. Consider

(0,7 09 Ou,H 09 01, 7)(7) = Ot F[Ou,u[F]]

=0yr[R™(H,0u uls1],---,0um[5m])]

= a\—t,F[’y(ala L) 7am)]

= ’Y(Sm(sl,at7p[a1], e ,Enp[am]), ey

Sm(Sm, (/7\,5,F[G,1], . ,at,p[&m])).
By (3.3), we have o p[ap,] = xy,. Since x, € var(F), we have to replace a variable xy, in the
relational term F' by 0 pap,]. Since oy rlan,| = 01,7 [S™(ht,, Ou,m[S1]s- - Ou m[Sm])], then
hy, € Xy, foralll =1,..., 5. Without loss of generality, we may assume that hy, = zp,. SO

or.rlay] =G r[S™ (b, Oum(s1]s - Fum [5m])]

=Gt r[Cu,nsp,]]

#xbz'

So sy, = xp,. By using this process, we obtain elements xy, , ..., xp, which all are distinct. We
can define a bijective map ¢ : {by,...,b;} — {b1,...,b;} by ¢(bi) = by. Hence sy, = zy(,).-

Conversely, lett;, € sub(t). Choose o, g € Relhypc((n), (m)) where var(t) = var(u),u, =
ty, and hg,) = oy, forall I = 1,... 4, var(H) = var(F). Let s; € sub(s,), hy € sub(h,) for
allg € {1,...,m}\{by,...,b;}. Ifvar(s;)N X,, = () then we choose i; = s;. Andif 5; = x4, )
and ¢(bg) = by then we choose hy(,) = xs,. If var(F) N X,,, = 0 then we choose h; = s; for all
i =1,...,m. By Theorem 3.2, we have o r o4 0, i 04 01 = 0y p. Next, we will show that
Ot,F Og Ou,H = Ou,H Og 0, . Consider

(0,7 og ou,m)(f) = S"(t, 00, Flur], ..., 0 pun))
= flwy,...,wy)
where w; = S™(t;,0¢ rluil, ..., 0 r[uy]) foralli=1,... n.
(Uu7H Og ULF)(f) = Sn(u; a-\u7H[t1]a o ;/O-\u7H[tn])
= f('tﬁl7 cey W)
where ’LEZ‘ = S”(uiﬁu,H[tl], AN ,8u,H[tn]) forall i = ],. Loy
(Ut,F og O-u,H)(’y) = Rm(F7 8t,F[hl]a ce 7a\t,F[hm])
=1y, Um)
where v; = R"(sj,0¢,p[h1],...,01r[hy]) forall j =1,... ,m.
(O'u,H Og Ut,F)("Y) = Rm(Ha 8u,H[S]]a s 7a\u,H[5mD
= f(01,...,vm)
where 0; = R"™(h;j,0u m[s1], ..., 0un[sm]) forall j =1,... m.
We will show that f(wy,...,w,) = f(,...,w,) and y(vi, ..., vm) = (01, ..., Un).
Case 1 var(F) = {xs,,. .., 2y, } such that s, = x4,
Case1.11€{1,...,5}:
Uy, = Sm(sb“&t,p[hl], NN 7at’p[hm])
= Sm('rqﬁ(bl)) a\t,F[hl]v ce 7&t,F[hm])
= 0rrlhom))
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and

Oy, = S (hoy, 0w, [51], - s O, [Sm)])
= S"(xg-1(1) Ou.[51], - Ou, 1 [5m])
= Gu,1[54-1()]
= Tp,.
Case 121 € {1,...,m}\{by,....b;}:
Let s; € sub(sq) and hy € sub(hy) forall 1 = {1,...,m}. Then vy = S™(sq,0¢,p[R1],...,

o1, r[hm]) and 0, = S™(hg, 0w m(s1],---,0u m[Sm]). If var(s;)) N X,, = 0, then v; = s; and
0 =h =s.1Ifs; = Zp(by) and ¢(bq) = b,;, then

v = Sm(sl,at’p[hl], . ,at’p[hm]) = Gt,p[hd)(bl)] = Ty, and
Oy = S™ (M, Gu,m(s1], - - Oum[m]) = Tumsi] = Tp,) = Tb,-

Hence vy, = ¥y,

Case 2 var(F) N X, = 0: It is easily to calculate that v(vy,...,v,) = ¥(d1,...,0,). By
straightforward calculation, we obtain f(w,...,w,) = f(w,...,w,). Thus oy p oy o0 g =
ou,H ©g 0+, . Therefore o, r is completely regular. O

Theorem 3.6. Let t € W,,)(X)\X such that var(t)NX,, = {24, ..., 2q,} and F = (s1,...,5m)
€ F(*;n)(W(n)(X)). Then o r is completely regular if and only if t,, = T (g, forallk =1,... i
where  is a bijective map on {ay, ...,a;} and var(F) 0 X, = {xy,, ..., 2, } such that s,, =
Ty foralll =1,...,j where ¢ is a bijective map on {bi, ...,b;} or var(F) N X, = 0.

Proof. Let oy r be completely regular. Then there exists o, g € Relhypa((n), (m)) such that

Ot,F = Ot,F Og Ou,H Og O, F, (3.5)
and
Ot,F Og Oy,H — Oy ,H Og Ot F- (3.6)

If w € X, thent = (0, 0y 0y ©g 01,r)(f) = u € X. This is a contradiction with ¢ €
Wi (X\X. Sou = f(ui,...,un) € W, (X)\X. Consider

(0w ogoe,r)(f) = S"(u,0u,ult1], ..., Cu H[tn])
=S"(f(ut,-.. un),0uultr], ., 0umtn])
= f(S"(ulﬁu,H[tl], e ,a\'u’H[tn]), ey
S™(tUn, Ou,m[t1], ... Oumtn]))
= flwy,...,wy)

where w; = S™(u;, 0, m[t1],- .., 0u m[ts]) foralli =1,...,n. Then
t= 6\'t,F[f(U”w ) wn,”

=S"(f(t1,... tn), O, p[w1], .., 00Fwy])

where t; = S™(t;, 04, p[wi], ..., 0 p[wy]) foralli =1,... n. Since var(t)NX,, = {za,, ..., Za, }
by Lemma 2.5(ii), we have z,, = 7 r[w,,] forall k = 1,...,4. Since t € W(,)(X)\X and

Way, = Tqy. Hence xq, = wq, = S™(u;, Gu mrltr]; - -, Oum(un]). If ua, = fluay, - Uay,) €

Wiy (X), then 4, = S™(ta,,, Gu,mlt1], - - -, Funmtn]) € W) (X)\X, a contradition. So u,, =

Zq, € var(t) for some ay € {ai,...,a;}, then x4, = wa, = S™(Uay, Ou m[t1]s- -y Our[tn])

Thus ¢,, = x,, for all a; € {ay,...,a;}, by using this prosess we obtain elements z,,, ..., Z4,

which all are distinct. We can define a bijective map = : {ay,...,a;} — {a1,...,a;} by

m(ar) = ax. Hence t,, = Taq, = Zn(y,). The proof of s;, = x4,) is similary of Theorem

3.2.
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Conversely, choose o, i € Relhypa((n),(m)) where ur(,,) = x4, forall k = 1,...,14,
l=1

var(t) = var(u) and hyg,) = xp, for all voos gy var(H) = var(F). Let ¢, € sub(t,),
uy, € sub(up) forall p € {1,....,n}\{a1,...,a;}. If var(ty) N X,, = 0 then we choose uj, = t.
And, if ty = 2, )and w(ap) = ay, then we chooseu nlar) = = ,,. Lets; € sub(sy), i € sub(hy)

forall ¢ € {1,...,m}\{b1,...,b;}. If var(s;) N X,, = 0 then we choose h; = s;. And if
81 = Typ,) and ¢( q) = bi then we choose hy,) = xp,. If var(F) N X, = () then we choose
h; = s; for alli = 1,...,m. By Theorem 3.3, we have o, p 04 0y g 04 01, r = 0 r. Next we
will show that oy o4 0. g = 0y 1 04 0, . Consider

(0,7 og ou,m)(f) = S"(t, 00, F[ur], ..., G pun))
= flwi, ..., wy)
where w; = S™(t;,0¢ rluil, ..., 0 pu,]) foralli=1,...,n
(o-u,H Og Ut,F)(f) = Sn(uy 6-\u,H[’fl]a v ;au,H[tn])
= f(, ..., W)
where @; = S™(u;, 0y m([t1], ..., 0um[ts]) foralli=1,.
(0,F 0g ou,m)(y) = R™(F, Gt plh],...,00r[hm])
=1y, Um)
where v; = R™(s;,0¢,p[h1],...,0¢r[hm]) forall j =1,.
(Owm og0tr)(v) = R™(H,Guu[s1]s ..., 0u,m[Sm])
:f(ﬁla"'av;n)
where 0; = R™(h;,0u,m[s1],...,0um[sm]) forall j =1,... ,m.
We will show that f(wy,...,wy,) = f(w1,...,w,) and (v, ..., vm) = ¥(V1,. .., Um).
Consider var(t) = {xq,, ..., Tq,} such thatt,, = x4,
Case 1 ke {l,... i}
wak - Sn(tak,at7F[U1], LI )at,F[un})
- Sn(mﬂ(ak)a a\—if,F[ul]a v 76—t,F[un])
= a\t7F|:u7T(ak)]
= l'ak
and
Wa,, = Sn(uﬂ'(ak)’ au,H[tl] Uu H[tn])
- Sn(wakvau,H[tl]a ceey Uu,H[ ])
= 8u,H[tak]
= ,Tﬂ(ak).

Case2 ke {l,...,n}\{a1,...,a;}:

Let ¢, € sub(t,). Then wy, = S"(tk,&\tp[uﬂ, oo, 0t Flug]) and Wy = S™ (ug, Oy, m1[t1], -

Ou H[ D for all £k = 1,...,n. If var(tk) NXy = @, then wy, = t; and W, = ug = tk If
tk = Tr(q,), then

wg = S"(tk,at,F[ul], e ,Gt,F[un]) = ’a\t,p[uﬂ(ak)] = %4, and
W = Sn(uk,(/f\u’H[td, . ,Eu,H[tn]) = au,H[tﬂﬁl(aw] = Tq-
Hence wq, = @Wq,, S0 f(wi,...,wy) = f(,...,1w,). Similary we have f(vy,... ,vp)

= f(v1,...,Um). Thus oy p oy 0y = 0y, 04 01, r. Therefore o, p is completely regular. O
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4 All Intra-regular Elements in Relhypc((n), (m))

It is well-known in semigroup theory that every completely regular element is an intra-regular
element. In general, every intra-regular element need not be a completely regular element. In
this section, we use the concept in Section 3 to show that every intra-regular element of the
monoid of all generalized relational hypersubstitutions for algebraic systems of type ((n), (m))
is a completely regular element. Moreover, we show that completely regular, left regular, right
regular and intra-regular elements of the monoid of all generalized relational hypersubstitutions
for algebraic systems of type ((n), (m)) are the same.

Lemma 4.1. ([1]) Let t,u € W,,)(X)\(X). Then |var(64[u])*~| < |var(t)*~|.

Lemma 4.2. ([10]) Let F, H € F{, ,(W(,)(X)). Then |var (6, r[H]) X | < [var(F)*m].

Theorem 4.3. Lett = x; € X,, and F = v(s1,...,8m) € F(*;n)(W(n)(X)). Then oy p is intra-
regular if and only if one of the following conditions is satisfied:

(i) var(F) N Xy = {xp,, ..., 2y, } such that i — most(sy,) = x4(,) where ¢ is bijective map
on {by,...,b;};

(ii) var(F) N X, = 0.

Proof. Let o p be intra-regular. Then there exist o, i, 0., € Relhype((n), (m)) such that
Ot,F = Oy,H Og Ot,F Og Ot F Og Oy,G- (41)

Assume that var(F) N X, # 0. Let var(F) N Xy, = {xp,, ..., 2, } and i — most(sy,) # Ty,
where ¢ is bijective map on {by, ..., b;}. Consider

(O-t7F Og O-tq,F) = aﬂJI,F[F]

= Rm(F, Gxi,p[sl], ce ,E%F[sm])
=~v(S™ (51,7 — most(s1),...,i — most(sm))s- -,
S™($m,t — most(s1),...,i — most(sm)))-

Since every variable x;, € var(F) isreplaced by i —most(sy, ) but x4,y & {i—most(sy,) : k =
1,...,7}, @, & var((ovr og 0,7)(7y)). This implies that |var((o¢,r og ov,r)(7))| < |var(F)|.
Consider

(07, 0 00.6)(7) = 57 r[G]

= Rm(EtZ,F,z' —most(g1),-..,i — most(gm))-

Since every vaiable x, € of p is replaced by i — most(gy, ), so |var((07 p og 0v.a)(7))] <
var (o} p(7))| < [var(F)|. By (4.1) and var(F) = var((0u,n 0407 pog00.6)(7)) € var((o7 pog
00,6)(7)), s0 |var(F)| < |var((07 p oy 0v,¢)(7))| < |var(F)|, this is contradiction. Hence
i — most(sy,) = T4(,). Conversely , by Theorem 3.4, o r is completely regular. It follows that
o+ F 15 intra-regular. O

Theorem 4.4. Let t € W,,\(X\X,,) and F = ~(s1,...,5m) € F(’:n)(W(n)(X)). Then o is
regular if and only if one of the following conditions is satisfied:

(i) var(F) N Xy, = {xp,, ..., 20, } such that sy, = wy, for alll = 1,...,j where ¢ is
bijective map on {bi,...,b;};

(ii) var(F) N X, = 0.

Proof. Let oy r be intra-regular. Then there exist o, i, 0y, € Relhypa((n), (m)) such that
Ot,F = Ou,H g Ot ,F Og Ot,F Og Oy,G- (42)

Consider

(o7 0g o, 1) () = (W], ..., w},) where wj = R™(sj,00r[s1],--.,0F[Sm])
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and

(Jtz,F Og O”U,G)(’Y) = 7(’217 teey Z%) where Z; = Rm(wgaa—tz,F[glL s aa\—i%F[gm])

forallj=1,...,m.
Assume var(F) N X,, # 0. Let var(F) N X,, = {xs,,..., 7, } such that s, # 4, for all

l=1,...,75 where ¢ is bijective map on {b1,...,b;}. We consider two cases:

(D) wy,) ¢ var(F)Xm.

() sp,,---,8, €var(F) such that s, = s, for some p,q € {b1,...,b;}.
Case 1 Assume that the condition (1) holds. Then var (G, p[F])*™ C var(F)*m = {xy,, ...z, }
and |var(G,,p[F])*™| < |var(F)*|. Fistt, we will show that z4,,) ¢ var(g, p[F])*". Con-
sider (04, og 01, 7)(7) = y(wi, ..., wy,) where w) = R™ (5,01 r[s1],...,0¢ r[sm]) forall j =
Looom Ifage, € var (G, p[F])X™, then wy, = Ty(p,)- So there exists k € {by,...,b;} such

that s, = z4(,) and z4(,) € var (o, p[F])*™, which contradicts to x4, ¢ var(F)*m. Hence
Ty, ¢ var(oy p[F])*m. Then var (o, p[F])X™ C var(F)*m. Therefore [var (G p[F])*| <
lvar (F)Xm]|.
Relhypa((n), (m)). By Lemma 4.2, we have |var(o} p oy 0y.c) ™

Finally, we will show that o, r # ouH o4 atzyF o4 oy, for all oy pg,00.c €
< |var(o? z)%m| and

lvar (o, i o4 ag’F 04 0pc) | < |var(03’F 04 0y,c)X™|. Hence |var(oy g oy (TiF 0g Oy.c) |
< |var(F)%m|. It follows that o ¢ is not intra-regular.

Case2 sp,,...,5,, € var(F) such that s, = s, for all p,q € {b1,...,b;}. Then there ex-
ist at least one element of var(F') which is not an element of the set {s,, ..., Sb, }, say xp,. So
T, ¢ 8’15’F[Sk] forall k = b], ey bj. Consider (Ut,FOgUQF)('Y) = Rm(F, at,p[le . ,8t’p[8m]).
We will replace every zy in the term F' by 7, p[sx]. But zp, ¢ 04 p[sg] forall & = by,...,b;,
so xy, ¢ var((oy,r og o¢,r)(7)). Thus [var((oyr oy 01.7)(7))| < |var(F)| — 1. Let A= {p €
I(F)lsp # sqforallqg = 1,...,m}, B = {p € I(F)|w, € var(F) and w, # w, forall ¢ =
1,...,m}, B = {p'|w], = a, forall p € B}. Then A, B, B # () and B = B. By the definition
of the set B, we can consider 2 cases.

Case2.1: gy = =z; forall p’ € B. Then |var((0} p oy 0v.c)(7))] < |var((o} p)(7))] <
[var(F)| — 1. Since var((ou,ir o 07 p 05 00,6)(7)) S var((o7 p o 0u,6)(7)), lvar((ou,m o4
07 5 09 0u,6) (7)) < var((o7 p og 00.) (V)| But F = 0,5 () = (0w 09 07 09 00,6)(7)-
Sovar(F) = |var((oy,i 04 07 5 0 0v.c)(7))| < |var(F)| — 1, this is a contradiction.

Case 2.2: There is p' € B such that g, € Wiy (X\X. Let C = {plz, € Xp,2, #
zp forall ¢ = 1,...,m}. Then |C| < |B| — 1 = |B| — 1, because g, is replaced by &, r[g,].
Since F = (0u,11 09 0} r 09 00,6)(7), var(F) € var((o} p 04 70,6)(7)). So |A] < |C], but
|A| > |B| > |B| — 1 > |C| > | A, this is a contradiction.

Conversely, by Theorem 3.5 o r is completely regular. It follows that o; r is intra-regular. O

Theorem 4.5. Lett € W,,)(X)\X such that var(t)NX,, = {24, ..., Zq,} and F = 7(s1,...,5m)
€ k., (Win)(X)). Then oy r is intra-regular if and only if t,, = () forallk = 1,... i

where  is a bijective map on {ay, ..., a;} and var(F) 0 Xy, = {xy,, ..., 2, } such that s,, =
Ty foralll =1,...,j where ¢ is a bijective map on {by,...,b;} or var(F) N X, = 0.

Proof. Let o4  be intra-regular. Then there exist o, g, 0., € Relhype((n), (m)) such that

Ot,F = Oy,H Og Ot,F g Ot,F Og Ou,G (43)

Consider

(Ut,F Og Ut,F)(f) = f(wl, ey wn) Where w; = Sn(ti,at’p‘[tlL e 7at’F[tn])
and

(Jf’p o 0p,c)(f) = f(z1,...,2,) Where z; = S"(wiﬁtz,F[vl]w..,857F[vn])
foralli=1,...,n.

(01,F 0g 00, 7)(7) = y(wi, ..., wy,) where wj = R™(s;,0¢r[s1],...,0tr[s5m])

and

(gwtz,F Og UU,G’)(’Y) = 7(217 ) Z;n) where Zj = Rm(%? EiF[QIL e 7&t2,F[gm])
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forallj=1,...,m
Assume var(t) N X,y = {&a,,...,%q,} such that t,, # () forall k = 1,...,7 where 7 is
bijective map on {ay, ...,a;} and var(F) N X,, # 0, var(F) N X, = {xp,,...,xp, } such that
b, # Ty, foralll =1,..., j where ¢ is bijective map on {by, ..., b; }. We consider four cases:

(1) @ (ay) & var(t).

) tay,---,ta, € var(t) suchthatt. = tq for some ¢, d € {ay,...,a;}.

() wyn,) ¢ var(F)Xm.

) sp,, ..., 8, €var(F)suchthat s, = s, for some p,q € {b1,...,b;}.
Case 1 Assume that the condition (1) holds. Then var (5 p[t])*» C var(t)X = {z4,,..., 74, }
and |var(cy p[t])X"| < |var(t)X~|. Fisrt, we will show that = ( ¢ var (G, p[t])*~. Consider
(or,pogour)(f) = f(wl, ..., wy) where w; = S™(t;, 04 p[t1], - at Fltn]) foralli=1,... n.
If 24,y € var(, p[t]) X" then Wy = Tp(g,). So there exists p € {ai,...,a;} such that t
Tr(qy) AN Tr(q,) € UG/I‘(O’t’F[tD », which contradicts to . (,,) ¢ var(t)X". Hence (4 §Z
var (G, r[t])X». Thenvar (G, ¢ [t]) X" C var(t)X». Therefore \var(at7p[t]) n (t)%~]. Fi-
nally, we will show that o, p # 0, 1 0, af,F og0y.c forall o, m,0,c € Relhypa((n), (m)). By

Lemma 4.1, we have |var(o pog00,6) ™" | < [var(of o)™

and [var (o, 1 0G0} pogop.a) | <

[0ar(0 - 09 70,65 001 (7,11 25 7% 09 70,) %0 | < [var(F)X

is not intra-regular.

Case 2 tq,,-..,tq, € var(t) suchthatt. = ¢4 forall ¢,d € {ay,...,a;}. Then there exist at least
one element of var(t) which is not an element of the set {t,,, ..., t4, }, say Tay- So zq, & 01, r[t;]
for all j = ay,...,a;. Consider (at Fogour)(f) = S”(t our(ti],-..,0nr[tn]). We will re-
place every z; in the term ¢ by o, p[t ] But z,, ¢ o p[t;] for all J = ai,...,a;, SO Tg, &

var((oy,r og 0,7)(f)). Thus |var((0t7p og o,7)(f))| < |var( )] — 1. Let A= {c € I(t)|t. #
toforalld = 1,...,n}, B = {c € I(t)lw. € var(t) and w, # wq forall d = 1,...,n},
B = {d|w. = we forall c € B}. Then A, B, B # () and B = B. By definition of the set B, we
can consider 2 cases.

Case 2.1: v» = x; forall ¢ € B. Then lvar((07 g og 0v.c)(f))| < lvar((of £)(f))] <
[var(t)| — 1. Since var((ou, i o9 07 p 09 00,6)(f)) S var((o7 p o5 00.6)(f)), lvar((gum o4
07 5 09 00,6) ()| < lvar((o7 p og o0.6)(f))]. Butt = o0 p(f) = (0u,ir 09 07 p 09 70.c)(f)- S0
var(t) = (0w, 09 07 o 09 0u.c)(f))| < var(t)| — 1, this is a contradiction.

Case 2.2: There is ¢ € B such that v € W, ) (X)\X. Let C = {c|z. € Xp,2. #
zq foralld = 1,...,n}. Then |C] < |B| -1 = |B| — 1, because w.. is replaced by ; p[ve].
Since t = (0y,u 4 crt27F og 0v.c)(f), var(t) C Uar((artz,F og 0u,c)(f)). So |A] < |C|, but
|A| > |B| 2 |B| — 1 = |C| = | A, this is a contradiction. The proof of Case 3 and 4 are similar
to Case 1 and 2 of Theorem 4.4, respectively. Conversely, by Theorem 3.6 o ¢ is completely
regular. It follows that o; r is intra-regular. O

Corollary 4.6. Let 01 € Relhyp((m), (n)). Then the following statements are equivalent:
(i) ot is completely regular in Relhypg((n), (m));
(ii) oy r is left regular in Relhypc((n), (m));
(iii) o, F is right regular in Relhypg((n), (m));
(iv) oy, is intra-regular in Relhypa((n), (m)).

)

5 Conclusion remarks

This paper aims is to determine the set of all completely regular elements and intra-regular
elements of Relhypc((n), (m)). Furthermore, we show that the sets of all completely regular
elements, left(right) regular elements and intra-regular elements of the monoid of all generallized
relational hypersubstitution for algebraic systems of type ((n), (m)) are the same.
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