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Abstract In this paper, we introduce the concepts of weakly p-nuclear m-homogeneous poly-
nomials and quasi Cohen p-nuclear linear operators and m-homogeneous polynomials. The main
finding of this study shows that, under usual conditions, linear functionals in the space of weakly
p-nuclear polynomials are represented, by quasi Cohen p-nuclear polynomials.

1 Introduction

The theory of operator ideals has been extended to ideals of nonlinear operators, for example,
multilinear operators, homogeneous polynomials, Lipschitz operators..., and the different ways
of generating such non-linear operator ideals as well as the study of their properties, we refer
to the monographs (see e.g. ([2], [1], [4]) ). In 1983, Pietsch [6] made leading contributions
through his work titled "Ideals of Multilinear Functionals," extending the concept of linear nu-
clear operators to nonlinear ones, particularly in multilinear and polynomial cases. In this paper,
we further this extension by introducing the concept of weakly p-nuclear operators,1 ≤ p < ∞,
to the case of the polynomial recently introduced by Kim J. M [5].

We fix some notations and notions used throughout this paper. For X and Y Banach spaces,
we denote by L(X,Y ) the Banach space of all bounded linear operators from X into Y .

Let m be a natural number. A map P : X → Y is called an m−homogeneous polynomial if
there exists a unique symmetric m−linear operator P̂ : X × · · · ×X → Y such that

P (x) = P̂ (x, (m)... , x) for every x ∈ X.

We denote by P(mX;Y ) the space of all continuous m−homogeneous polynomials of degree
m from X into Y ,This space is a Banach space with the norm

∥P∥ = sup{∥P (x)∥ : ∥x∥ ≤ 1}
= inf{C : ∥P (x)∥ ≤ C∥x∥m, x ∈ X}

We denote ⊗mX := X⊗
(m)
· · · ⊗X for the m-fold tensor product of X is defined as the vector

space, by the set {
u =

n∑
i=1

λixi⊗
(m)
· · · ⊗xi, (λi)

n
i=1 ⊂ K and xi ∈ X

}
.

We denote by ℓwp (X) the Banach space of all weakly p-summable sequences (xn)n in X with
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the norm 
∥(xn)n∥wp = sup

x∗∈BX∗

( ∞∑
n=1

| ⟨x∗, xn⟩ |p
)1/p

, if 1 ≤ p < +∞,

∥(xn)n∥w∞ = sup
x∗∈BX∗

sup
n
| ⟨x∗, xn⟩ |, if p = +∞

.

A polynomials ideal Q is a subclass of the class P of all continuous homogeneous polynomi-
als between Banach spaces such that for all m ∈ N and Banach spaces X and Y its components
Q(mX;Y ) := P(mX;Y ) ∩Q satisfy the following conditions:

(i) Q(mX;Y ) is a linear subspace of P(X,Y ) which contains the m−homogeneous polyno-
mials of finite type.

(ii) The ideal property: If P ∈ Q(mX;Y ), u ∈ L(G,X) and v ∈ L(Y, F ) then v ◦ P ◦ u is in
Q(mG,F ). If ∥.∥Q : Q → R+ satisfies

(i’) (Q(mX;Y ), ∥.∥Q) is a normed space for all Banach spaces X and Y and all m,

(ii’) ∥Im : K → K : Im(x) = xm∥Q = 1 for all m,

(iii’) if P ∈ Q(mX;Y ), u ∈ L(G,X) and v ∈ L(Y, F ) then ∥v◦P ◦u∥Q ≤ ∥v∥∥P∥Q∥u∥m,

then (Q, ∥.∥Q) is called a normed polynomial ideal.

Recall that a bounded linear operator u : X → Y is weakly p-nuclear (1 ≤ p ≤ ∞) if can be

written in the form u =
∞∑
n=1

x∗
n ⊗ yn, where (x∗

n)n ∈ ℓwp (X
∗) and (yn)n ∈ ℓwp∗(Y ).

We denote by Nwp(X,Y ) the space of all weakly p-nuclear operators from X into Y endowed
with the weakly p-nuclear norm

∥u∥Nwp := inf ∥(x∗
n)n∥wp ∥(yn)n∥wp∗ ,

where the infimum is taken over all such weakly p-nuclear representations of u.
We known that in [5], a bounded linear operator u : X → Y is weakly p-nuclear (1 ≤ p < ∞)

if and only if u has a factorization u = a ◦ b such that the following diagram commutes:

X

b ��

u // Y

ℓp

a

??

with b ∈ L(X, ℓp), a ∈ L(ℓp, Y ). In this case,

∥u∥Nwp
= inf ∥a∥.∥b∥,

the infimum is taken over all factorization as above.

2 Weakly p-nuclear polynomials

Now, we give the following concept of weakly p-nuclear polynomials, extending the notion of
weakly p-nuclear operators introduced in [5].

Definition 2.1. Given 1 ≤ p < ∞. A polynomial P ∈ P(mX;Y ) is weakly p-nuclear if it can
be written in the form

P (x) =
∞∑
n=1

an(x)
myn, (x ∈ X)

where (an) ⊂ X∗ and (yn) ∈ ℓwp∗(Y ) such that
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sup
x∈BX

( ∞∑
n=1

|⟨an, x⟩|mp

)1/p

< ∞

We use PNwp
(mX;Y ) to denote the set of all weakly p-nuclear polynomials from X into Y

and define a norm on PNwp(
mX;Y ) by

∥P∥Nwp
:= inf sup

x∈BX

( ∞∑
n=1

|⟨an, x⟩|mp

)1/p

sup
y∗∈BY ∗

( ∞∑
n=1

|⟨y∗, yn⟩|p
∗

)1/p∗

,

where the infimum is taken over all such representations as above.

Theorem 2.2. For 1 ≤ p < ∞,
[
PNwp

, ∥.∥Nwp

]
is a Banach polynomial ideal.

Proof. Let P1, P2, . . . ∈ PNwp
(mX;Y ) such that

∞∑
k=1

∥Pk∥Nwp
< ∞, and consider such repre-

sentations that for each k, Pk =
∞∑
n=1

amk,n ⊗ yk,n such that

sup
y∗∈BY ∗

( ∞∑
n=1

|⟨y∗, yk,n⟩|p
∗

)1/p∗

≤
[
(1 + ϵ) ∥Pk∥Nwp

]1/p∗

sup
x∈BX

( ∞∑
n=1

|ak,n(x)m|p
)1/p

≤
[
(1 + ϵ) ∥Pk∥Nwp

]1/p
.

It follows that

∥∥∥(⟨y∗, yk,n⟩)∞n,k=1

∥∥∥w
p∗

:=

( ∞∑
k=1

∞∑
n=1

|⟨y∗, yk,n⟩|p
∗

)1/p∗

=

 ∞∑
k=1

[ ∞∑
n=1

|⟨y∗, yk,n⟩|p
∗

]1/p∗p∗
1/p∗

≤

[ ∞∑
k=1

([
(1 + ϵ) ∥Pk∥Nwp

]1/p∗)p∗]1/p∗

= (1 + ϵ)1/p∗

[ ∞∑
k=1

∥Pk∥Nwp

]1/p∗

and

sup
x∈BX

( ∞∑
k=1

∞∑
n=1

|ak,n(x)m|p
)1/p

=

 sup
x∈BX

∞∑
k=1

[ ∞∑
n=1

|ak,n(x)m|p
]1/p

p1/p

≤

 ∞∑
k=1

 sup
x∈BX

[ ∞∑
n=1

|ak,n(x)m|p
]1/p

p1/p

≤

[ ∞∑
k=1

([
(1 + ϵ) ∥Pk∥Nwp

]1/p
)p
]1/p

= (1 + ϵ)1/p

[ ∞∑
k=1

∥Pk∥Nwp

]1/p

.



616 A. Hammou, A. Belacel, A. Bougoutaia and A. Tiaiba

Then, P =
∞∑
k=1

∞∑
n=1

amk,n ⊗ yk,n and

sup
x∈BX

( ∞∑
k=1

∞∑
n=1

|⟨ak,n, x⟩|mp

)1/p

sup
y∗∈BY ∗

( ∞∑
k=1

∞∑
n=1

|⟨y∗, yk,n⟩|p
∗

)1/p∗

≤ (1 + ϵ)1/p∗

[ ∞∑
k=1

∥Pk∥Nwp

]1/p∗

(1 + ϵ)1/p

[ ∞∑
k=1

∥Pk∥Nwp

]1/p

= (1 + ϵ)

[ ∞∑
k=1

∥Pk∥Nwp

]
.

For every ϵ > 0, follows that

∥P∥Nwp
≤

∞∑
k=1

∥Pk∥Nwp
< ∞

Let Q : X1 −→ X , O : Y −→ Y1 be a bounded linear operators and a polynomial P ∈
PNwp (

mX;Y ). We want to show that: OPQ ∈
[
PNwp (

mX1, Y1) , ∥ · ∥Nwp

]
.

OPQ(x) = O

( ∞∑
n=1

an(Q(x))myj

)

=
∞∑
n=1

an(Q(x))m ·O (yn)

=
∞∑
n=1

(Q∗an) (x)
m ·O (yn) .

Hence,

sup
x∈BX1

( ∞∑
n=1

|⟨x,Q∗an⟩|mp

)1/p

sup
y∗∈BY ∗

1

( ∞∑
n=1

|⟨O(yn), y
∗⟩|p

∗

)1/p∗

= sup
x∈BX1

( ∞∑
n=1

|⟨Qx, an⟩|mp

)1/p

sup
y∗∈BY ∗

1

( ∞∑
n=1

|⟨yn, O∗y∗⟩|p
∗

)1/p∗

= ∥Q∥m ∥O∗∥ sup
x∈BX1

( ∞∑
n=1

∣∣∣∣〈 Qx

∥Q∥
, an

〉∣∣∣∣mp
)1/p

sup
y∗∈BY ∗

1

( ∞∑
n=1

∣∣∣∣〈yn, O∗y∗

∥O∗∥

〉∣∣∣∣p∗)1/p∗

= ∥Q∥m ∥O∥ sup
x∈BX1

( ∞∑
n=1

∣∣∣∣〈 Qx

∥Q∥
, an

〉∣∣∣∣mp
)1/p

sup
y∗∈BY ∗

1

( ∞∑
n=1

∣∣∣∣〈yn, O∗y∗

∥O∗∥

〉∣∣∣∣p∗)1/p∗

≤ ∥Q∥m ∥O∥ sup
u∈BX

( ∞∑
n=1

|⟨u, an⟩|mp

)1/p

sup
φ∈BY ∗

( ∞∑
n=1

|⟨yn, φ⟩|p
∗

)1/p∗

.

Then, OPQ is weakly p-nuclear and

∥OPQ∥Nwp
≤ ∥Q∥m · ∥P∥Nwp

· ∥O∥.

Then, PNwp
with the norm ∥ · ∥Nwp

is Banach ideal of polynomials.
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3 Connection with tensor product

We consider a tensor norm and associate it with an operator ideal. Let us define a cross norm
wp(.) ( 1 ≤ p < ∞ ) on the tensor product ⊗mX ⊗ Y as follows: if u ∈ ⊗mX ⊗ Y , then

wp(u) = inf

∥(λi)
n
i=1∥∞ sup

x∗∈BX∗

(
n∑

i=1

|⟨x∗, xi⟩|mp

)1/p

sup
y∗∈BY ∗

(
n∑

i=1

|⟨y∗, yi⟩|p
∗

)1/p∗ .

where the infimum is taken over all representations of u of the form

u =
n∑

i=1

λixi ⊗ · · ·xi ⊗ yi

with (xi)ni=1 ⊂ X and (yi)ni=1 ⊂ Y .

Proposition 3.1. ωp is a reasonable crossnorm on ⊗mX ⊗ Y and ϵ ≤ ωp, where ϵ denotes the
injective tensor norm on ⊗mX ⊗ Y .

Lemma 3.2. If the norms ∥.∥Nwp
and ωp(.) are equivalent on Pf (mX;Y ), then they coincide on

our space.

Proof. assume that there is a constant c > 0 such that ωp(.) ≤ c∥ · ∥Nwp
on Pf (mX;Y ). Given

P ∈ Pf (mX;Y ) and ε > 0, take an infinite weakly p-nuclear representation

P =
∞∑
i=1

ami ⊗ yi

such that

sup
x∈BX

( ∞∑
i=1

|ami (x)|p
)1/p

sup
y∗∈BY ∗

( ∞∑
n=1

|y∗ (yi)|p
∗

)1/p∗

≤
(

1 +
ε

2

)
∥P∥Nwp

.

In particular, for each n ∈ N,

ωp

(
n−1∑
i=1

ami ⊗ yi

)
≤ sup

x∈BX

(
n−1∑
i=1

|ami (x)|p
)1/p

sup
y∗∈BY ∗

(
n−1∑
i=1

|y∗ (yi)|p
∗

)1/p∗

≤
(

1 +
ε

2

)
∥P∥Nwp

.

For a sufficiently large n ∈ N, we obtain∥∥∥∥∥
∞∑
i=n

ami ⊗ yi

∥∥∥∥∥
Nwp

≤ sup
x∈BX

( ∞∑
i=n

|ami (x)|p
)1/p

sup
y∗∈BY ∗

( ∞∑
i=n

|y∗ (yi)|p
∗

)1/p∗

≤ sup
x∈BX

( ∞∑
i=1

|ami (x)|p
)1/p

sup
y∗∈BY ∗

( ∞∑
i=1

|y∗ (yi)|p
∗

)1/p∗

≤ ε

2c
∥P∥Nwp

It follows that

ωp(P ) ≤ ωp

(
n−1∑
i=1

ami ⊗ yi

)
+ ωp

( ∞∑
i=n

ami ⊗ yi

)

≤
(

1 +
ε

2

)
∥P∥Nwp

+ c

∥∥∥∥∥
∞∑
i=n

ami ⊗ yi

∥∥∥∥∥
Nwp

≤
(

1 +
ε

2

)
∥P∥Nwp

+
ε

2
∥P∥Nwp

= (1 + ε)∥P∥Nwp
.

And as this holds for every ε > 0, the result follows.
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Proposition 3.3. If P ∈ PNwp (
mX;Y ) and Q ∈ Lf (D,X), then ωp(P ◦Q) ≤ ∥P∥Nwp

∥Q∥m.

Proof. Let J : Q(D) → X be the formal inclusion, and Q̃ : D → Q(D) be defined by Q̃ : u 7→
Q̃(u) := Q(u). We can write Q as the composition Q = J◦Q̃ . Since each, Q◦J ∈ L (Q(D), Y ),
where dimQ(D) < ∞, By Lemma 3.2, we obtain

ωp(P ◦ J) = ∥P ◦ J∥Nwp ≤ ∥P∥Nwp∥J∥m = ∥P∥Nwp

from which it follows that

ωp(P ◦Q) = ωp(P ◦ J ◦ Q̃) ≤ ωp(P ◦ J)∥Q̃∥m = ∥P∥Nwp
∥Q∥m.

Proposition 3.4. If X∗ has the bounded approximation property, then ωp(P ) = ∥P∥Nwp on
Pf (mX;Y ) regardless of the Banach space Y .

Proof. We provide a proof for m = 2, as for other values of m it is similar. Let P ∈ Pf

(
2X;Y

)
.

We know that Lf (X,X;Y ) is isometrically isomorphic to Lf (X;Lf (X;Y )), thanks the ap-
plication that associates S̄ ∈ Lf (X;Lf (X;Y )) through S ∈ Lf (X,X;Y ) for S̄ (x1) (x2) :=
S (x1, x2). So, S = P̌ is the symmetric bilinear application associate a P . Note that

S̄ (x1) (x2) = S (x1, x2) = S (x2, x1) = S̄ (x2) (x1) .

Since X∗ has the property approximation, by [6, Lemma 10.2.6], given ϵ > 0, there is T̄ ∈
Nw1(X;X) such that ∥T̄∥ ≤ (1 + ϵ)γ, let γ ≥ 1 and ST = S̄. So, we have

S
(
T̄ x1, x2

)
= S̄

(
T̄ x1

)
(x2) = ST (x1) (x2) = S̄ (x1) (x2) = S (x1, x2) .

And by the symmetry of S,

S
(
x1, T̄ x2

)
= S

(
T̄ x2, x1

)
= S (x2, x1) = S (x1, x2) .

So, S ◦ (T̄ , T̄ ) = S, for all x ∈ X , we have

P (x) = S(x, x) = S ◦ (T̄ x, T̄ x) = P (T̄ x) = P ◦ T̄ (x).

for all x ∈ X , proving that S = S ◦ (T̄ , T̄ ). Calling Proposition 3.3, we have

ωp(P ) = ωp(P ◦ T̄ )

≤ ∥P∥Nwp
∥T̄∥2

≤ (1 + ϵ)2γ2∥P∥Nwp

For each ϵ > 0, follows that ωp(P ) ≤ γ2∥P∥Nwp . The result follows from Lemma 3.2.

Proposition 3.5. If X∗ has the bounded approximation property, then Pf (mX;Y ) dense in
PNwp (

mX;Y ) by the norm ∥ · ∥Nwp
.

Proof. Let P ∈ PNwp (
mX;Y ) and given ϵ > 0 consider a representation of P such that

sup
x∈BX

( ∞∑
n=1

|⟨an, x⟩|mp

)1/p

sup
y∗∈BY ∗

( ∞∑
n=1

|⟨y∗, yn⟩|p
∗

)1/p∗

≤ (1 + ϵ)∥P∥Nwp
.

Consider Pn =
n∑

i=1
ami ⊗ yi ∈ Pf (mX;Y ), then, Pn converges to P in the norm ∥ · ∥Nwp .

The following theorem shows that weakly p-nuclear polynomial has factorization through ℓp.

Theorem 3.6. Let X and Y be Banach spaces, and let P : X → Y be an m-homogeneous
polynomial. Then the following are equivalent:
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(a) P is weakly p-nuclear.

(b) There exists T ∈ L (X; ℓp) and Q ∈ P (mℓp;Y ) such that its associated m-linear symmetric
application Q̂ ∈ L (mℓp;Y ) is diagonal. the following diagram commutes:

X

T ��

P // Y

ℓp

Q

??

In this case,
∥P∥Nwp

= inf ∥Q∥ · ∥T∥m

where the infimum is taken over all such factorizations of P .

Proof. (⇒) Assume that P is weakly p-nuclear. Let (an)n ∈ ℓmp,w(X∗) and (yn)n ∈ ℓp∗,w(Y )
such that

P =
∞∑
n=1

amn ⊗ yn.

Consider

T : X → ℓp, x 7→ (an(x))n

Q : ℓp → Y, (sn)n 7→
∞∑
n=1

smn yn.

Then, we observe that ∥T∥m ≤ sup
x∈BX

( ∞∑
n=1

|⟨x, an⟩|mp

)1/p

and ∥Q∥ ≤ ∥(yn)n∥ℓp∗,w(Y ).

Additionally, the following diagram is commutative

X

T ��

P // Y

ℓp

Q

??

Thus
∥P∥Nwp

≥ inf ∥Q∥∥T∥m.

(⇐)P = Q ◦ T . Let (fn)
∞
n=1 be the sequence of coordinate functional a Schauder basis {en}∞n=1

for ℓp, we have

T (x) =
∞∑
n=1

fn(T (x)) · en =
∞∑
n=1

(T ∗fn) (x) · en,

and

P (x) = Q(T (x))

= Q

( ∞∑
n=1

(T ∗fn) (x) · en

)

= Q̂

( ∞∑
n=1

(T ∗fn) (x) · en, (m). . .,

∞∑
n=1

(T ∗fn) (x) · en

)

=
∞∑
n=1

(T ∗fn) (x)
mQ̂

(
en,

(m). . ., en

)

=
∞∑
n=1

(T ∗fn) (x)
mQ (en)
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We set an = (T ∗fn) ∈ X∗ and yn = Q (en) ∈ Y . We have the representation P =
∞∑
n=1

amn ⊗ yn, where (yn)
∞
n=1 ∈ ℓp∗,w(Y ), and

sup
x∈BX

( ∞∑
n=1

|⟨x, an⟩|mp

)1/p

≤ ∞.

Showing that P is weakly p-nuclear. Furthermore, we have:

∥P∥Nwp
≤ sup

x∈BX

( ∞∑
n=1

|⟨x, an⟩|mp

)1/p

sup
y∗∈BY ∗

( ∞∑
n=1

|⟨yn, y∗⟩|p
∗

)1/p∗

≤ sup
x∈BX

( ∞∑
n=1

|⟨x, T ∗fn⟩|mp

)1/p

sup
y∗∈BY ∗

( ∞∑
n=1

|⟨Q (en) , y
∗⟩|p

∗

)1/p∗

= ∥Q∥ ∥T∥m sup
x∈BX

( ∞∑
n=1

∣∣∣∣〈 Tx

∥T∥
, fn

〉∣∣∣∣mp
)1/p

sup
y∗∈BY ∗

( ∞∑
n=1

∣∣∣∣〈en, Q∗y∗

∥Q∗∥

〉∣∣∣∣p∗)1/p∗

≤ ∥Q∥ ∥T∥m .

Then,
∥P∥Nwp

≤ inf ∥Q∥∥T∥m.

4 Dual of PNwp(
mX;Y )

Definition 4.1. We say that an m−homogeneous polynomial P : X → Y ∗ is quasi Cohen p-
nuclear, 1 ≤ p ≤ ∞, if there is a constant C > 0 such that for any (xi)ni=1 ⊂ X and any
(yi)ni=1 ⊂ Y

n∑
i=1

|⟨P (xi), yi⟩| ≤ C sup
a∈BX∗

(
n∑

i=1

|⟨a, xi⟩|mp

) 1
p

sup
y∗∈BY ∗

(
n∑

i=1

|⟨y∗, yi⟩|p
∗

)1/p∗

. (4.1)

The class of all quasi Cohen p-nuclear m−homogeneous polynomials from X into Y ∗ is de-
noted by PQNp

(mX;Y ∗). Our space is a Banach space with the norm ∥ · ∥QNp
, which is the

smallest constant C such that the inequality (4.1) holds.

Denoting by Pc
p,N (mX;Y ∗) the space of Cohen p-nuclear polynomials operators from [1], it

is straightforward that Pc
p,N (mX;Y ∗) ⊂ PQNp

(mX;Y ∗) with ∥ · ∥QNp
≤ ∥ · ∥p,N for every Y ,

and further, Pc
p,N (mX;Y ∗) = PQNp

(mX;Y ∗) isometrically for reflexive Y .

Theorem 4.2. If X∗ has the bounded approximation property, then, for every Banach space Y
and 1 ≤ p < ∞, the space PQNp

(mX∗;Y ∗) is isometrically isomorphic to
[
PNwp (

mX;Y )
]∗.

Proof. Given φ ∈
[
PNwp

(mX;Y )
]∗.

φ : PNwp
(mX;Y ) −→ K

a =
∞∑
n=1

amn ⊗ yn 7→ φ(a) = φ

( ∞∑
n=1

amn ⊗ yn

)
we define

Pφ : X∗ −→ Y ∗

a 7→ Pφ (a) : Y −→K
y 7→Pφ (a) (y) := φ (am ⊗ y)
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In order to prove that Pφ ∈ PQNp (
mX∗;Y ∗), let n ∈ N, x∗

1 , . . . , x
∗
n ∈ X∗, y1, . . . , yn ∈ Y .

So,

∣∣∣∣∣
n∑

i=1

Pφ (ai)) (yi)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

φ (ami ⊗ yi)

∣∣∣∣∣
=

∣∣∣∣∣φ
(

n∑
i=1

ami ⊗ yi

)∣∣∣∣∣
≤ ∥φ∥ ·

∥∥∥∥∥
n∑

i=1

ami ⊗ yi

∥∥∥∥∥
Nwp

≤ ∥φ∥ · sup
x∈BX

(
n∑

i=1

|⟨a, x⟩|mp

)1/p

sup
y∗∈BY ∗

( ∞∑
i=1

|⟨y∗, yi⟩|p
∗

)1/p∗

proving that Pφ is quasi Cohen p-nuclear, and furthermore, ∥Pφ∥QNp ≤ ∥φ∥.

Conversely, given P ∈ PQNp (
mX∗;Y ∗), define

P : X∗ −→ Y ∗

a 7→ P (a) : Y −→K
y 7→P (a) (y)

having in mind that ⊗mX∗ ⊗ Y = Pf (mX;Y ), by the universal property of the tensor product
there exists a linear operator TP : Pf (mX;Y ) −→ K such that

TP (am ⊗ y) = P (a) (y)

for all a ∈ X∗ and y ∈ Y . Now we shall prove that TP is continuous with respect to the norm
∥ · ∥Nwp

. Given ε > 0 and T ∈ Pf (mX;Y ), by definition of the norm wp(.) we can choose a

representation A =
n∑

i=1
ami ⊗ yi such that

sup
x∈BX

(
n∑

i=1

|⟨ai, x⟩|mp

)1/p

sup
y∗∈BY ∗

(
n∑

i=1

|⟨y∗, yi⟩|p
∗

)1/p∗

≤ (1 + ε)wp(T ).

Therefore,

|TP (A)| =

∣∣∣∣∣TP
(

n∑
i=1

ami ⊗ yi

)∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

P (ai) (yi)

∣∣∣∣∣
≤ ∥P∥QNp

· sup
x∈BX

(
n∑

i=1

|⟨ai, x⟩|mp

)1/p

sup
y∗∈BY ∗

(
n∑

i=1

|⟨y∗, yi⟩|p
∗

)1/p∗

≤ ∥P∥QNp
(1 + ε)wp(A).

As this holds for arbitrary ε > 0, and the spaces X∗ has the bounded approximation property, by
Proposition 3.4, we conclude that

|TP (A)| ≤ ∥S∥QNp
· wp(A) = ∥P∥QNp

· ∥T∥Nwp .

So, TP ∈
[
Pf (mX;Y ) , ∥ · ∥Nwp

]∗ and ∥TP ∥ ≤ ∥P∥QNp
. As Pf (mX;Y ) is ∥ · ∥Nwp

-dense
in PNwp (

mX;Y ), there is a unique norm-preserving continuous linear extension φS of TP to
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the whole of PNwp (
mX;Y ). In particular, ∥φP ∥ ≤ ∥P∥QNp

and for A =
∞∑
i=1

ami ⊗ yi ∈

PNwp (
mX;Y ),

φP (A) = φP

( ∞∑
i=1

ami ⊗ yi

)
=

∞∑
i=1

φP (ami ⊗ yi)

=
∞∑
i=1

Tp (ami ⊗ yi) =
∞∑
i=1

P (ai) (yi) .

From the expression above, it follows easily that the correspondences φ 7→ Pφ and S 7→ φS

are each other’s inverse in the sense that φPφ = φ and Pφs = S for φ ∈
[
PNwp (

mX;Y )
]∗ and

P ∈ PNwp (
mX;Y ). The equality ∥Pφ∥QNp

= ∥φ∥ completes the proof.
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