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Abstract This paper deals with the study of Kenmotsu manifolds endowed with a semi-
symmetric metric connection. We also study the properties of symmetric and skew-symmetric
parallel tensors within the framework of Kenmotsu manifolds. In this series, the properties of
Ricci symmetric, weakly symmetric, weakly Ricci symmetric Kenmotsu manifolds and Ricci
solitons are derived. Finally, we construct a non-trivial example of Kenmotsu manifold and
verify some of our results.

1 Introduction

Boothby and Wang [4], in 1958, initiated the study of odd dimensional manifolds with contact
and almost contact structures from topological point of view. Sasaki and Hatakeyama [29] re-
investigated the same structures using tensor calculus in 1961. In 1972, Kenmotsu [24] studied
a class of almost contact metric manifolds and named as a Kenmotsu manifold. He proved
that a Kenmotsu manifold satisfying the condition R(X,Y ) · R = 0 is a manifold of negative
curvature −1, where R is the Riemannian curvature tensor of type (1, 3) and R(X,Y ) denotes
the derivation of the tensor algebra at each point of the tangent space T (M). The properties of
Kenmotsu manifolds have been studied by many researchers (for instance, see [1], [6]-[10], [15],
[20], [22], [33], [36]-[38]).

Eisenhart [16] has initiated to study the properties of second order parallel symmetric tensor
in 1923. He proved that if a positive definite Riemannian manifold confesses a second order
parallel symmetric covariant tensor other than a constant multiple of the metric tensor, then it
is reducible. Levy [25], in 1925, demonstrated that a second order parallel symmetric non-
degenerated tensor of type (0, 2) in a space form is proportional to the metric tensor. Eisenhart
and Levy have studied the properties of second order parallel tensor locally while Sharma [30]
studied the properties of same tensor globally based on Ricci identities on complex space forms.
Since then, many authors examined the Eisenhart problems of finding the properties of sym-
metric and skew-symmetric parallel tensors on various spaces and obtained many geometrical
results. As illustration, the Eisenhart problems on almost contact metric manifolds were consid-
ered by R. Sharma ([31], [32]), on trans-Sasakian manifolds in [11], on LCS-manifolds in [5]
and Lorentzian manifolds in [12], and also by others.

The notion of a semi-symmetric linear connection on a differentiable manifold has been in-
troduced by Friedmann and Schouten [17] in 1924. Hayden [21] in 1932, introduced and studied
the idea of semi-symmetric linear connection with torsion on a Riemannian manifold. After a
long interval, Yano [41] started the systematic study of a semi-symmetric metric connection on a
Riemannian manifold in 1970. Since then, the properties of semi-symmetric metric connection
on different spaces have studied in ([2], [12]-[14], [19], [23], [26], [28]) and by others.

The above studies motivated us to study the Eisenhart problems, and to investigate the prop-
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erties of second order parallel symmetric and skew symmetric tensors on a Kenmotsu manifold
equipped with a semi-symmetric metric connection. To find our goal, we organize the present
work as: After introductory section, we brief the known results of Kenmotsu manifold and Ricci
soliton in Section 2. Next section deals with the study of semi-symmetric metric connection on
Kenmotsu manifolds and it is proven that the Ricci soliton with respect to the semi-symmetric
metric connection on Kenmotsu manifold is expanding. The properties of second order parallel
symmetric tensors are studied in Section 4, and consequently we derive some interesting results.
Section 5 concerns with the study of second order parallel skew-symmetric tensor. In Section 6,
we give an example of Kenmotsu manifold equipped with a semi-symmetric metric connection
and validate some of our results.

2 Preliminaries

A (2n+1)-dimensional differentiable manifold M of class C∞ is said to have a (ϕ, ξ, η)-structure
or almost contact structure if it admits a tensor field ϕ of endomorphisms of the tangent spaces,
a vector field ξ and a 1-form η satisfying

η(ξ) = 1 and ϕ2 = −I + η ⊗ ξ, (2.1)

where I denotes the identity transformation [3]. From (2.1), it can be easily shown that ϕξ = 0,
ηoϕ = 0 and rank ϕ = 2n. A Riemannian metric g of type (0, 2) is said to be compatible with
the almost contact structure (ϕ, ξ, η) if the relation

g(X,Y ) = g(ϕX, ϕY ) + η(X)η(Y ) (2.2)

holds for arbitrary vector fields X and Y on M . An almost contact structure (ϕ, ξ, η) equipped
with a compatible Riemannian metric g is known as an almost contact metric structure (ϕ, ξ, η, g)
and the manifold M endowed with almost contact metric structure is called an almost contact
metric manifold. If moreover,

∇Xξ = X − η(X)ξ, (2.3)

holds for all X ∈ X(M), where X(M) denotes the collection of all the differentiable vector
fields of M , then the manifold M is said to be a Kenmotsu manifold [24]. Here ∇ denotes the
Levi-Civita connection of the metric g. For proving our results in next sections, we are going to
recall some basic results of Kenmotsu manifolds as:

(∇Xη)(Y ) = g(X,Y )− η(X)η(Y ), (2.4)

η(R(X,Y )Z) = η(Y )g(X,Z)− η(X)g(Y,Z), (2.5)

R(X,Y )ξ = η(X)Y − η(Y )X, (2.6)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ, (2.7)

S(X, ξ) = −2nη(X). (2.8)

A Ricci soliton on a Riemannian manifold is a natural generalization of Einstein metric and it has
many applications in physics and other branches of science. A triplet (g, V, λ) on a Riemannian
manifold (M, g) is said to be a Ricci soliton if it satisfies the condition

1
2
LV g + S + λg = 0, (2.9)

where g is the Riemannian metric associated with the vector field V , S is a Ricci tensor and λ
is a real constant [18]. A Ricci soliton (g, V, λ) is said to be shrinking, expanding or steady if λ
is <,> or = 0, respectively. In [39], authors have studied the properties of Ricci solitons and
proved some interesting results.

Analogous to the definition of Ricci soliton corresponding to the Levi-Civita connection ∇
on (M, g), we define the following:
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Definition 2.1. Let (M, g) be an n-dimensional Riemannian manifold equipped with a semi-
symmetric metric connection ∇̃. A triplet (g, V, λ) on (M, g) is said to be a Ricci soliton with
respect to the connection ∇̃ if it satisfies the expression

L̃V g + 2S̃ + 2λg = 0. (2.10)

Here L̃ and S̃ denote the Lie derivative operator and the Ricci tensor with respect to the connec-
tion ∇̃, respectively. Here we suppose that S̃ is symmetric on M .

3 Semi-symmetric metric connection

Let M be a (2n+1)-dimensional Kenmotsu manifold and ∇ denotes the Levi-Civita connection.
A linear connection ∇̃ on M is said to be semi-symmetric if the torsion tensor T̃ of type (1, 2)
defined as

T̃ (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]

satisfies
T̃ (X,Y ) = η(Y )X − η(X)Y (3.1)

for X , Y ∈ X(M). A semi-symmetric connection ∇̃ satisfying the relation

∇̃g = 0 (3.2)

is called a semi-symmetric metric connection. A semi-symmetric connection ∇̃ is said to be non-
metric if ∇̃g ̸= 0. A relation between the semi-symmetric metric and Levi-Civita connections is
given by

∇̃XY = ∇XY + η(Y )X − g(X,Y )ξ (3.3)

for X,Y ∈ X(M) ([41], p. 15). With the help of equations (2.1), (2.3) and (3.3), we can easily
observe that

(∇̃Xη)(Y ) = (∇Xη)(Y )− η(X)η(Y ) + g(X,Y ). (3.4)

If R and R̃ denote the curvature tensors with respect to the Levi-Civita connection and semi-
symmetric metric connection of M , respectively, then we have

R̃(X,Y )Z = R(X,Y )Z + θ(X,Z)Y − θ(Y,Z)X (3.5)

+g(X,Z)LY − g(Y,Z)LX

for all X , Y , Z ∈ X(M), where

θ(X,Y ) = g(LX, Y ) = (∇Xη)(Y )− η(X)η(Y ) +
1
2
g(X,Y ) (3.6)

is a symmetric tensor of type (0, 2) on M . In consequence of (2.1), (2.4) and (3.6), equation
(3.5) assumes the form

R̃(X,Y )Z = R(X,Y )Z − 3g(Y,Z)X + 3g(X,Z)Y + 2η(Y )η(Z)X (3.7)

−2η(X)η(Z)Y + 2η(X)g(Y,Z)ξ − 2η(Y )g(X,Z)ξ.

The contraction of equation (3.7) along the vector field X gives

S̃(Y,Z) = S(Y,Z)− 2(3n− 1)g(Y, Z) + 2(2n− 1)η(Y )η(Z), (3.8)

which gives
r̃ = r − 2n(6n− 1), (3.9)

where S̃ denotes the Ricci tensor with respect to ∇̃ and r̃, r represent the scalar curvature with
respect to the semi-symmetric metric and Levi-Civita connections, respectively. In view of equa-
tions (2.1), (2.8) and (3.8), we can find

S̃(Y, ξ) = −4nη(Y ). (3.10)
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Taking covariant derivative of (3.8) and then using (2.1), (2.4), (3.3), (3.4) and (3.8), we obtain

(∇̃X S̃)(Y, Z) = (∇XS)(Y, Z)− η(Y )S(X,Z)− η(Z)S(X,Y )

+2(2n− 1){2η(Z)g(X,Y ) + η(Y )g(X,Z)

−4η(X)η(Y )η(Z)} − 2n{η(Y )g(X,Z) + η(Z)g(X,Y )}.

In view of (2.1), (2.6), (2.7) and (3.7), we can easily calculate the following:

R̃(ξ, Y )Z = 2{η(Z)Y − g(Y, Z)ξ} (3.11)

and
R̃(X,Y )ξ = 2{η(X)Y − η(Y )X}. (3.12)

Equation (3.12) shows that the manifold M equipped with ∇̃ is regular (i.e., R̃(X,Y )ξ ̸= 0).
From equations (2.1), (2.3), (3.3) and the definition of Lie derivative, we have

(L̃ξg)(X,Y ) = g(X, ∇̃Y ξ) + g(∇̃Xξ, Y ) = 4{g(X,Y )− η(X)η(Y )}. (3.13)

In consequence of equations (2.1), (3.8) and (3.13), equation (2.10) takes the form

2S(X,Y )− 4(3n− 2)g(X,Y ) + 8(n− 1)η(X)η(Y ) + 2λg(X,Y ) = 0.

Setting X = Y = ξ in the above equation and then using equations (2.1) and (3.10), we obtain
λ = 4n. Since n > 0 ⇒ λ > 0. Thus, the Ricci soliton with respect to the semi-symmetric
metric connection ∇̃ on (M, g) is expanding. Hence, we state the following theorem.

Theorem 3.1. Let (M, g) be a (2n+ 1)-dimensional Kenmotsu manifold endowed with a semi-
symmetric metric connection ∇̃. If (M, g) admits a Ricci soliton (g, V, λ) corresponding to ∇̃,
then (g, V, λ) is expanding.

4 Second order parallel symmetric tensor with respect to a semi-symmetric
metric connection

A symmetric tensor α of type (0, 2) is called parallel with respect to the Levi-Civita connection
∇ if ∇α = 0. Analogous to this definition, we define

Definition 4.1. A (0, 2) type symmetric tensor α on a Riemannian manifold (M, g) of dimen-
sion n is said to be a second order parallel tensor with respect to the semi-symmetric metric
connection ∇̃ if ∇̃α = 0.

If ∇̃α = 0 then it can be easily shown that R̃(X,Y ) · α = 0. Thus

α(R̃(X,Y )Z,W ) + α(Z, R̃(X,Y )W ) = 0

for arbitrary vector fields X , Y , Z and W on (M, g). Setting W = X = ξ in the above equation
and using (2.1), (3.11) and (3.12), we find that

η(Z)α(Y, ξ)− g(Y,Z)α(ξ, ξ) + α(Y,Z)− η(Y )α(ξ, Z) = 0.

Replacing Z by ξ in the above equation and then using (2.1), we obtain

α(Y, ξ) = g(Y, ξ)α(ξ, ξ). (4.1)

Covariant differentiation of (4.1) with respect to the semi-symmetric metric connection ∇̃ along
the vector field X reveals that

α(Y, ∇̃Xξ) = g(Y, ∇̃Xξ)α(ξ, ξ) + 2g(Y, ξ)α(∇̃Xξ, ξ). (4.2)

Replacing the vector field Y with ∇̃XY in (4.1), we get

g(∇̃XY, ξ)α(ξ, ξ)− α(∇̃XY, ξ) = 0. (4.3)
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In consequence of equations (4.2) and (4.3), we find that

α(Y, ∇̃Xξ) = {g(Y, ∇̃Xξ) + 2g(Y, ξ)g(∇̃Xξ, ξ)}α(ξ, ξ). (4.4)

With the help of equations (2.1), (2.3), (3.3), (4.1) and (4.4), we conclude that

α(X,Y ) = g(X,Y )α(ξ, ξ). (4.5)

The covariant differentiation of (4.5) with respect to the semi-symmetric metric connection ∇̃
along any arbitrary vector field on (M, g) together with (2.1), (2.3) and (3.3) reveals that α(ξ, ξ)
is constant. Thus the equation (4.5) implies that the second order symmetric parallel tensor with
respect to the connection ∇̃ in a regular Kenmotsu manifold (M, g) is a constant multiple of the
metric tensor g. Thus, we have the following:

Theorem 4.2. A Kenmotsu metric on a (2n + 1)-dimensional regular Kenmotsu manifold M
equipped with a semi-symmetric metric connection ∇̃ is irreducible. In other words, the tangent
bundle of M does not admit a decomposition TM = E1 × E2 parallel with respect to the
connection ∇̃ of g.

Before going to prove some geometrical results, we have to give the following definition.

Definition 4.3. A Riemannian manifold (M, g) of dimension n is said to be β-symmetric with
respect to the semi-symmetric metric connection ∇̃ if the tensor field β of type (0, 2) defined on
M satisfies the condition ∇̃β = 0.

If we replace the tensor field β with the Ricci tensor S, then it becomes the Ricci symmetric.
Let us suppose that the Kenmotsu manifold M of dimension (2n+1) equipped with the connec-
tion ∇̃ be θ-symmetric, where θ is a symmetric tensor of type (0, 2) defined by (3.6). With the
help of (2.1), (2.4) and Theorem 4.2, we can find that

θ(X,Y ) = θ(ξ, ξ)g(X,Y ),

where θ(ξ, ξ) = − 1
2 . Thus we can state:

Corollary 4.4. If a (2n+1)-dimensional Kenmotsu manifold M equipped with ∇̃ is θ-symmetric,
then the symmetric tensor θ is a constant multiple of the metric tensor g.

In view of (3.5), (3.6) and the above result, we conclude that

R̃(X,Y )Z = R(X,Y )Z + g(Y,Z)X − g(X,Z)Y, (4.6)

which gives
R̃(X,Y )ξ = 0,

where equations (2.1) and (2.6) are used. Thus the manifold M equipped with a semi-symmetric
metric connection ∇̃ is irregular.

Corollary 4.5. Every (2n+1)-dimensional Kenmotsu manifold M equipped with a semi-symmetric
metric connection ∇̃ is irregular, provided it is θ-symmetric.

Apart from the conformal curvature tensor, concircular curvature tensor plays an important
role in differential geometry and mathematical physics (specially in the theory of relativity and
cosmology). A tensor field C of type (1, 3) defined as

C(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
{g(Y,Z)X − g(X,Z)Y } (4.7)

for all X , Y , Z ∈ X(M), is called a concircular curvature tensor [40] of (M, g). Now the
contraction of (4.6) along the vector X gives

S̃(Y,Z) = S(Y,Z) + 2ng(Y, Z),
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which implies
r̃ = r + 2n(2n+ 1). (4.8)

If the scalar curvature with respect to the semi-symmetric metric connection ∇̃ vanishes on
(M, g), then the equations (4.6), (4.7) and (4.8) imply that

R̃ = C

and therefore we state the following corollary:

Corollary 4.6. If a (2n + 1)-dimensional Kenmotsu manifold (M, g) endowed with a semi-
symmetric metric connection ∇̃ is θ-symmetric and the scalar curvature with respect to ∇̃ van-
ishes, then the curvature tensor with respect to the connection ∇̃ coincide with the concircular
curvature tensor of the manifold.

If we suppose that the curvature tensor with respect to the semi-symmetric metric connection
∇̃ vanishes on (M, g), then equation (4.6) reduces to

R(X,Y )Z = −{g(Y,Z)X − g(X,Z)Y }, (4.9)

which shows that the manifold is of constant curvature. Thus we can state:

Corollary 4.7. If a (2n + 1)-dimensional Kenmotsu manifold (M, g) equipped with a semi-
symmetric metric connection ∇̃ is θ-symmetric and the curvature tensor with respect to ∇̃ van-
ishes, then the manifold is of constant curvature.

Let us suppose that the Kenmotsu manifold M equipped with a semi-symmetric metric con-
nection ∇̃ be Ricci-symmetric corresponding to the connection ∇̃, then equations (2.1), (2.8),
(3.10) and Theorem 4.2 give

S̃(X,Y ) = S̃(ξ, ξ)g(X,Y ), (4.10)

where
S̃(ξ, ξ) = −4n.

Let {e1, e2, e3, ... , e2n, e2n+1 = ξ} be an orthonormal basis of the tangent space at each point
of the manifold M . Setting X = Y = ei in (4.10) and then summing over i, 1 ≤ i ≤ 2n+ 1, we
find that

r̃ = −4n(2n+ 1), (4.11)

which is constant, where r̃ =
2n+1∑
i=1

S̃(ei, ei). From equation (4.10), it is clear that the Ricci

tensor with respect to the connection ∇̃ is a constant multiple of the metric tensor g and hence
the manifold is Einstein with respect to ∇̃. By considering (4.10), equation (3.8) leads to

S(X,Y ) = 2(n− 1)g(X,Y )− 2(2n− 1)η(X)η(Y ), (4.12)

which shows that the manifold under consideration is an η-Einstein manifold with scalars a =
2(n − 1) and b = −2(2n − 1). It is obvious that the scalars a and b in a Kenmotsu manifold
(M, g) satisfies the relation a + b = −2n ([24], p - 97). It is well-known that an η-Einstein
manifold with either a or b being constant is an Einstein manifold [24]. Thus we can state:

Corollary 4.8. If a (2n+ 1)-dimensional regular Kenmotsu manifold M endowed with a semi-
symmetric metric connection ∇̃ is Ricci symmetric with respect to ∇̃, then the manifold is Ein-
stein.

Corollary 4.9. Let M be a (2n+ 1)-dimensional Ricci symmetric Kenmotsu manifold endowed
with a semi-symmetric metric connection ∇̃, then the scalar curvature with respect to the con-
nection ∇̃ is constant.
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In view of equations (3.11) and (4.12), we find that

(∇XS)(Y,Z) = 2(2n− 1)η(Z){2η(Y )η(X)− g(X,Y )}. (4.13)

Interchanging X and Y in (4.13), we get

(∇Y S)(X,Z) = 2(2n− 1)η(Z){2η(Y )η(X)− g(X,Y )}. (4.14)

From equations (4.13) and (4.14), we observe that

(∇XS)(Y,Z) = (∇Y S)(X,Z). (4.15)

Thus the Ricci tensor is of Codazzi type. Hence we state:

Corollary 4.10. If a (2n + 1)-dimensional Kenmotsu manifold (M, g) equipped with a semi-
symmetric metric connection ∇̃ is Ricci symmetric with respect to ∇̃, then the Ricci tensor of M
is of Codazzi type.

Now we define the following definitions as:

Definition 4.11. A non-flat differentiable manifold of dimension m > 3 is said to be a weakly
symmetric manifold ([34], [35]) if its non-vanishing curvature tensor R satisfies

(∇XR)(Y, Z)U = A(X)R(Y, Z)U +B(Y )R(X,Z)U (4.16)

+C(Z)R(Y,X)U +D(U)R(Y,Z)X + g(R(Y,Z)U,X)P

for all the vector fields X,Y, Z, U ∈ X(M), where A,B,C and D are 1-forms (not simultane-
ously zero) on M and ∇ denotes the Levi-Civita connection of the manifold.

Definition 4.12. A non-flat differentiable manifold of dimension m > 3 is said to be a weakly
Ricci symmetric manifold ([34], [35]) if its non-vanishing Ricci tensor S satisfies

(∇XS)(Y,Z) = ρ(X)S(Y, Z) + µ(Y )S(X,Z) + ν(Z)S(X,Y ) (4.17)

for all the vector fields X,Y, Z, U ∈ X(M), where ρ, µ and ν are 1-forms (not simultaneously
zero) on M and ∇ denotes the Levi-Civita connection of the manifold.

We consider a weakly symmetric and weakly Ricci symmetric Kenmotsu manifolds and
prove the following results as:

Theorem 4.13. Let (g, ξ, λ) be a Ricci soliton on a (2n + 1)-dimensional weakly symmetric
Kenmotsu manifold (M, g) admitting a semi-symmetric metric connection ∇̃. If L̃ξg + 2S̃ is
parallel with respect to the connection ∇̃, then (g, ξ, λ) on (M, g) is expanding.

Proof. Let (M, g) be a weakly symmetric Kenmotsu manifold of dimension (2n + 1). It is
noticed in [27] that

S(X,Y ) =
1

1 +D(ξ)
{−[2n+ p(ξ)]g(X,Y ) + [2nA(X) +B(X) (4.18)

+p(X)]η(Y ) + [2nC(Y )−B(Y )]η(X}

and
A(ξ) + C(ξ) +D(ξ) = 0, (4.19)

provided 1 +D(ξ) ̸= 0 and p(X) = g(X,P ). With the help of equation (3.8), equation (4.18)
assumes the form

S̃(X,Y ) =
1

1 +D(ξ)
{−[2n+ p(ξ)]g(X,Y ) + [2nA(X) +B(X) (4.20)

+p(X)]η(Y ) + [2nC(Y )−B(Y )]η(X}
−2(3n− 1)g(X,Y ) + 2(2n− 1)η(X)η(Y ).
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Let us define α(X,Y ) = (L̃ξg + 2S̃)(X,Y ). Then equations (4.20) and (3.13) give

α(X,Y ) =
2

1 +D(ξ)
{−[2n+ p(ξ)]g(X,Y ) + [2nA(X) +B(X) (4.21)

+p(X)]η(Y ) + [2nC(Y )−B(Y )]η(X}
−6(n− 1)g(X,Y ) + 2(2n− 3)η(X)η(Y ).

Let us suppose that L̃ξg + 2S̃ be parallel with respect to the semi-symmetric metric connection
∇̃ and therefore from Theorem 4.2, we conclude that

L̃ξg + 2S̃ = α(ξ, ξ)g. (4.22)

In view of equations (2.9) and (4.22), we observe that

α(ξ, ξ) = −2λ. (4.23)

Setting X = Y = ξ in (4.21) and then using equation (2.1), we find

α(ξ, ξ) =
4n

1 +D(ξ)
{−1 +A(ξ) + C(ξ)} − 2n.

In consequence of (4.19), the above equation takes the form

λ = 3n.

Since n > 0, and therefore the above equation gives λ > 0. Thus, the Ricci soliton (g, ξ, λ) on
(M, g) is expanding. Hence the proof is completed.

Theorem 4.14. The Ricci soliton (g, ξ, λ) on a (2n + 1)-dimensional weakly Ricci symmetric
Kenmotsu manifold (M, g) endowed with a semi-symmetric metric connection ∇̃ is expanding.

Proof. Let (M, g) be a (2n+1)-dimensional weakly Ricci symmetric Kenmotsu manifold equipped
with a semi-symmetric metric connection ∇̃. In [27], author proved that a weakly Ricci sym-
metric Kenmotsu manifold satisfies

S(X,Y ) =
2n

1 + ν(ξ)
{ρ(X)η(Y ) + µ(Y )η(X)− g(X,Y )} (4.24)

and
ρ(ξ) + µ(ξ) + ν(ξ) = 0. (4.25)

With the help of (3.8), equation (4.24) becomes

S̃(X,Y ) =
2n

1 + ν(ξ)
{ρ(X)η(Y ) + µ(Y )η(X)− g(X,Y )} (4.26)

−2(3n− 1)g(X,Y ) + 2(2n− 1)η(X)η(Y ).

Equations (4.22) and (4.26) give

α(X,Y ) = (L̃ξg)(X,Y ) + 2S̃(X,Y ) (4.27)

=
4n

1 + ν(ξ)
{ρ(X)η(Y ) + µ(Y )η(X)− g(X,Y )}

−4(3n− 2)g(X,Y ) + 8(n− 1)η(X)η(Y ).

We suppose that α is symmetric with respect to the semi-symmetric metric connection ∇̃. There-
fore by Theorem 4.2 and equation (2.9), we obtain

α(X,Y ) = α(ξ, ξ)g(X,Y ) ⇐⇒ −2λ = α(ξ, ξ).

Replacing X and Y with ξ in (4.27) and using equations (2.1) and (4.25), we conclude that
λ = 4n. Since n > 0 on (M, g) and therefore λ > 0. Thus the Ricci soliton (g, ξ, λ) on (M, g)
is expanding.



KENMOTSU MANIFOLDS 631

Let us consider that L̃V g be parallel and a regular Kenmotsu manifold is Ricci symmetric for
the connection ∇̃, (i.e., ∇̃S̃ = 0), where L̃V g denotes the Lie derivative of g along the vector
field V with respect to ∇̃. Here we have two situations regarding the vector field V : the first is
that V ∈ Span{ξ} and second V ⊥ ξ. From the analysis point of view, second situation becomes
complex and therefore we are going to consider the first case, i.e., V = ξ. In a 3-dimensional
Kenmotsu manifold, the Ricci tensor S assumes the form

S(X,Y ) = (
r

2
+ 1)g(X,Y )− (

r

2
+ 3)η(X)η(Y ) (4.28)

for all X, Y ∈ X(M). We consider α(X,Y ) = (L̃ξg + 2S̃)(X,Y ), then from equations (2.1),
(3.8), (3.9), (3.13) and (4.28), we find

α(X,Y ) = (r̃ + 8)g(X,Y )− (r̃ + 16)η(X)η(Y ). (4.29)

The covariant derivative of (4.29) with respect to the semi-symmetric metric connection ∇̃ along
the vector field Z gives

(∇̃Zα)(X,Y ) = dr̃(Z)g(ϕX, ϕY ) (4.30)

−2(r̃ + 16){g(ϕX, ϕZ)η(Y ) + g(ϕY, ϕZ)η(X)}.

Let us suppose that α be a symmetric parallel tensor and Z = ξ, X = Y ∈ (Span{ξ})⊥, then
(4.30) becomes

dr̃(ξ) = 0,

which gives r̃ = constant. Thus from equations (2.9), (4.28), (4.29) and Theorem 4.2, we can
conclude that

α(X,Y ) = −2λg(X,Y ),

where λ = 4 > 0. Hence we can state the following:

Corollary 4.15. Let a 3-dimensional Kenmotsu manifold endowed with a semi-symmetric metric
connection ∇̃ be Ricci symmetric and L̃ξg is parallel. Then the Ricci soliton (g, ξ, λ) on M3 is
expanding.

Definition 4.16. A vector field X ∈ X(M) on a Riemannian manifold is said to be affine Killing
vector field if ∇LXg = 0.

Analogous to this definition, we can define as:

Definition 4.17. A vector field X ∈ X(M) on a (2n + 1)-dimensional Kenmotsu manifold
endowed with a semi-symmetric metric connection ∇̃ is said to be affine Killing vector field
with respect to the semi-symmetric metric connection ∇̃ if ∇̃LXg = 0.

With the help of Theorem 4.2 and above definition, we have

(LXg)(Y,Z) = cg(Y, Z),

where c = −2g(LXξ, ξ). With the help of equation (3.10), we can easily calculate that (LXQ̃)(ξ) =
0 and hence (LX S̃)(ξ, ξ) = 0. Also, (LX S̃)(ξ, ξ) = −2S̃(LXξ, ξ) = 8ng(LXξ, ξ) = 0 and thus
g(LXξ, ξ) = 0. It is obvious that (LXg)(ξ, ξ) = −2g(LXξ, ξ) = 0 and therefore (LXg)(Y, Z) =
0. This shows that the vector field X is a Killing vector field. Thus we have the following:

Corollary 4.18. An affine Killing vector field with respect to the semi-symmetric metric con-
nection ∇̃ on a (2n + 1)-dimensional regular Kenmotsu manifold (M, g) equipped with ∇̃ is
Killing.
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5 Second order parallel skew-symmetric tensor with respect to
semi-symmetric metric connection

In this section, we study the properties of second order parallel skew-symmetric tensor with re-
spect to a semi-symmetric metric connection ∇̃ in a regular Kenmotsu manifold. Let us suppose
that α be a second order skew symmetric parallel tensor with respect to the semi-symmetric met-
ric connection ∇̃, i.e., α(X,Y ) = −α(Y,X) and ∇̃α = 0. By considering ∇̃α = 0, we obtain
R(X,Y ) · α = 0 and hence

α(R̃(W,X)Y,Z) + α(Y, R̃(W,X)Z) = 0

for arbitrary vector fields X , Y , Z and W on (M, g). Setting W = Y = ξ in the above equation
and using (2.1), (3.11) and (3.12), we obtain

α(X,Z) = η(X)α(ξ, Z)− η(Z)α(ξ,X). (5.1)

Let A be a (1, 1)-tensor field which is metrically equivalent to α, i.e.,

α(X,Y ) = g(AX,Y ). (5.2)

From equations (5.1) and (5.2), we conclude that

AX = η(X)Aξ − g(Aξ,X)ξ. (5.3)

Since α is parallel and therefore A is parallel. Thus we have

∇̃X(Aξ) = −2g(Aξ,X)ξ, (5.4)

where equations (2.1), (2.3), (3.3) and (5.3) are used. In view of (2.1) and (5.3), we have

g(AX, ξ) = η(X)g(Aξ, ξ)− g(Aξ,X). (5.5)

Putting X = ξ in (5.5), we obtain
g(Aξ, ξ) = 0.

It is obvious from above discussion that

g(∇̃X(Aξ), Aξ) = 0,

which reflects that ||Aξ|| = constant on M . The above equations reveal that

A2ξ = −||Aξ||2ξ. (5.6)

Differentiating (5.6) covariantly with respect to the semi-symmetric metric connection ∇̃ along
the vector field X and then using the equations (2.1), (2.3) and (3.3), we find that

A2X = −||Aξ||2X. (5.7)

Now if ||Aξ||2 ̸= 0, then J = 1
||Aξ||A is an almost complex structure on M . Indeed, (J, g)

is a Kähler structure on M . Thus the fundamental 2-form is g(JX, Y ) = λα(X,Y ) with
λ = 1

||Aξ|| = constant. But α satisfies the relation (5.1) and thus it is degenerate, which is a
contradiction. Therefore ||Aξ|| = 0 and hence α = 0 on M . Thus we state:

Theorem 5.1. Let (M, g) be a (2n+1)-dimensional regular Kenmotsu manifold equipped with a
semi-symmetric metric connection ∇̃. Then there does not exist a second order skew-symmetric
parallel vector field α on M .
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6 Example

In this section, we construct an example of Kenmotsu manifold admitting a semi-symmetric
metric connection and after that we validate some of our results.

Example 6.1.

Let
M3 = {(x, y, z) ∈ R3 : x, y, z ∈ R},

be a three-dimensional differentiable manifold, where (x, y, z) denotes the standard coordinate
of a point in R3. Let us suppose that

e1 = ez
(

∂

∂x
+

∂

∂y

)
, e2 = ez

(
∂

∂x
− ∂

∂y

)
, e3 = − ∂

∂z

be a set of linearly independent vector fields at each point of the manifold M3 and therefore
they form a basis for the tangent space T (M3). We also define the Riemannian metric g of the
manifold M3 as g(ei, ej) = δij , where δij denotes the Kronecker delta and i, j = 1, 2, 3. Let us
consider a 1-form η defined by η(Z) = g(Z, e3) for any Z ∈ T (M3) and a tensor field ϕ of type
(1, 1) defined by

ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = 0.

By the linearity properties of ϕ and g, we can easily verify that the following relations

ϕ2X = −X + η(X)e3, η(e3) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

hold for arbitrary vector fields X,Y ∈ T (M3). These equations show that for ξ = e3, the
structure (ϕ, ξ, η, g) defines an almost contact metric structure on M3.

If ∇ represents the Levi-Civita connection with respect to the Riemannian metric g, then with
the help of above equations, we can easily calculate that

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

We recall the Koszul’s formula as

2g(∇XY,Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ])

for arbitrary vector fields X,Y, Z ∈ T (M3). It is obvious from Koszul’s formula that

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

From above calculations, we can observe that ∇Xξ = X − η(X)ξ holds for ξ = e3 and X ∈
X(M3). Thus the manifold (M3, g) is a Kenmotsu manifold of dimension 3 and the structure
(ϕ, η, ξ, g) denotes the Kenmotsu structure on M3.
It is obvious from the above results that

R(e1, e2)e3 = 0, R(e1, e3)e3 = −e1, R(e3, e2)e2 = −e3, R(e3, e1)e1 = −e3,

R(e2, e1)e1 = −e2, R(e2, e3)e3 = −e2, R(e1, e2)e2 = −e1, R(e3, e1)e2 = 0,

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2.

In consequence of (3.3) and above results, we can find that

∇̃e1e1 = −2e3, ∇̃e1e2 = 0, ∇̃e1e3 = 2e1,

∇̃e2e1 = 0, ∇̃e2e2 = −2e3, ∇̃e2e3 = 2e2,

∇̃e3e1 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = 0
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and also the components of torsion tensor T̃ are

T̃ (ei, ei) = ∇̃eiei − ∇̃eiei − [ei, ei] = 0, for i = 1, 2, 3

T̃ (e1, e2) = 0, T̃ (e1, e3) = e1, T̃ (e2, e3) = e2.

This shows that T̃ ̸= 0 and therefore by equation (3.1), we can say that the linear connection de-
fined by (3.3) is a semi-symmetric connection on (M3, g). By the straight forward calculations,
we can also find

(∇̃e1g)(ei, ej) = 0, (∇̃e2g)(ei, ej) = 0, (∇̃e3g)(ei, ej) = 0

for all i, j = 1, 2, 3. This demonstrates that the equation (3.2) is satisfied and hence the linear
connection ∇̃ defined by (3.3) is a semi-symmetric metric connection on M3. Thus, we can
say that the manifold (M3, g) be a three-dimensional Kenmotsu manifold equipped with a semi-
symmetric metric connection ∇̃ defined by (3.3).

With the help of above discussions, we can calculate the curvature and Ricci tensors with
respect to the semi-symmetric metric connection ∇̃ as

R̃(e1, e2)e3 = 0, R̃(e1, e3)e3 = −2e1, R̃(e3, e2)e2 = −2e3,

R̃(e3, e1)e1 = −2e3, R̃(e2, e1)e1 = −4e2, R̃(e2, e3)e3 = −2e2,

R̃(e1, e2)e2 = −4e1, R̃(e3, e1)e2 = 0, S̃(e1, e1) = −6,

S̃(e2, e2) = −6, S̃(e3, e3) = −4, r̃ = −16

and other components can be calculated by symmetric and skew-symmetric properties. We can
easily observe that the equations (3.7), 3.8), (3.9), (3.10), (3.11), (3.12) and Corollary 4.9 are
verified.

Let X and Y be the vector fields of M3, then X = X1e1 +X2e2 +X3e3 and Y = Y 1e1 +
Y 2e2 + Y 3e3, where Xi and Y i are scalars for i = 1, 2, 3. It is no hard to find that

(L̃ξg)(X,Y ) = 4{X1Y 1 +X2Y 2}

and
S̃(X,Y ) = −6X1Y 1 − 6X2Y 2 − 4X3Y 3.

Now,
(L̃ξg)(X,Y ) + 2S̃(X,Y ) = −8(X1Y 1 +X2Y 2 +X3Y 3).

Since g(X,Y ) = X1Y 1 +X2Y 2 +X3Y 3, therefore

(L̃ξg)(X,Y ) + 2S̃(X,Y ) = −2λg(X,Y )

for λ = 4 > 0. Thus the Ricci soliton (ξ, g, λ) on (M3, g) is expanding and hence the statement
of the Theorem 3.1.

7 Conclusion remarks

An affine connection is typically given in the form of a covariant derivative, which gives a means
for taking directional derivatives of vector fields, measuring the deviation of a vector field from
being parallel in a given direction. Connections are of central importance in modern geometry
in large part because they allow a comparison between the local geometry at one point and the
local geometry at another point. Differential geometry embraces several variations on the con-
nection theme, which fall into two major groups: the infinitesimal and the local theory. This
manuscript provides the solutions of the Eisenhart problems on Kenmotsu manifolds admit-
ting a semi-symmetric metric connection. Consequently, we proved many interesting results of
Kenmotsu manifolds. We define the Ricci solitons with respect to the semi-symmetric metric
connection on Kenmotsu manifolds, and proved some of its results. This manuscript may be
helpful in the future study of different solitons on contact metric manifolds.
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