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Abstract In this paper, for each closed subspace N of a Hilbert space H , we define the
pseudo-N Weyl operator on H such that the set WN of pseudo-N Weyl operators on H is
a regular subsemigroup of the semigroup of bounded operators on H . Then, we characterize
Green’s relations and natural partial order on WN . Further, WN has several interesting algebraic
properties, including ∗-regularity, semisimplicity and unit regularity.

1 Introduction

Studying the structure of regular semigroups is very significant in semigroup theory. It is shown
that the semigroup B(H) of bounded operators on a Hilbert space H under function composition
is regular if and only if H is finite-dimensional [16]. Even if H is infinite-dimensional, B(H) is
fascinating as it has many regular subsemigroups, such as the semigroup of Fredholm operators,
the semigroup of Weyl operators, the group of invertible bounded operators and the semigroup
of finite rank bounded operators. In 1990, E. Krishnan and K. S. S. Nambooripad [8] analysed
the semigroup of Fredholm operators, and in 2002, Sherly Valanthara and K. S. S. Nambooripad
[16] investigated the semigroup of finite rank bounded operators.

In this article, we utilise the fact that an operator T in B(H) is regular if and only if the
range space R(T ) of T is closed in H [16] to construct a relevant regular subsemigroup of B(H)
for each closed subspace of H . It is also known that a bounded operator T on H is a Weyl
operator if and only if T can be written as the sum of an invertible bounded operator and a finite
rank bounded operator ([8], [15]). Thus, the semigroup W of Weyl operators on H is given by
W = HI + F, where HI is the H-class of B(H) containing the identity operator I on H and
F is the semigroup of finite rank bounded operators on H . Hence, for any closed subspace N
of H , we consider the H-class HPN

of B(H) containing the projection PN of H onto N and a
particular subset FN = {T ∈ F : N ⊆ Z(T ), R(T ) ⊆ N⊥} of F, where Z(T ) denotes the zero
(null) space of T . We have that the H-class HPN

is a subgroup of B(H) and can easily see that
the set FN is a regular subsemigroup of F. So for each closed subspace N of H , we define a
bounded operator T on H as a pseudo-N Weyl operator if T = A+ B such that A ∈ HPN

and
B ∈ FN . That is, the set WN of pseudo-N Weyl operators on H is WN = HPN

+ FN .
Then, we examine various algebraic properties of WN . WN is a regular and a ∗-regular

subsemigroup of B(H). We also identify completely regular elements in WN and characterize
Green’s relations and natural partial order on WN . Moreover, the principal factors of WN are
regular semigroups, and WN is a completely semisimple semigroup. Finally, we show that WN

has additional properties if N⊥ is a finite-dimensional subspace of H . Specifically, WN is a
strongly unit regular semigroup and the triple ⟨WN , PN ,∗ ⟩ is a Baer ∗-semigroup.
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2 Preliminaries

We recall some definitions and results of semigroup theory in the following. For more details,
we direct the reader to ([8], [10], [16]).

Definition 2.1. ([7], [9]) Let S and Γ be two non-empty sets. Then S is a Γ-semigroup if there
exists a function from S × Γ × S to S written as (x, α, y) 7→ xαy such that (xαy)βz = xα(yβz)
for all x, y, z ∈ S and α, β ∈ Γ.

Let x be an element of a semigroup S. Then, x is regular if there exists x′ ∈ S such that
xx′x = x. If every element of S is regular, then S is called a regular semigroup. An element x′

in S is said to be a generalized inverse of x if xx′x = x and x′xx′ = x′.
A monoid is a semigroup with identity. If S is a semigroup without identity and 1 /∈ S, then

we can extend the binary operation on S to T = S ∪ {1} by 11 = 1 and 1x = x1 = x for all
x ∈ S. Clearly, T is a monoid. Thus, for any semigroup S, the set S1 defined by

S1 =

{
S, if S is a monoid
T, if S is not a monoid

is a monoid containing S. Green’s relations on a semigroup S are the following five equivalence
relations [10]:

L = {(a, b) ∈ S × S : L(a) = S1a = L(b)},

R = {(a, b) ∈ S × S : R(a) = aS1 = R(b)},
H = L ∩R,

D = L ∨R,

J = {(a, b) ∈ S × S : J(a) = S1aS1 = J(b)}.

Note that D ⊆ J and D = L ◦ R = R ◦ L. For an equivalence relation ρ on a semigroup S and
a ∈ S, let ρa denote the ρ-class containing a and S/ρ denote the set of all equivalence classes in
S. If ρ = L or R, then the relation ≤ on S/ρ defined by

ρa ≤ ρb ⇐⇒ ρ(a) ⊆ ρ(b)

is a partial order on S/ρ.

Proposition 2.2. [10] Let T be a regular subsemigroup of a semigroup S. Then for ρ = L, R or
H, ρ(T ) = ρ(S)∩ (T ×T ), where ρ(S) and ρ(T ) denote the relation ρ on the semigroups S and
T respectively.

A function x 7→ x∗ on a semigroup S is an involution if (xy)∗ = y∗x∗ and (x∗)∗ = x. A
semigroup S with an involution ∗ is called an involution semigroup and is denoted as (S,∗ ). A
projection e of (S,∗ ) is an idempotent in S with e∗ = e.

Definition 2.3. ([13], [16]) Let x be an element of an involution semigroup S. Then, x is said to
be ∗-regular if x has a generalized inverse x′ in S such that (xx′)∗ = xx′ and (x′x)∗ = x′x. If
every element of S is ∗-regular, then S is a ∗-regular semigroup.

Definition 2.4. ([14], [8]) An element x of a semigroup S is called completely regular if there
exists x′ ∈ S such that xx′x = x and xx′ = x′x.

Let E(S) be the set of idempotents of a semigroup S. For f, e ∈ E(S), an E-chain linking f
to e is a sequence f = f0, f1, . . . , fn = e in E(S) such that fk−1(L ∪ R)fk for k = 1, 2, . . . , n.
The length of the E-chain f0, f1, . . . , fn is defined as n, and the distance d(f, e) between f and
e is defined as the length of the shortest E-chain linking f to e ([3], [11], [8]).

Define the relation ω on E(S) by e ω f ⇐⇒ ef = fe = e[10]. If E(S) is non-empty, then ω
is a partial order on E(S).
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Theorem 2.5. ([12], [8]) The relation ≤ on a regular semigroup S defined by

a ≤ b ⇐⇒ La ≤ Lb and a = be for some e ∈ E(La)

is a partial order on S. Also, the restriction of ≤ to E(S) is the relation ω.

The above-defined relation ≤ on a regular semigroup S is called the natural partial order on
S.

Theorem 2.6. ([12], [8]) Let ≤ be the natural partial order on a regular semigroup S. Then,

a ≤ b ⇐⇒ Ra ≤ Rb and a = eb for some e ∈ E(Ra).

Proposition 2.7. [10] Let a and b be two elements of a regular semigroup S with a ≤ b. If aR b
or aL b, then a = b.

If S is the only ideal of a semigroup S, then S is said to be simple. A semigroup S with zero
0 is 0-simple if S2 ̸= {0} and S, {0} are the only ideals of S. A non-zero idempotent e of a
semigroup S is a primitive if f ω e implies f = e for any non-zero idempotent f in S. A simple
(0-simple) semigroup S is said to be completely simple (completely 0-simple) if S contains a
primitive idempotent.

Let S be a semigroup and a ∈ S. Then, I(a) = J(a) − Ja is an ideal of J(a) if I(a) is
non-empty [8]. The principal factor P(a) of S at a is defined by

P(a) =

{
J(a)/I(a), if I(a) ̸= ∅
J(a), if I(a) = ∅.

A semigroup S is semisimple if every principal factor of S is simple or 0-simple.

Proposition 2.8. [10] If S is a regular semigroup, then S is semisimple.

Definition 2.9. A semigroup S is said to be completely semisimple if the principal factors of S
are completely simple or completely 0-simple.

An element x of a monoid S is unit regular if there exists a unit u in S such that xux = x. If
every element of S is unit regular, then S is a unit regular semigroup ([5], [8]).

Definition 2.10. ([17], [8]) A unit regular semigroup S is called strongly unit regular if for
e, f ∈ E(S) with eD f , there exists a unit u in S such that f = ueu−1.

Let K be an ideal of a semigroup S and x ∈ S. Then, the right K-annihilator of {x} is
RK(x) = {y ∈ S : xy ∈ K} and the left K-annihilator of {x} is LK(x) = {y ∈ S : yx ∈ K}. If
k ∈ S commutes with every element of S, then k is called central.

Definition 2.11. Let k be a central idempotent of a semigroup S. Then, the pair ⟨S, k⟩ is called
a Baer semigroup if for each x ∈ S there exists e, f ∈ E(S) such that RK(x) = eS and
LK(x) = Sf , where K is the principal ideal of S generated by k.

Definition 2.12. [2] A triple ⟨S, k,∗ ⟩ is called a Baer ∗-semigroup if

(i) (S,∗ ) is an involution semigroup,

(ii) k is a central projection of S and

(iii) for each x ∈ S, a projection e exists in S such that RK(x) = eS, where K is the principal
ideal of S generated by k.

3 Algebraic Properties of WN

We have that for each closed subspace N of H , the H-class HPN
of B(H) is a subgroup of

B(H) and HPN
= {T ∈ B(H) : R(T ) = N, Z(T ) = N⊥}[16]. Let FN = {T ∈ F : N ⊆

Z(T ), R(T ) ⊆ N⊥}. Clearly, FN is a subsemigroup of F. Now, let us define the pseudo-N
Weyl operator on H .
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Definition 3.1. Let N be a closed subspace of a Hilbert space H . Then, a bounded operator T
on H is said to be a pseudo-N Weyl operator if T can be expressed as the sum T = A+B such
that A ∈ HPN

and B ∈ FN .

Let WN denote the set HPN
+FN of pseudo-N Weyl operators on H . It is obvious that WN

is a semigroup under function composition. Also, if T = A+B ∈ WN , then Z(B) = N ⊕Z(T )
and R(T ) = N⊕R(B). Throughout the paper, we assume that if T = A+B,S = C+D ∈ WN ,
then A, C ∈ HPN

and B, D ∈ FN .

Example 3.2. Let H = l2 and for n = 1, 2, 3, . . . , en = (0, . . . , 0, 1, 0, . . .), where 1 occurs only
in the nth position. Also, let N be the closure of the subspace generated by {e1, e3, e5, e7, . . .}.
Define a bounded operator T on H by for n = 1, 3, 5, 7, . . . ,

T (e2n−1) =
1
n
e2n+1,

T (e2n+1) =
1
n
e2n−1,

and for n = 1, 2, 3, 4, . . . ,

T (e4n−2) =
1
n2 e2,

T (e4n) =
1
n2 e4.

Then, T is a pseudo-N Weyl operator on l2.

Let ΓN = {S ∈ B(H) : S|N is a bijection on N,N⊥ is invariant under S} for a closed sub-
space N of H . Then for T1 = A1 + B1, T2 = A2 + B2 ∈ WN and S ∈ ΓN , T2ST1 =
(A2 + B2)S(A1 + B1) = A2SA1 + B2SB1. Since A2SA1 ∈ HPN

and B2SB1 ∈ FN , we have
the following proposition.

Proposition 3.3. WN is a ΓN -semigroup under the usual function composition.

For a regular element T of B(H), let T † denote the Moore-Penrose inverse of T . We can
easily see that the semigroups HPN

and FN contain the Moore-Penrose inverse of each of its
elements. Hence if T = A+B ∈ WN , then T † = A† +B† ∈ WN . That is, the semigroup WN

of pseudo-N Weyl operators on H is a regular subsemigroup of the semigroup B(H) of bounded
operators on H .

It is known that if T is a regular element of B(H), then the range space R(T ∗) of T ∗ is closed
in H , where T ∗ is the adjoint of T [16]. Thus, HPN

and FN are involution semigroups under the
involution T 7→ T ∗. So WN is an involution semigroup. Moreover, for each T ∈ WN , TT † and
T †T are projections in WN . Hence, we can state the following theorem.

Theorem 3.4. The semigroup WN of pseudo-N Weyl operators on H is a ∗-regular subsemi-
group of B(H).

For complementary closed subspaces U and V of H , let PV
U denote the idempotent in B(H)

with U as range space and V as zero space, and let PU denote the projection of H onto U . It is
obvious that the idempotents in WN are of the form PN + PV

U such that V is a closed subspace
of H containing N and U is a finite-dimensional subspace of N⊥, and the projections in WN

are of the form PN + PU such that U is a finite-dimensional subspace of N⊥. We now identify
completely regular elements of WN .

Theorem 3.5. Let T = A+B be a pseudo-N Weyl operator on H . Then T is completely regular
in WN if and only if N⊥ = R(B)⊕ Z(T ).

Proof. Suppose that T = A + B is a completely regular element of WN . Then there exists
T ′ = A† + B′ in WN such that TT ′T = T and TT ′ = T ′T . If TT ′ = PN + PV

U , then BB′ =
B′B = PV

U gives R(B) = R(BB′) = U and Z(B) = Z(B′B) = V . Hence, H = R(B)⊕Z(B).
Further, since Z(B) = Z(T )⊕N , N⊥ = R(B)⊕ Z(T ).
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Conversely, let N⊥ = R(B) ⊕ Z(T ). Also, let U = R(B) and V = Z(B), then define an
operator B0 on U by B0 = B|U . Thus, B′ = PV

U B−1
0 PV

U is a generalized inverse of B in FN

and (A + B)(A† + B′) = (A† + B′)(A + B) = PN + PV
U . That is, T is a completely regular

element of WN .

The following proposition characterizes the partial order on the sets of L and R classes of
B(H) containing regular elements of B(H).

Proposition 3.6. [16] Let T1 and T2 be regular elements of B(H). Then

(i) LT1 ≤ LT2 ⇐⇒ Z(T2) ⊆ Z(T1).

(ii) RT1 ≤ RT2 ⇐⇒ R(T1) ⊆ R(T2).

Therefore, by Proposition 2.2 and Proposition 3.6, we characterize the partial order on the
sets of L and R classes of WN in the following lemma.

Lemma 3.7. If T1 = A1 +B1 and T2 = A2 +B2 are pseudo-N Weyl operators, then

(i) LT1 ≤ LT2 ⇐⇒ Z(B2) ⊆ Z(B1).

(ii) RT1 ≤ RT2 ⇐⇒ R(B1) ⊆ R(B2).

We frequently use the above lemma without specifying it. The following proposition de-
scribes the D relation on WN .

Proposition 3.8. Let T1 = A1 +B1 and T2 = A2 +B2 be two pseudo-N Weyl operators. Then,
T1 DT2 if and only if dimR(B1) = dimR(B2).

Proof. Let T1 DT2 in WN , then there exists an element T3 = A3 + B3 in WN such that
T1 RT3 LT2. Thus, R(B1) = R(B3) and Z(B3) = Z(B2). Hence, R(B1) ∼= R(B2). That
is, dimR(B1) = dimR(B2).

Conversely, suppose that dimR(B1) = dimR(B2). Then there exists an isomorphism B0
from R(B1) to R(B2). Thus if B3 = PR(B2)B0B1, then R(B3) = R(B2) and Z(B3) = Z(B1).
Hence (A1 +B1)L (A2 +B3)R (A2 +B2). So T1 DT2 because A2 +B3 ∈ WN .

The characterization of the D relation among the projections in WN is in the following.

Corollary 3.9. Let PN +PU and PN +PV be two projections in WN . Then (PN +PU )D (PN +
PV ) if and only if there exists B ∈ FN such that B†B = PU and BB† = PV .

Proof. Suppose that (PN +PU )D (PN +PV ) in WN . Then, by the above proposition, dimU =
dimV . Hence, if B0 is an isomorphism from U to V and B = PV B0PU , then B ∈ FN and
B† = PUB

−1
0 PV . So, there exists B ∈ FN such that B†B = PU and BB† = PV .

Conversely, assume that there exists B ∈ FN such that B†B = PU and BB† = PV . Then
R(B†) = U and R(B) = V . Also since R(B) ∼= R(B†), dimU = dimV . Hence, (PN +
PU )D (PN + PV ).

Next, we proceed to show that the distance between any two D-related idempotents in WN

is at most 3.

Proposition 3.10. Let P1 and P2 be two idempotents of WN with P1 D P2. Then there exists an
E-chain P1 RP3 LP4 RP2 in WN .

Proof. Let P1 = PN +PV1
U1

and P2 = PN +PV2
U2

be two idempotents in WN . If P1 DP2, then by
Proposition 3.8, dimU1 = dimU2. Let dim (U1 ∩ U2) = m and dimU1 = m+ n. Also, let

U1 ∩ U2 = span{c1, c2, . . . , cm},
U1 = span{c1, c2, . . . , cm, a1, a2, . . . , an} and

U2 = span{c1, c2, . . . , cm, b1, b2, . . . , bn}.

So if W = span{a1 + b1, a2 + b2, . . . , an + bn}, then U1 + U2 = U1 ⊕W = U2 ⊕W . That is,

H = U1 ⊕W ⊕ (U1 + U2)
⊥ = U2 ⊕W ⊕ (U1 + U2)

⊥.
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Thus, if V = W⊕(U1+U2)⊥, then V is a closed subspace of H containing N and H = U1⊕V =
U2 ⊕ V . Hence,

(PN + PV1
U1
) R (PN + PV

U1
) L (PN + PV

U2
) R (PN + PV2

U2
)

is an E-chain in WN .

The following lemma identifies the natural partial order on WN .

Lemma 3.11. Let T1 = A1 + B1 and T2 = A2 + B2 be two pseudo-N Weyl operators. Then
T1 ≤ T2 if and only if Z(B2) ⊆ Z(B1), A1 = A2 and on a complement of Z(B1) contained in
N⊥, B1 = B2.

Proof. Let T1 ≤ T2 in WN , then by Theorem 2.5 LT1 ≤ LT2 and there exists P ∈ E(LT1) such
that T1 = T2P . Hence, Z(B2) ⊆ Z(B1) and also if P = PN + PV

U , then Z(B1) = V and
A1 + B1 = A2 + B2P

V
U . So A1 = A2 and on U , B1 = B2. That is, Z(B2) ⊆ Z(B1), A1 = A2

and on a complement of Z(B1) contained in N⊥, B1 = B2.
Conversely, suppose that Z(B2) ⊆ Z(B1), A1 = A2 and on a complement of Z(B1) con-

tained in N⊥, B1 = B2. Also, let V = Z(B1), and if U is a complement of V contained in N⊥

with B1 = B2 on U , then B1 = B2P
V
U . Thus, LT1 ≤ LT2 and A1 +B1 = (A2 +B2)(PN + PV

U )
for PN + PV

U ∈ E(LT1). Hence the proof.

Now, we check the existence of maximal and minimal elements in non-empty subsets of WN .

Proposition 3.12. Every non-empty subset of WN has a minimal element.

Proof. Let S be a non-empty subset of WN , and let n = min {dimR(B) : T = A + B ∈ S}.
Then there exists an element T = A+B in S such that dimR(B) = n. If T1 = A1+B1 ∈ S with
T1 ≤ T , then RT1 ≤ RT by Theorem 2.6. Thus, R(B1) ⊆ R(B) implies dimR(B1) ≤ n. But
by the definition of n, dimR(B1) = n. Hence, R(B1) = R(B) gives T1 RT . So by Proposition
2.7, T1 = T . That is, T is a minimal element of S.

Similarly, we can say the following proposition.

Proposition 3.13. Let S be a non-empty subset of WN . Then, S has a maximal element if the set
{dimR(B) : T = A+B ∈ S} has maximum.

Hence, we obtain the corollary below.

Corollary 3.14. If N⊥ is a finite-dimensional subspace of H , then every non-empty subset of
WN has both maximal and minimal elements.

Next, we find the principal ideals of the semigroup WN of pseudo-N Weyl operators on H .

Proposition 3.15. Let T = A+ B be a pseudo-N Weyl operator with n = dimR(B). Then, the
principal ideal generated by T is J(T ) = {S = C +D ∈ WN : dimR(D) ≤ n}.

Proof. Let In = {S = C +D ∈ WN : dimR(D) ≤ n}. Since In is an ideal of WN containing
T , J(T ) ⊆ In.

To prove the reverse inclusion, let S = C + D ∈ In, and if U is a subspace of N⊥ with
R(D) ⊆ U and dimU = n, then T D (PN + PU ) by Proposition 3.8. Also, since D ⊆ J,
J(T ) = J(PN + PU ). Thus, S ∈ J(T ) because S = (PN + PU )S ∈ J(PN + PU ). Hence the
proof.

The above proposition says that if T = A+ B,S = C +D ∈ WN , then T JS if and only if
dimR(B) = dimR(D). So, we can state the following.

Corollary 3.16. If T = A+B is a pseudo-N Weyl operator with n = dimR(B), then the J-class
of WN containing T is JT = {S = C +D ∈ WN : dimR(D) = n}. In particular, D = J in the
semigroup WN of pseudo-N Weyl operators on H .

The following theorem reveals that every proper ideal of WN is a principal ideal of WN . In
addition, WN is a principal ideal if and only if N⊥ is a finite-dimensional subspace of H .
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Theorem 3.17. Let I be an ideal of the semigroup WN of pseudo-N Weyl operators on H . Then
I = WN or I = In for some non-negative integer n ≤ dimN⊥.

Proof. Let I be an ideal of WN , and let M = {dimR(B) : T = A+ B ∈ I}. Then M may or
may not have an upper bound. We have to prove that I = In if n = max M and I = WN if M
has no upper bound. Assume that M has an upper bound and n = max M . Then there exists
an element T = A + B in I such that dimR(B) = n. Thus, In = J(T ) ⊆ I. For the opposite
inclusion, let S = C +D ∈ I. Then, since n = max M , dimR(D) ≤ n gives S ∈ In. Hence,
I = In if n = max M .

So, suppose that M has no upper bound. Then, for any T = A + B ∈ WN , there exists
S = C +D ∈ I such that dimR(B) ≤ dimR(D). Hence, T ∈ J(S) ⊆ I. Thus, I = WN if M
has no upper bound.

Let us prove that the semigroup WN of pseudo-N Weyl operators on H is completely
semisimple. For that, we first figure out the principal factors of WN . Let T = A + B be a
pseudo-N Weyl operator. We have I(T ) = J(T ) − JT . So if B = 0, the zero operator on H ,
then I(T ) = ∅ implies

P(T ) = J(T ) = HPN
.

And if B ̸= 0 with n = dimR(B), then I(T ) = In−1 gives

P(T ) = In/In−1 = {In−1} ∪ {{S = C +D} : S ∈ WN , dimR(D) = n}.

Also, since WN is a regular semigroup, WN is semisimple by Proposition 2.8. Hence, P(T )
is simple if B = 0 and P(T ) is 0-simple if B ̸= 0. Moreover, we show that the principal factors
of WN are regular semigroups in the following.

Lemma 3.18. If T = A+B is a pseudo-N Weyl operator, then the principal factor P(T ) of WN

at T is a regular semigroup.

Proof. Let T = A+B be a pseudo-N Weyl operator on H . If B = 0, then P(T ) = HPN
implies

P(T ) is a regular semigroup. So let B ̸= 0, and let n = dimR(B). Then, In−1 is the zero
element of P(T ), and for each {S} in P(T ), there exists {S†} in P(T ) such that {S}{S†}{S} =
{SS†S} = {S}. Thus, P(T ) is a regular semigroup if B ̸= 0. Hence the proof.

So, to prove that WN is completely semisimple, it is enough to prove that the principal factor
P(T ) of WN at T = A + B has a primitive element if B ̸= 0. Because if B = 0, then
P(T ) = HPN

is a group. So, assume that B ̸= 0. Let U = R(B), then {PN +PU} is a primitive
element of P(T ). Because if {PN +PV1

U1
} ≤ {PN +PU} in P(T ), then by Theorem 2.5, Theorem

2.6 and Lemma 3.18,

L{PN+P
V1
U1

} ≤ L{PN+PU} and R{PN+P
V1
U1

} ≤ R{PN+PU} in P(T ).

Hence,

L
PN+P

V1
U1

≤ LPN+PU
and R

PN+P
V1
U1

≤ RPN+PU
in WN .

Thus, U⊥ ⊆ V1 and U1 ⊆ U. But by the property of elements in P(T ), dimU = dimU1. Hence,
U = U1 gives U⊥ = V1. That is, {PN + PV1

U1
} = {PN + PU}.

Actually, a slight change in the above discussion shows that every non-zero idempotent in
P(T ) is a primitive element of P(T ). Thus, we can now formulate our result below.

Theorem 3.19. The semigroup WN of pseudo-N Weyl operators on H is a completely semisim-
ple semigroup.
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4 Properties of WN if N⊥ is finite-dimensional

From now on, we assume that N⊥ is a finite-dimensional subspace of H . Hence, the semigroup
WN of pseudo-N Weyl operators on H is a monoid. Let GN denote the group of units in WN .
That is,

GN = {T = A+B ∈ WN : R(B) = N⊥}.
Now, we intend to show that the monoid WN of pseudo-N Weyl operators on H is a strongly
unit regular semigroup. For this, we first prove that WN is a unit regular semigroup in the lemma
below.

Lemma 4.1. The semigroup WN of pseudo-N Weyl operators on H is a unit regular semigroup
if N⊥ is a finite-dimensional subspace of H .

Proof. Let T = A + B ∈ WN , then the assertion follows if there exists G ∈ GN such that
TGT = T . Let V = Z(B), U = R(B) and W = Z(T ), then V = N ⊕W and N⊥ = W ⊕ V ⊥.
We define the operator A0 on N by A0 = A|N and define the operator B0 from V ⊥ to U by
B0 = B|V ⊥ . Then, A0 and B0 are isomorphisms. Also, let X be a subspace of N⊥ such that
N⊥ = X ⊕ U . But since N⊥ is a finite-dimensional subspace of H and V ⊥ ∼= U , W ∼= X . So
choose an isomorphism C0 from W to X , and define G on H by

G = A+B + PXC0P
V ⊥+N
W

= PNA0PN + PUB0PV ⊥ + PXC0P
V ⊥+N
W .

Thus, G ∈ GN and

G−1 = PNA−1
0 PN + PV ⊥B−1

0 PX+N
U + PWC−1

0 PU+N
X .

Moreover,

TG−1T = T (PNA−1
0 PN + PV ⊥B−1

0 PX+N
U + PWC−1

0 PU+N
X )(PNA0PN + PUB0PV ⊥)

= (PNA0PN + PUB0PV ⊥)(PN + PV ⊥)

= PNA0PN + PUB0PV ⊥

= A+B = T.

Hence the proof.

Theorem 4.2. Let N⊥ be a finite-dimensional subspace of H . Then, the monoid WN of pseudo-
N Weyl operators on H is a strongly unit regular semigroup.

Proof. Let N⊥ be a finite-dimensional subspace of H , and let P1, P2 ∈ E(WN ) with P1DP2.
Then, by the above lemma, WN is a unit regular semigroup. So, to prove that WN is a strongly
unit regular semigroup, it is enough to find an element G in GN such that P2 = GP1G

−1. Let
P1 = PN + PV1

U1
and P2 = PN + PV2

U2
, then U1 ∼= U2 by Proposition 3.8. Set W1 = Z(P1) and

W2 = Z(P2), then N⊥ = U1 ⊕W1 and N⊥ = U2 ⊕W2. So W1 ∼= W2 because U1 ∼= U2 and N⊥

is a finite-dimensional subspace of H . Hence, there is an isomorphism B from U1 to U2 and an
isomorphism C from W1 to W2. Now, we define G on H by

G = PN + PU2BPV1
U1

+ PW2CPU1+N
W1

.

Then, G ∈ GN and
G−1 = PN + PU1B

−1PV2
U2

+ PW1C
−1PU2+N

W2
.

Furthermore,

GP1G
−1 = G(PN + PV1

U1
)(PN + PU1B

−1PV2
U2

+ PW1C
−1PU2+N

W2
)

= (PN + PU2BPV1
U1

+ PW2CPU1+N
W1

)(PN + PU1B
−1PV2

U2
)

= PN + PV2
U2

= P2.

Thus, if N⊥ is a finite-dimensional subspace of H , then WN is a strongly unit regular semigroup.
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We will finally show that the triple ⟨WN , PN ,∗ ⟩ is a Baer ∗-semigroup if N⊥ is a finite-
dimensional subspace of H .

Proposition 4.3. If N⊥ is a finite-dimensional subspace of H , then the pair ⟨WN , PN ⟩ is a Baer
semigroup.

Proof. Let N⊥ be a finite-dimensional subspace of H . From Proposition 3.15, we have that
I0 = HPN

is the principal ideal of WN generated by the central projection PN of H onto N . Let
T = A+B be a pseudo-N Weyl operator. Then,

RI0(T ) = {S = C +D ∈ WN : TS ∈ I0}
= {S = C +D ∈ WN : AC +BD ∈ I0}
= {S = C +D ∈ WN : BD = 0}
= (PN + PZ(T ))WN .

Also, since Z(T ) ⊆ N⊥, PN + PZ(T ) is a projection in WN . Moreover,

LI0(T ) = {S = C +D ∈ WN : ST ∈ I0}
= {S = C +D ∈ WN : DB = 0}
= WN (PN + PR(T )⊥),

and PN + PR(T )⊥ is a projection in WN because R(T )⊥ ⊆ N⊥. Hence, the pair ⟨WN , PN ⟩ is a
Baer semigroup.

Summarizing, we have

(i) (WN ,∗ ) is an involution semigroup.

(ii) PN is a central projection of WN .

(iii) For each T ∈ WN , there exists a projection PN + PZ(T ) in WN such that RI0(T ) =
(PN + PZ(T ))WN .

As a result, we can say the following theorem.

Theorem 4.4. The triple ⟨WN , PN ,∗ ⟩ is a Baer ∗-semigroup if N⊥ is a finite-dimensional sub-
space of H .

5 Conclusion remarks

In this article, we defined the pseudo-N Weyl operator on a Hilbert space H for each closed
subspace N of H in such a way that the semigroup WN of pseudo-N Weyl operators on H is a
regular subsemigroup of the semigroup B(H) of bounded operators on H . Then, we identified
various algebraic properties of WN , such as WN is ∗-regular and completely semisimple. Also,
if N⊥ is a finite-dimensional subspace of H , then WN is strongly unit regular, and the triple
⟨WN , PN ,∗ ⟩ is a Baer ∗-semigroup. Besides, we can study the structure of WN using the cross-
connection theory in the future.
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