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Abstract In this paper, we consider a linear function of the form |ri+...+r,| " €R (vER)
from N vectors r,€RP in D—dimensional Euclidean space, and its expansion output as a se-
ries > Gyp,,.p Jpi(r1) .- fp, (ry). As a function of f,(r), we consider the product of or-
thogonal radial functions and angular hyperspherical functions on the unit D—1-dimensional
sphere SP~!. The choice of such functions defined by us is because for N = 2 the coefficient
Gy, .p, has the diagonal form. It is shown that with the help of a certain orthogonal comple-
ment SP=SP~1gS!, this expansion can also be represented by hyperspherical functions on a
D—dimensional the unit sphere SP.

1 Introduction

The function of the form |r; — r2|~ € R from vectors r, € RP in D—dimensional space
are found in many sections of mathematics and physics. For example, in the theory of Riesz
potential, hypersingular integrals, and fractional integration, where this function is included in
the kernel of the integral equation of the first type [1], as well as in numerical methods similar
to [2], [3]. In [4], a complete expansion was considered and applied for the case of —v =p € N
on the surface of r;, € SP~! by hyperspheric harmonics. This function is also used in physical
problems, such as problems of many bodies, aerodynamics, electrodynamics, and geophysics.
In many cases, approximation by a small parameter is used to solve some problems

ry rirp
— X, () @0, Inl <ol coso = 7172
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or if it is possible by harmonic functions Y},(6)
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where F,, ®,, G, are the functions resulting from the expansion. Unlike these expansions, we
propose an exact approximation from N vectors of the form

Pt [~ Y o () o (12) o ()

P1,p2;---Pn

and the definition of such functions f,(r) € R. In [5] it is shown that such a separation exists for

two vectors in three-dimensional space R>. In the spherical coordinate system rs={rs, 01,02}
(for veR, v<3)



Expansion of a power-law functions 665

o n l
PDIPIY n+3 -l 3 gy ) Hntm(e) (LD

0 =0 m=—1
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where Y} ,,, (61, 62)—spherical function on a unit two-dimensional sphere S?. The function 1, ;(r)
forms an orthogonal system with a weight of 72 in the domain 0<r<oo, which can be expressed
using polynomials of Gegenbauer C'", as
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Similarly to the representation of (1.1) in the space R>, one can represent the expansion by
hyperspherical functions Yy, ;. (s, 051, 0s2) on a three-dimensional sphere S* as
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In this paper we will consider a similar expansion of (1.1) but with any number of N arbitrary
D—dimensional vectors in Euclidean space. We will denote multidimensional unit vectors in
D—dimensional Euclidean space as ¢, where s means belonging to the vector. In this case, D of
the components of the vector {,={(s.x}, k=1, ..., D can be expressed in terms of D—1 of polar
coordinates 8,={6}, i=1,... D—1 on the unit sphere S” ~1, where for an arbitrary vector r
in a spherical coordinate system rs=r;{,={rs, 05}, and the scalar product of the unit vectors «

D
and 3 as the cosine of the angle between them cos was=({,C5)= > CarCp:k- We will also not
k=1

specify the choice of polar coordinates and their components on S”~! since is not essential here.
In total, there may be % equivalent representation, and accordingly the same number of
equivalent representation exists for hyperspheric functions Y;_ m_(0s), ms={ms,1,...,msp_2}
(here and everywhere if there is an index of s, it means belonging to the corresponding unit
vector ¢,). The theory of hyperspherical functions is well described in many literature data and
works (for example, in [6, Ch.11]), and we do not consider it here.

As an example, we note an important construction of the graphical method — hyperspherical
tree [7, Sec. 6.1.4]. In figure 1, thick lines show a T-tree for hyperspherical functions on the unit
sphere SP~1. In this case, the separation constant [, for the hyperspherical function Y} m, (),
we will denote separately. By analogy with the above example in three-dimensional space, by
introducing another variable (1.5a)ty, we can make an orthogonal complement from the unit
sphere SP~! to SP. The figure 1 of the thin line on the T-tree shows the complement to SP~1.
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Figure 1. Hyperspherical T-tree on the D—dimensional unit sphere S? = SP~1 @ S!. The space
on SP~1 is represented as a T-tree by thick lines with a separation constant /, S!—with thin lines
with a separation constant n.

We will denote the hyperspherical function on S” as Y,,; m(%, 8) with separately designated
separation constants n and /.
The surface element on SP we will denote by dQ.; 6, and on SP~! as dQg. The relationship
between them
dQyp.0 = sin” "l dyp dQqg

In all sections of this work, the integral over the surface of the unit hypersphere [dQqf(¢) it is
implied that the integration is taken over the entire D—1 dimensional space. For an arbitrary sys-
tem of hyperspherical coordinates, the volume element in R” and the area of a D—dimensional
unit sphere are represented by the relations respectively as [6, Ch.11]

dr=dV, =rP=1qr dQg, /dQ,(/),QZSD Dil /ng .
So, for example, for hyperspherical functions satisfying the orthogonality condition

[426Y, . (6)7 ., (6) = 1.1, 5m.m,
(1.6)
/de GYnS ls,mg (wv ) Np,lp,my (1.1’7 ) - 6ns,np5l5,lp5ms,mp

6m5)mp = 6ms;])mp;l 67715;2777117;2 o '6ms;D—2)mp:D—2

where d,, 5, 1s the Kronecker symbol.
Everywhere C (2) —Gegenbauer function. I'(...)-Gamma function. The generalized hyper-
geometric function is as

ay, .

F,
b bl,...,b

Sk

k=0 ‘I)k R

where the symbols (a); denote the Pochhammer’s symbol

_ T(a+k)
O
In our notation n={ny,...,ny}, 1={l;,...,l,}, me={m,,...,m_} , and the total summation
means as
oo my oo My
n,l,my n1=0 ;=0 m, ny=01,=0m

N N N
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2 Representation of the form (1.1) for N > 2 multidimensional vectors

Theorem 2.1. For arbitrary D—dimensional vectorsrs = {rs,0,}, s=1,2,... N, in a spherical
coordinate system, as well as real numbers 0<v<D, a linear function |v1+...+r| " €R has
a expansion of the form

1 I (252) i Dy
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2 7 (n+i+D-2)! (7,2+1)l+ 7 r2+1
forms an orthogonal system with weight rP~!
Jar P )0 = b @)

0

The replacement of the variable 74(1.5a), the expansion of (2.1) can be represented as similar
to (1.4) but on a unit D—dimensional sphere S”. With the help of the orthogonal complement
specified in the introduction 1, such a transition will be carried out by substitutions

Yo m(wv ) = TIn z)(COS ¢)Yl m(a) (2.8a)
D—2 D—1 +L2=0) (n—1)! D=1
Hytan(r) € (1= cos9) % Yy m(1,60) (2.8¢)

(P + 1) Hy o (r) < 277 (1 = cos ) 5 Yy m (1, 0) (2.8d)
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In this case, the expansion of (2.1) by D—dimensional hyperspherical functions will take the
form

! r(P5) (25 .
= Gnlm 277 (1- Y, I om ,0 29
Fr ol ), O r[( = (105 ty) Vi tym, (0,0,) ) 29)

That is, in this expansion, we have moved from the D-dimensional Euclidean space R”, to the
space S of the unit D-dimensional sphere. When replacing (2.8), the expansion |ri+ ... 41| "
can be represented as (2.1) or (2.9). The expressions (1.1)-(1.4) are a special case of the theorem
2.1 and the expressions (2.9) for D=3, N=2.

Example. For N=2 and D—dimensional vectors r from (2.1) taking into account (2.4) and (1.6)
we get

I'(n +3
Gnﬁlymk - WDF(nl(—l]—D—))(snl nzéll’lzéml my, =7 9”15"1 ”2511 125m1 m,
SD=> (. D)
n,l,my n,l,m n=0[=0 m
LR () (341) Y g Hom ) Hriml) —
ry — v F(%) 1 2 n,l,mgn n,l,m(T1)Hn i m(r2
%2D7VF D—v .
- i y( s ) ((1_0051/)1)(1—0051/}2))2 ZgnYn,l,m(wluel)Yn,l,m(w2792)
r'(%) S
and also
1 T (B o,
PESE (%) ((ri+1) T2+ n;ng 4m (1) Hy i m(r2)

W%ZD—UI—«(DZ— g
= F(%) ((1—cos¥)(1—cosy)) ZgnYn,l,m(wlaol)Yn,l,m('(/)Z,02) (2.10)

where 1, is defined in (1.5a). In particular for z,y € R, v<2

X
~—

n,l,m
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o=yl 2F(%)2 @+ D"+ D) gzglmnn,\ll(@”n,m@)*
2l-rT (1 - % L2 dn C(n+ v
) F((';) ! (1 costull =eovb)) nz:;)zznl“(n(Jrer | )®n’|”(wx)®n,|l|(wy)

(n—0)!(n+3)

Oni(2) = (n+1)!

1
2) pl (cos 2), /dz O 1(2)Ons1(2) = i,

and P! (cos z)— Legendre function.
Consider the case when ry, € SP~! |r;| = 1. From (2.5) and (2.6)

Hytm(r) = 015 (1)Yi,m(6)
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After summing by n we have the final result

RET(2p2) 20 & .

n=0

CLl(I/,D)

2021 (8) (2= 11 + §)
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In this infinite sum, the nonzero terms of the series correspond forn = [ 4+ 2k, k = 0...00
Thus

=S @2.11)

1

m = Zal(y,D)Yz’m(el)}/—l,m(ez), for |I‘1\ = |I‘2| =1

l,m

here Y7 m(6;) is a hyperspherical function on SP-1 Note that in [4, Sec.3], a similar result of
the decomposition of (2.11) was used for v = —p € N.

Proof. For output (2.1), we will proceed from [8], where it was shown that

1

W: Z Vipody (01,...,0N )REIV’"I‘D")lN(Tl,...,rN) (2.12a)
sty

liseesl =0

The function R( )lN can be represented through the Lauricella’s hypergeometric function of

.....

N —1 variables Fé D [9, Ch.7, eq.7.2.4(14)] as (here r, =max(r,72,...,75))

v v—D+2
Rz(y’mz (1 TN) = (_I)ZN (2)l< 2 )l_lN X
N N W NI(D>
p=1 z lp
N—-1 lp Z+K’ﬂ+l_l]v ) 5
JL(2) eV 200 () @iz
1 ’I“N c .D .D TN 9 ) ’I"N
P ht St 5
and

N D
dQ L+5—-1 _p_
Vit (01.08) = [ [[ 52000 ((6:€) =
2

_ N-1 N A
=(S,.,) > IYm, (ep)/dQeHYlp,mp 0) (2.120)

my,....my p=I p=1
where in the last expression we use the Gegenbauer addition theorem by hyperspherical functions

D_ D _q —
G (€16) = S gy 2 Yim(01)V 1m(62) 2.13)
2 m

Using the expression [10, Ch.2, eq.2.12.44(7)] of the integral from products for the Bessel
function Jy, (cyu)
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o0 N 201 (e VWP (£
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(Ck)/\k (N-1) Ny T )\N C] Cny
meFC 272 —) (2 (2.14)
k=1 MA1,..., A, +1 N N

where for real parameter o, Ag, ¢
N=22 >0, k=1,...,N; cy>c+...+cy_;;
N
—(A1+...+>\N)<a<5+l; B=a+A+...+ X7,

For the expression (2.12b) with values

D
cr = 21y, )\k:lk“‘z_l, k=1,...,N;

N
D D
R
k=1
(ﬂ:ll+"‘+lN+V=2l+1/; 0<1/<N(D_1)+1>

will be presented in the following form

where we introduce a function of the form

2720 o 2z
o) (z) = ks 1(27) (2.16)
()2

Unlike (2.12b), the expression (2.15) is symmetric over all r¢, k=1,..., N.

Orthogonalization Rl(]””?,)lN (P1y.eesry)

Let ¢, (r) be an arbitrary orthogonal system of functions in the domain of value re £ with
weight p(r)>0.

| p0)000)60r) = 1 2.17)

Represent the expression (2.15) in series of these functions

N
R r,ry) =S A [[ 62 (1) (2.18)
n k=1

then from (2.17) and (2.18) the coefficients A, ; will be in the form

N

An,l - / drlp(rl)(bgl]]j)(rl) to / der(TN)¢(D)(TN)R§V7D>(T1 Yo 7TN)
E E

If enter a function of the form (using (2.16))

N~}
|
—~
[\
3
S
=

J
ff:;D) (u) = / drp(r) gbn(r)go;D)(ru) =il2n? / drp(r)pn(r) e Sl (2.19)
E E (
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we obtain the coefficient of the following form

) / duu’~ 1H§nk L (2.20)
2

—
wn

§]

L

\/

N\t N

We find such functions ¢,, (r) with the domain E, in which the functions ;" (u) in (2.19) will
also form an orthogonal system of the function with weight u*~!. Indeed

Jauww P e ) =
0

o0

= /dm p(r1) én, (Tl)/drzp 72)Pn, (12 /duu o (r1u) P (ryu) =
E

0

= (~1)14xP /E dr1 p(r)ém () /E drs p(r2)dm (r2) %

The integral by u can be expressed at N = 2 from (2.14) or found from the general expression
from (2.12b) and represented as

7duu” 1J1+%—1<27’1“) Jl+% 1(2r2u) _
/ (rmu)s=1 (ru) 5!
v v—D+2
_ r(+%) <m)lel 't <m> _
2D ()T (1+2) (r) \ 72 D ™
I+
2
v—D+ L +1
2D—21/—’§ e*’bﬂ‘ ZD 1 l+§ 3(2)
= — - S Q)
AT () (m)f
2 2
S S
27“17“2

where in the last expression we expressed the hypergeometric series in terms of the Legendre
function of the second kind [11, Ch.3, eq.3.2(45)].

In the paper [5], it was obtained that for the Legendre function of the second kind, the addition
theorem of the following form is valid

—zTruQu ) 22v+21"(,u + 1)
z_ 1" WS IR
: (1/z1+11/z2+1>
0o —i7 (p—1 H*l
X Z (=1)"n! (n+v+1)cv+1 21 oVt 2 el (23)

+otg

n n _1

F(n+2v+2) /Z%-’—l /Z%-Fl > IM 2
z=zzm+ /a2 + 123+ 1, 2> 1
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given the limit at z3—1 of [11, Sec.3.9.2]

. 1

—Mr(u—%)QH 2 (23) 1
. € ntotl\F I'(n+v+p+1)I (5—p 1
lim : Ulz = (ntv ) (2 ), <=

z—1 \/Tlﬂii 2”+%F(n+v—u+2) 2
23

and also by introducing other variables

r% —1 1-— r%
21 = 2n =
! 27“1 r 2 27“2
2., .2
where z=z120+ /27 +14/5+ 1= ntn
27’17‘2
byv=1+ 7_3, uw= %D“, we get the following expansion
i (=Dl v—D+l
QA C) g (2 P (14 2 (i)
v—D+l1 - +%
22—1 ° VT ((rF+1)(r3+1)) 2
s (Dt ) Dnr ) e (r%— 1) o+ (r%— 1)
‘(n+1+D=2)T(n+D—%) """ \rf+1) """ \r+1
v<D
Thus, introducing functions of the form (2.6), we write (2.22) as
oo
_ Jiyp_1(2riu) J1+D 1(2rau)
/duu” — = =
/ (ru)>=" (ru) 7!
1 Dy X F(n+ ) (

=g (T 06T+ D) 3 e gy (o 72)

given this expression, we get for (2.21) in the form

Jauww P e ) = DZ 2)u>x
2

0

x / dry p(r1)én, () (r} + 1) 7705 (1) / drw(rz)asm(rz)(r%1%77,%?(@) (2.23)
E E

Obviously, for
D-1

¢u(r) = (P + 1) 00 (), p(r)=m (2.24)

provided (2.7) and the domain £>0, the function 5 ( ) will form an orthogonal system (2.4).
Comparing (2.12a) with (2.12¢) and also with (2. 18) (2.20), introducing the functions (2.2) and
(2.5) and changing the order of summing the series, we get (2.1). O

3 The function ££:;D) (u) and its other representations.
From (2.19) and (2.24) we have that

5( ) =24 WZ/dTTDl an(r) Jl

+2-1 (2ru)
(r2 + 1) (ru)

(3.1
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or in the form, using the expression (2.6) for ng)(r) as the hypergeometric Gauss function for
the Gegenbauer function [11, Sec. 3.15]

f(V’D)(u)Z ilan? (n—O—%)(n—i—l-i—DfZ)!x
ot r(i+2%2) (n—1)!
« ul+Du/Oodt tH%JH 1(2¢) P —ntlnti+r D=1, 32)
@ ru)o-g 20 D 2raz|
0

14+ =
+2

Unlike nn ! ( )(2.6), the function f ( ) is not expressed elementary in the general case. Thus,
revealing the hypergeometric serles in (3.2) and using integrals from the Bessel function [10,
Ch.2, eq.2.12.4(28)]

= Ky_pri(cz), —l1<v<2p—=

i 2, (cx)  ePTlpvmet 1
/dx Y
(22 + 22)P 20=1T(p) 2

we can represent (3.2) as a finite series (here, by definition, the condition K_,(z) = K,(z)
holds for the MacDonald function)

y an (n+ 21 (n+1+D-2)!
67(1 aD) — ¢ \/ 2
i r@+%rQ+D—g) (n—1)! :

n—1
—n+D)m(n+1+D—1)pm, imiD
8 2)@+D—7)mﬂm

KD v (2U)

m=0

Using an integral of the form [12, Ch.2, eq.2.3.16(1)] (u>>0)

oo

./éte_“”*t

0

Y 4tm—1 — Z(U) D;V+7TLK%+m(2’U/)

and comparing this expression with the previous one, we get (2.3). Similarly to the expression
(3.2), can also get a general expression

VP (u) =

43T (272 +a+1) [ (n+25) (n+i+D-2)!
I (1+2)r (1+D-%) (n—1)!

D—
D 7 t)\+1JA(2t) —n + l, n+l+D*1 s Ty+>\+1 uz
Xu T ETY fdt —————— 1 F) 21,2
(2 4u?) 7T A I+ S,HD—E o

A>7LA+D7u+%>O

4 Conclusion

The paper presents the expansion of [ry+...+r, |~ from N vectors ri € R” in D dimensional
space in the form of (2.1) by functions (2.5), which represents the product of an orthogonal radial
function, and an angular hyperspherical function on the unit sphere SP~!. Or an equivalent
decomposition of (2.9) by hyperspherical functions on the unit sphere S”. The choice of such
functions in the expansion is because, as can be seen from (2.23) and (2.24), the function (2.3)
formed an orthogonal system. This is convenient because for N=2 the expansions (2.1) and
(2.9) take a simple form as in the Example 2, in which there are no complex integral coefficients
Gn,l,mk .
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