COEFFICIENT ESTIMATES FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH THE HORADAM POLYNOMIALS AND SUBORDINATION

Morteza Moslemi and Ahmad Motamednezhad

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 30C45; Secondary 30C50.

Keywords and phrases: Analytic functions, Bi-univalent functions, Coefficient estimates, Horadam polynomials, Fekete-Szegö problem.

The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that improved the quality of our paper.

Corresponding Author: Ahmad Motamednezhad

Abstract In this paper, we introduce and investigate a subclass of analytic and bi-univalent functions defined by Horadam polynomials in the open unit disk U. Upper bounds for the second and third coefficients of functions in this subclass are found. Also, we solve Fekete-Szegö problem of functions belonging to this family. Our results, which are presented in this paper, generalize and improve those in related works of several earlier authors.

1 Introduction

Let A be a class of analytic functions in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, of the form

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n.
$$
 (1.1)

We denote by S the class of functions $f \in A$ which are univalent in U. Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk $\mathbb U$. The Koebe one-quarter Theorem [\[1\]](#page-8-1) ensures that the image of $\mathbb U$ under every univalent function $f \in S$ contains a disk of radius $\frac{1}{4}$. Hence every function $f \in S$ has an inverse f^{-1} , which is defined by

$$
f^{-1}(f(z)) = z \qquad (z \in \mathbb{U}),
$$

and

$$
f(f^{-1}(w)) = w
$$
 $(|w| < r_0(f); r_0(f) \ge \frac{1}{4}),$

where

$$
g(w) := f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4.
$$
 (1.2)

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. The class consisting of bi-univalent functions are denoted by Σ .

Lewin [\[2\]](#page-8-2) investigated the class Σ of bi-univalent functions and showed that $|a_2| < 1.51$ for Lewin [2] investigated the class 2 or bi-univalent functions and showed that $|a_2| < 1.51$ for the functions belonging to Σ. Subsequently, Brannan and Clunie [\[3\]](#page-8-3) conjectured that $|a_2| \le \sqrt{2}$. Tan [\[4\]](#page-8-4) obtained the bound for $|a_2|$ namely $|a_2| \leq 1.485$ which is the best-known estimate for functions in the class Σ. The coefficient estimate problem for each of the coefficients $|a_n|(n \in \mathbb{N} - \{1,2\})$ is still an open problem. For a brief history and interesting examples

of functions in the class Σ , see the pioneering work [\[5\]](#page-8-5). In fact, this widely-cited work by Srivastava et al. [\[5\]](#page-8-5) actually revived the study of analytic and bi-univalent functions in recent years, and it has also led to a flood of papers on the subject by (for example) Srivastava et al. [\[6,](#page-8-6) [7,](#page-8-7) [8,](#page-8-8) [9,](#page-8-9) [10,](#page-8-10) [11,](#page-8-11) [12,](#page-8-12) [13,](#page-8-13) [14,](#page-8-14) [15,](#page-8-15) [16,](#page-8-16) [17,](#page-8-17) [18,](#page-8-18) [19,](#page-8-19) [20,](#page-8-20) [21\]](#page-8-21). Let the function f and g be analytic in U, we say that the function f subordinate to g if there exists a schwarz function w analytic in U with $w(0) = 0$ and $|w(z)| < 1$ such that $f(z) = g(w(z))$. This subordination is denoted by $f(z) \prec g(z)$ or $f \prec g$. It is well known that(see [\[22\]](#page-8-22)), if the function g is univalent in U, then $f \prec g$ if and only if $f(0) = g(0)$ and $f(\mathbb{U}) = g(\mathbb{U})$.

Hörçum and Koçer [\[23\]](#page-8-23) considered the Horadam polynomials $h_n(x)$, which are given by the following recurrence relation(see also Horadam and Mahon[\[24\]](#page-8-24)):

$$
h_n(x) = p x h_{n-1}(x) + q h_{n-2}(x) \quad (x \in \mathbb{R}, n \in \mathbb{N} - \{1, 2\})
$$
\n(1.3)

with $h_1(x) = a$ and $h_2(x) = bx$ for some real constants a, b, p and q. The generating function of the horadam polynomials $h_n(x)$ (see[\[23\]](#page-8-23)) is given by

$$
\Pi(x,z) = \sum_{n=1}^{\infty} h_n(x) z^{n-1} = \frac{a + (b - ap)xz}{1 - pxz - qz^2}.
$$
\n(1.4)

Remark 1.1. By selecting the particular values of a, b, p and q, the Horadam polynomial $h_n(x)$ reduces to several polynomials. Some of them are illustrated below:

- Taking $a = b = p = q = 1$, we obtain the Fibonacci polynomials $F_n(x)$.
- Taking $a = 2$ and $b = p = q = 1$, we attain the Lucas polynomials $L_n(x)$.
- Taking $a = q = 1$ and $b = p = 2$, we have the Pell polynomials $P_n(x)$.
- Taking $a = b = p = 2$ and $q = 1$, we get the Pell-Lucas polynomials $Q_n(x)$.
- Taking $a = b = 1$, $p = 2$ and $q = -1$, we obtain the Chebyshev polynomials $T_n(x)$ of the first kind.
- Taking $a = 1$, $b = p = 2$ and $q = -1$, we have the Chebyshev polynomials $U_n(x)$ of the second kind.

More recently, Srivastava *et al.*[\[25\]](#page-8-25) by using the above horadam polynomials, introduced the following subclass of the bi-univalent functions and obtained estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions in this subclass.

Definition 1.2. (see [\[25\]](#page-8-25)) A function $f(z) \in \Sigma$ is said to be in the class $W_{\Sigma}(\mu, x)$ where (0 < $\mu \leq 1, z, w \in \mathbb{U}$, if the following subordination conditions are satisfied:

$$
\frac{1}{2}\left[\frac{zf'(z)}{f(z)} + \left(\frac{zf'(z)}{f(z)}\right)^{\frac{1}{\mu}}\right] \prec \prod(x, z) + 1 - a
$$

and

$$
\frac{1}{2}\left[\frac{wg'(w)}{g(w)} + \left(\frac{wg'(w)}{g(w)}\right)^{\frac{1}{\mu}}\right] \prec \prod(x, w) + 1 - a,
$$

where a, b is a real constant and the function g is given by[\(1.2\)](#page-0-0)..

Theorem 1.3. *(see [\[25\]](#page-8-25))* Let $f(z)$ given by (1.1) be in the class $W_{\Sigma}(\mu, x)$, $(0 \lt \mu \leq 1, z, w \in \mathbb{U})$ *. Then*

$$
|a_2| \le \frac{2\mu|bx|\sqrt{|bx|}}{\sqrt{\left|\left[(2\mu^2 + \mu + 1)b - (\mu + 1)^2p\right]bx^2 - (\mu + 1)^2qa\right|}}
$$

and

$$
|a_3|\leq \frac{4\mu^2b^2x^2}{(\mu+1)^2}+\frac{\mu|bx|}{\mu+1}.
$$

In this paper, we introduce a new subclass $W_{\Sigma}(m, \mu, x)$ of bi-univalent functions of class Σ . We also obtain estimates for the initial Taylor-Maclaurin coefficients a_2 and a_3 for functions in this subclass. Our results for the bi-univalent functions of subclass $W_{\Sigma}(m,\mu,x)$ would generalize and improve some recent works by Srivastava *et al.* [\[25\]](#page-8-25),

2 The new subclass $W_{\Sigma}(m,\mu,x)$

For introduce the subclass $W_{\Sigma}(m, \mu, x)$, we need to recall salagean differential operator. In [\[26\]](#page-8-26) salagean defined the differential operator as follows($f \in S$):

$$
D^{0} f(z) = f(z) \qquad , \qquad D^{1} f(z) = Df(z) = zf'(z)
$$

$$
D^{m} f(z) = D(D^{m-1} f(z)) = z + \sum_{k=2}^{\infty} k^{m} a_{k} z^{k} \quad (m \in \mathbb{N} \cup \{0\}).
$$

Now we define the new subclass $W_{\Sigma}(m,\mu,x)$ as following.

Definition 2.1. For $m \in \mathbb{N} \cup \{0\}$, $0 \le \mu \le 1$, $(z, w \in \mathbb{U})$ and $x \in \mathbb{R}$, a function $f \in \Sigma$ is said to be in the subclass $W_{\Sigma}(m,\mu,x)$, if the following subordination conditions are satisfied:

$$
\frac{1}{2} \left[\frac{D^{m+1} f(z)}{D^m f(z)} + \left(\frac{D^{m+1} f(z)}{D^m f(z)} \right)^{\frac{1}{\mu}} \right] \prec \prod (x, z) + 1 - a \tag{2.1}
$$

and

$$
\frac{1}{2} \left[\frac{D^{m+1} g(w)}{D^m g(w)} + \left(\frac{D^{m+1} g(w)}{D^m g(w)} \right)^{\frac{1}{\mu}} \right] \prec \prod (x, w) + 1 - a,
$$
\n(2.2)

where a, b is a real constant and the function g is given by[\(1.2\)](#page-0-0).

Remark 2.2. There are several choices of the parameters m and μ which would provide interesting subclasses of bi-univalent functions. For example, we have the following special cases:

- i. By putting $m = 0$ we have $\frac{D^1 f(z)}{D^0 f(z)} = \frac{zf'(z)}{f(z)}$ $\frac{\partial f(z)}{\partial f(z)}$. In this case the class $W_{\Sigma}(m,\mu,x)$ reduces to the class $W_{\Sigma}(\mu, x)$ in Definition [1.2](#page-1-0) which was considered by Srivastava *et al.*[\[25\]](#page-8-25).
- ii. By putting $m = 0, a = 1, b = p = 2$ and $q = -1$, the class $W_{\Sigma}(m, \mu, x)$ reduces to the class $S_{\sigma}(\mu, x)$ which was considered by Altinkaya *et al.* [\[27\]](#page-8-27).
- iii. By putting $m = 0, \mu = 1$ the class $W_{\Sigma}(m, \mu, x)$ reduces to the class $S_{\Sigma}^{*}(x)$ which was considered by Abirami *et al.* [\[28\]](#page-9-0).
- iv. By putting $m = 1, \mu = 1$, we have $\frac{D^2 f(z)}{D^1 f(z)} = 1 + \frac{zf''(z)}{f'(z)}$ $\frac{f'(z)}{f'(z)}$. In this case the class $W_{\Sigma}(m, \mu, x)$ reduces to the class $K_{\Sigma}(x)$ which was considered by Orhan *et al.* [\[29\]](#page-9-1).

Now, we purpose to find the estimates on the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in the subclass $W_{\Sigma}(m,\mu,x)$, which we introduced. Also we discuss the Fekete-Szegö problem for this family.

3 Coefficient bound for the function class $W_{\Sigma}(m,\mu,x)$

Theorem 3.1. *Let* $f(z)$ given by [\(1.1\)](#page-0-1) *be in the class* $W_{\Sigma}(m,\mu,x), (m \in \mathbb{N} \cup \{0\}, 0 < \mu \le 1)$ *. Then,*

$$
|a_2| \le \frac{2\mu|bx|\sqrt{|bx|}}{\sqrt{\left|\left(((4.3^m - 2.4^m)\mu^2 + (4.3^m - 3.4^m)\mu + 4^m)b - (\mu + 1)^2 4^m p\right]bx^2 - (\mu + 1)^2 4^m aq\right|}}
$$

and

$$
|a_3| \le \frac{4\mu^2 b^2 x^2}{4^m (1+\mu)^2} + \frac{\mu|bx|}{3^m (1+\mu)}.
$$
\n(3.1)

Proof. Let $f \in W_{\Sigma}(m, \mu, x)$ then, there are two analytic functions $u, v : \mathbb{U} \longrightarrow \mathbb{U}$ such that $u(z) = u_1 z + u_2 z^2 + u_3 z^3 + \dots$ and $v(z) = v_1 w + v_2 w^2 + v_3 w^3 + \dots$ $(z, w \in \mathbb{U})$, where $u(0) = v(0) = 0$, $|u(z)| < 1$ and $|v(w)| < 1$, such that

$$
\frac{1}{2} \left[\frac{D^{m+1} f(z)}{D^m f(z)} + \left(\frac{D^{m+1} f(z)}{D^m f(z)} \right)^{\frac{1}{\mu}} \right] = \prod (x, u(z)) + 1 - a
$$

and

$$
\frac{1}{2} \left[\frac{D^{m+1} g(w)}{D^m g(w)} + \left(\frac{D^{m+1} g(w)}{D^m g(w)} \right)^{\frac{1}{\mu}} \right] = \prod (x, v(w)) + 1 - a
$$

or equivallently,

$$
\frac{1}{2} \left[\frac{D^{m+1} f(z)}{D^m f(z)} + \left(\frac{D^{m+1} f(z)}{D^m f(z)} \right)^{\frac{1}{\mu}} \right] = 1 + h_1(x) - a + h_2(x) u(z) + h_3(x) u^2(z) + \dots
$$

and

$$
\frac{1}{2} \left[\frac{D^{m+1}g(w)}{D^m g(w)} + \left(\frac{D^{m+1}g(w)}{D^m g(w)} \right)^{\frac{1}{\mu}} \right] = 1 + h_1(x) - a + h_2(x)v(w) + h_3(x)v^2(w) + \dots
$$

From these last equations (3.2) , (3.3) , we obtain

$$
\frac{1}{2} \left[\frac{D^{m+1} f(z)}{D^m f(z)} + \left(\frac{D^{m+1} f(z)}{D^m f(z)} \right)^{\frac{1}{\mu}} \right] = 1 + h_2(x) u_1 z + [h_2(x) u_2 + h_3(x) u_1^2] z^2 + \dots
$$
\n(3.4)

and

$$
\frac{1}{2} \left[\frac{D^{m+1} g(w)}{D^m g(w)} + \left(\frac{D^{m+1} g(w)}{D^m g(w)} \right)^{\frac{1}{\mu}} \right] = 1 + h_2(x) v_1 w + [h_2(x) v_2 + h_3(x) v_1^2] w^2 + \dots
$$

(3.5)

(3.2)

(3.3)

It is well known that if, $|u(z)| < 1$ and $|v(w)| < 1$ for $z, w \in \mathbb{U}$, then $|u_i| \leq 1$ and $|v_i| \leq 1$ for all $i \in \mathbb{N}$.

Comparing the corresponding coefficients in (3.4) and (3.5) we have

$$
\frac{\mu+1}{2\mu}2^m a_2 = h_2(x)u_1,
$$
\n(3.6)

$$
\frac{\mu+1}{2\mu}(3^m 2a_3 - 4^m a_2^2) + \frac{1-\mu}{4\mu^2} 4^m a_2^2 = h_2(x)u_2 + h_3(x)u_1^2,
$$
\n(3.7)

$$
-\frac{\mu+1}{2\mu}2^m a_2 = h_2(x)v_1,
$$
\n(3.8)

and

$$
\frac{\mu+1}{2\mu}\left[(4.3^m - 4^m)a_2^2 - 3^m a_3 \right] + \frac{1-\mu}{4\mu^2} 4^m a_2^2 = h_2(x)v_2 + h_3(x)v_1^2.
$$

(3.9)

From (3.6) and (3.8) we can see that

$$
u_1 = -v_1 \tag{3.10}
$$

and

$$
\frac{(\mu+1)^2}{2\mu^2} 4^m a_2^2 = [h_2(x)]^2 (u_1^2 + v_1^2).
$$
 (3.11)

If we add (3.7) and (3.9) we have

$$
\frac{(4.3^m - 2.4^m)\mu^2 + (4.3^m - 3.4^m)\mu + 4^m}{2\mu^2}a_2^2
$$

= $h_2(x)(u_2 + v_2) + h_3(x)(u_1^2 + v_1^2),$ (3.12)

by using (3.11) and (3.12) , we get

$$
\left[\left((4.3^m - 2.4^m)\mu^2 + (4.3^m - 3.4^m)\mu + 4^m \right) [h_2(x)]^2 - (\mu + 1)^2 4^m h_3(x) \right] a_2^2
$$

= $2\mu^2 [h_2(x)]^3 (u_2 + v_2)$

which gives

$$
|a_2| \le \frac{2\mu|bx|\sqrt{|bx|}}{\sqrt{\left|\left(((4.3^m - 2.4^m)\mu^2 + (4.3^m - 3.4^m)\mu + 4^m)b - (\mu + 1)^2 4^m p\right]bx^2 - (\mu + 1)^2 4^m aq\right|}}
$$

Next if we substract (3.9) from (3.7) , we can easily see that

$$
\frac{2(\mu+1)3^m}{\mu}(a_3 - a_2^2) = h_2(x)(u_2 - v_2) + h_3(x)(u_1^2 - v_1^2). \tag{3.13}
$$

In view of (3.10) and (3.11) , we get from (3.13)

$$
a_3 = \frac{2\mu^2 [h_2(x)]^2 (u_1^2 + v_1^2)}{4^m (\mu + 1)^2} + \frac{\mu h_2(x)(u_2 - v_2)}{2(\mu + 1)3^m}.
$$

Thus applying (1.3) , we obtain

$$
|a_3| \le \frac{4\mu^2 b^2 x^2}{4^m (\mu + 1)^2} + \frac{\mu |bx|}{(\mu + 1)3^m}
$$

.

This completes the proof of Theorem [3.1.](#page-3-4)

4 The Fekete-Szegö problem for the class $W_{\Sigma}(m,\mu,x)$

Theorem 4.1. *Let* $f(z)$ given by [\(1.1\)](#page-0-1) *be in the class* $W_{\Sigma}(m,\mu,x)$ where $\nu \in \mathbb{R}$ *. Then*

$$
|a_3 - \nu a_2^2| \le \begin{cases} \frac{\mu|bx|}{(\mu+1)3^m} & (|\nu-1| \le T) \\ \frac{4\mu^2|1-\nu||bx|^3}{P} & (|\nu-1| \ge T), \end{cases}
$$

where:

$$
P = \left| \left[\left((4.3^m - 2.4^m)\mu^2 + (4.3^m - 3.4^m)\mu + 4^m \right) b - (\mu + 1)^2 4^m p \right] bx^2 - (\mu + 1)^2 4^m aq \right|,
$$

$$
T = \frac{1}{4\mu(\mu + 1)3^m} \left| \left((4.3^m - 2.4^m)\mu^2 + (4.3^m - 3.4^m)\mu + 4^m \right) - (\mu + 1)^2 4^m \left[\frac{pbx^2 + aq}{b^2 x^2} \right] \right|.
$$

Proof. It follows from (3.12) and (3.13) that

$$
a_3 - \nu a_2^2 = \frac{2\mu^2 [h_2(x)]^3 (1 - \nu)(u_2 + v_2)}{\left[(4.3^m - 2.4^m)\mu^2 + (4.3^m - 3.4^m)\mu + 4^m \right] \left[h_2(x) \right]^2 - (\mu + 1)^2 4^m \cdot h_3(x)} + \frac{\mu h_2(x)(u_2 - v_2)}{2(\mu + 1)3^m}
$$

$$
= h_2(x) \left[\left(\psi(\nu, x) + \frac{\mu}{2(\mu + 1)3^m} \right) u_2 + \left(\psi(\nu, x) - \frac{\mu}{2(\mu + 1)3^m} \right) v_2 \right],
$$

where

$$
\psi(\nu,x) = \frac{2\mu^2[h_2(x)]^2(1-\nu)}{\left[\left(4.3^m - 2.4^m\right)\mu^2 + \left(4.3^m - 3.4^m\right)\mu + 4^m\right]\left[h_2(x)\right]^2 - (\mu + 1)^2 4^m.h_3(x)}.
$$

According to [\(1.3\)](#page-1-1), we find that

$$
|a_3 - \nu a_2^2| = \begin{cases} \frac{\mu |b(x)|}{(\mu + 1)3^m} & (0 \le |\psi(\nu, x)| \le \frac{\mu}{2(\mu + 1)3^m})\\ 2|h_2(x)|.|\psi(\nu, x)| & (|\psi(\nu, x)| \ge \frac{\mu}{2(\mu + 1)3^m}). \end{cases}
$$

After some computations we have proved the statement of Theorem [4.1.](#page-5-0)

 \Box

 \Box

5 A Set of Corollaries and Consequences

By taking m = 0 in Theorem [3.1,](#page-3-4) we have the following result which obtained by Srivastava *et al.* [\[25,](#page-8-25) Theorem 2.].

Corollary 5.1. *If* $f(z)$ *of the form* [\(1.1\)](#page-0-1) *be in the class* $W_{\Sigma}(\mu, x)$ *. Then,*

$$
|a_2| \le \frac{2\mu|bx|\sqrt{|bx|}}{\sqrt{|[(2\mu^2 + \mu + 1)b - (\mu + 1)^2 p]bx^2 - (\mu + 1)^2 aq|}}
$$

and

$$
|a_3| \le \frac{4\mu^2 b^2 x^2}{(\mu+1)^2} + \frac{\mu|bx|}{\mu+1}.
$$

By taking $a = 1$, $b = p = 2$ and $q = -1$ in Corollary [5.1,](#page-5-1) we have the following result which obtained by Altinkaya *et al.* [\[27,](#page-8-27) Theorem 2.1].

Corollary 5.2. *If* $f(z)$ *given by* [\(1.1\)](#page-0-1) *be in the class* $S_{\sigma}(\mu, x)$ *. Then,*

$$
|a_2| \le \frac{4\mu x \sqrt{2x}}{\sqrt{4(\mu^2 - \mu)x^2 + (\mu + 1)^2}}
$$

and

$$
|a_3| \le \frac{16\mu^2 x^2}{(\mu+1)^2} + \frac{2\mu x}{\mu+1}.
$$

By taking $\mu = 1$ in Theorem [3.1,](#page-3-4) we have the following result.

Corollary 5.3. *Let* $f(z)$ *given by* [\(1.1\)](#page-0-1) *be in the class* $W_{\Sigma}(m, x)$ *. Then,*

$$
|a_2| \le \frac{|bx|\sqrt{|bx|}}{\sqrt{\left|3^m(2b) - 4^m(b+p)\right]bx^2 - 4^maq}}
$$

and

$$
|a_3| \le \frac{b^2 x^2}{4^m} + \frac{|bx|}{2 \cdot 3^m}.
$$

By taking $m = 1$ in Corollary [5.3,](#page-6-0) we obtain the following result which obtained by Orhan *et al.* [\[29,](#page-9-1) Corollary 1].

Corollary 5.4. *If* $f(z)$ *of the form* [\(1.1\)](#page-0-1) *be in the class* $K_{\Sigma}(x)$ *. Then,*

$$
|a_2| \le \frac{|bx|\sqrt{|bx|}}{\sqrt|(2b-4p)bx^2-4aq|}}
$$

and

$$
|a_3| \le \frac{b^2x^2}{4} + \frac{|bx|}{6}.
$$

By taking $\mu = 1$ in Theorem [4.1](#page-5-0) we have the following result.

Corollary 5.5. Let f given by [\(1.1\)](#page-0-1) be in the class $W_{\Sigma}(m, x)$, where $\nu \in \mathbb{R}$. Then,

$$
|a_3 - \nu a_2^2| \le \begin{cases} \frac{|bx|}{2.3^m} & (|\nu - 1| \le S) \\ \frac{|1 - \nu||bx|^3}{\left| \left[(2.3^m - 4^m)b - 4^mp \right]bx^2 - 4^maq \right|} & (|\nu - 1| \ge S), \end{cases}
$$

where:

$$
S = \frac{\left| \left[(2.3^m - 4^m)b - 4^mp \right]bx^2 - 4^maq \right|}{2.3^mb^2x^2}.
$$

By putting $m = 0$ in Corollary [5.5](#page-7-0) we have the following result which obtained by Srivastava *et al.* [\[25,](#page-8-25) Corollary 3].

Corollary 5.6. *Let f given by* [\(1.1\)](#page-0-1) *be in the class* $W_{\Sigma}(x)$ *, where* $\nu \in \mathbb{R}$ *. Then,*

$$
|a_3 - \nu a_2^2| \le \begin{cases} \frac{|bx|}{2} & (|\nu - 1| \le \frac{|(b - p)bx^2 - aq|}{2b^2x^2}) \\ & \frac{|1 - \nu||bx|^3}{|(b - p)bx^2 - aq|} & (|\nu - 1| \ge \frac{|(b - p)bx^2 - aq|}{2b^2x^2}). \end{cases}
$$

By taking m = 1 in Corollary [5.5](#page-7-0) we have the following result which obtained by Orhan *et al.* [\[29,](#page-9-1) Corollary 1].

Corollary 5.7. *Let f given by* [\(1.1\)](#page-0-1) *be in the class* $K_{\Sigma}(x)$ *, where* $\nu \in \mathbb{R}$ *. Then,*

$$
|a_3 - \nu a_2^2| \le \begin{cases} \frac{|bx|}{6} & (|\nu - 1| \le \frac{|(2b - 4p)bx^2 - 4aq|}{6b^2x^2}) \\ & \frac{|1 - \nu||bx|^3}{|(2b - 4p)bx^2 - 4aq|} & (|\nu - 1| \ge \frac{|(2b - 4p)bx^2 - 4aq|}{6b^2x^2}). \end{cases}
$$

Putting $\nu = 1$ in Theorem [4.1,](#page-5-0) we have the following results.

Corollary 5.8. *Let* $f \in A$ *be in the family* $W_{\Sigma}(m, \mu, x)$ *. Then*

$$
|a_3 - a_2^2| \le \frac{\mu|bx|}{(\mu+1)3^m}.
$$

If we set $b = 2, m = 0$ in Corollary [5.8,](#page-7-1) we have the following result which obtained by Altinkaya et al. [\[27,](#page-8-27) Corollary 3.2.].

Corollary 5.9. *If the function* $f \in A$ *be in the family* $S_{\sigma}(\mu, x)$ *. Then*

$$
|a_3 - a_2^2| \le \frac{2\mu x}{\mu + 1}.
$$

6 Conclusion remarks

This paper aims to obtain upper bounds for the second and third coefficients of functions in the subclass $W_{\Sigma}(m,\mu,x)$ of analytic and bi-univalent functions defined by Horadam polynomials in the open unit disk U. Also, we solve Fekete-Szegö problem of functions belonging to this family. Therefore, the results of this work are variant, significant and so it is interesting and capable to develop its study in the future.

References

- [1] P. L. Duren, *Univalent Functions*, Springer-Verlag, New York, Berlin, (1983).
- [2] M. Lewin, *On a coefficient problem for bi-univalent functions*, Proc. Amer. Math. Soc., 18, 63-68, (1967).
- [3] D. A. Brannan, J. Clunie and W. E. Kirwan, *Coefficient estimates for a class of star-like functions*, Canad. J. Math., 22, 476-414, (1970).
- [4] D. L. Tan, *Coefficient estimates for bi-univalent functions*, Chinese Ann. Math. Ser. A., 5, 559-568, (1984).
- [5] H. M. Srivastava, A. K. Mishra and P. Gochhayat, *Certain subclasses of analytic and bi-univalent functions,* Appl. Math. Lett., 23, 1188-1192, (2010).
- [6] H. M. Srivastava and D. Bansal, *Coefficient estimates for a subclass of analytic and bi-univalent functions*, J. Egyptian Math. Soc., 23, 242-246, (2015).
- [7] H. M. Srivastava, S. Bulut, M. Çağlar and N. Yagmur, Coefficient estimates for a general subclass of *analytic and bi-univalent functions*, Filomat, 27, 831-842, (2013).
- [8] H. M. Srivastava, S. Gaboury and F. Ghanim, *Coefficient estimates for some general subclasses of analytic and bi-univalent functions,* Afrika Mat., 28, 693-706, (2017)..
- [9] H. M. Srivastava, S. Gaboury and F. Ghanim, *Initial coefficient estimates for some subclasses of* m*-fold symmetric bi-univalent functions,* Acta Math. Sci. Ser. B Engl. Ed., 36, 863-871, (2016).
- [10] H. M. Srivastava, S. Gaboury and F. Ghanim, *Coefficient estimates for some subclasses of* m*-fold symmetric bi-univalent functions,* Acta Univ. Apulensis Math. Inform., 23, 153-164, (2015).
- [11] H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan and S. Hussain, *The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain* q*-integral operator,* Stud. Univ. Babe¸s-Bolyai Math., 63, 419-436, (2018).
- [12] H. M. Srivastava, F. M. Sakar and H. Ö. Güney, *Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination,* Filomat., 34, 1313-1322, (2018).
- [13] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, *Initial coefficient bounds for a subclass of* m*-fold symmetric bi-univalent functions,* Tbilisi Math. J., 7, 1-10, (2014).
- [14] H. M. Srivastava, S. Sümer Eker and R. M. Ali, *Coefficient bounds for a certain class of analytic and bi-univalent functions,* Filomat., 29, 1839-1845, (2015).
- [15] H. M. Srivastava, A. Zireh and S. Hajiparvaneh, *Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions*, Filomat., 32, 3143-3153, (2018).
- [16] H. M. Srivastava, S. Sümer Eker, S. G. Hamidi and J. M. Jahangiri, *Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator,* Bull. Iran. Math. Soc., 44, 149-157, (2018).
- [17] H. M. Srivastava and A. K. Wanas, *Initial Maclaurin coefficient bounds for new subclasses of analytic and* m*-fold symmetric bi-univalent functions defined by a linear combination,* Kyungpook Math. J., 59, 493-503, (2019).
- [18] H. M. Srivastava, A. Motamednezhad and E. A. Adegani, *Faber polynomial coefficient estimates for biunivalent functions defined by using differential subordination and a certain fractional derivative operator,* Mathematics., 8, 1-12, Article ID 172, (2020).
- [19] A. Zireh and S. Salehian, *On the certain subclass of analytic and bi-univalent functions defined by convolution*, Acta Univ. Apulensis Math. Inform., 44, 9-19, (2015).
- [20] A. Zireh and S. Hajiparvaneh, *On estimate for second and third coefficients for a new subclass of analytic and bi-univalent functions by using differential operators*, Palestine Journal of Mathematics., 8, 44-51, (2019).
- [21] G. Murugusundaramoorthy and H. Ö. Güney, *Coefficient bounds for certain subclasses of bi-univalent functions associated with the gegenbauer polynomial*, Palestine Journal of Mathematics., 12, 151-162, (2023).
- [22] S. S. Miller and P. T. Mocanu, *Diffirential subordinations:Theory and Applications, Series on Monographs and Textbooks in pure and applied Mathematics* , Marcel Dekker Inc.,New York ans Basel, 225, (2000).
- [23] T. Hörcum and E. G. Koçer, *On some properties of Horadam polynomials*, Int. Math. Forum., 4, 1243- 1252, (2009).
- [24] A. F. Horadam and J. M. Mahon *Pell and Pell-Lucas polynomials*, Fibonacci Quart., 35, 7-20, (1985).
- [25] H. M. Srivastava, S. Altinkaya and S. Yalcin , *Certain Subclasses of Bi-Univalent Functions Associated with the Horadam Polynomials*, Iran. J. Sci. Technol Trans Sci., 43, 1873-1879, (2019).
- [26] G. S. Salagean, *Subclasses of univalent functions*, Lect Notes Math., 1013, 362-372, (1983).
- [27] S. Altinkaya and S. Yalcin, *On the Chebyshev polynomial coefficient problem of some subclasses of biunivalent functions*, Gulf J. Math., 5, 34-40, (2017).
- [28] C. Abirami. N. Magesh and J. Yamini. *Initial Bounds for Certain Classes of Bi-Univalent Functions Defined by Horadam Polynomials*, Abstr. Appl. Anal., 1-8, (2020).
- [29] H. Orhan, P. K. Mamatha, S. R. Swamy, N. Magesh and J. Yamini, *Certain classes of bi-univalent functions associated with the Horadam polynomials*, Acta Univ. Sapientiae Mathematica., 13, 258-272, (2021).

Author information

Morteza Moslemi, Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran. E-mail: Mortezamoslemi1365@shahrood.ac.ir

Ahmad Motamednezhad, Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran.

E-mail: a.motamedne@gmail.com, amotamed@shahroodut.ac.ir

Received: 2023-07-16
Accepted: 2024-01-27 Accepted: