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Abstract In this paper, we consider a linear function of the form |r1+ . . .+r
N
|−ν ∈R (ν∈R)

from N vectors rs∈RD in D–dimensional Euclidean space, and its expansion output as a se-
ries

∑
Gp1,...,pN

fp1(r1) . . . fp
N
(r

N
). As a function of fp(r), we consider the product of or-

thogonal radial functions and angular hyperspherical functions on the unit D−1–dimensional
sphere SD−1. The choice of such functions defined by us is because for N = 2 the coefficient
Gp1,p2 has the diagonal form. It is shown that with the help of a certain orthogonal comple-
ment SD=SD−1⊕S1, this expansion can also be represented by hyperspherical functions on a
D–dimensional the unit sphere SD.

1 Introduction

The function of the form |r1 − r2|−ν ∈ R from vectors rk ∈ RD in D–dimensional space
are found in many sections of mathematics and physics. For example, in the theory of Riesz
potential, hypersingular integrals, and fractional integration, where this function is included in
the kernel of the integral equation of the first type [1], as well as in numerical methods similar
to [2], [3]. In [4], a complete expansion was considered and applied for the case of −ν = p ∈ N
on the surface of rk ∈ SD−1 by hyperspheric harmonics. This function is also used in physical
problems, such as problems of many bodies, aerodynamics, electrodynamics, and geophysics.

In many cases, approximation by a small parameter is used to solve some problems

1
|r1 − r2|ν

∼
∑
p

Rp

(
|r1|
|r2|

)
Φp(θ), |r1| < |r2|, cos θ =

(r1r2)

|r1||r2|

or if it is possible by harmonic functions Yp(θ)

1
|r1 − r2|ν

∼
∑
p

Fp(|r1|, |r2|)Yp(θ)

where Fp, Φp, Gp are the functions resulting from the expansion. Unlike these expansions, we
propose an exact approximation from N vectors of the form

|r1 + r2 + . . .+ r
N
|−ν ∼

∑
p1,p2,...pN

fp1(r1)fp2(r2) . . . fp
N
(r

N
)

and the definition of such functions fp(r) ∈ R. In [5] it is shown that such a separation exists for
two vectors in three-dimensional space R3. In the spherical coordinate system rs={rs, θ1,s, θ2,s}
(for ν∈R, ν<3)
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|rs − rp|−ν =
π

3
2 Γ

( 3−ν
2

)
Γ
(
ν
2

) ((
r2
s + 1

) (
r2
p + 1

)) 3−ν
2 ×

×
∞∑
n=0

n∑
l=0

l∑
m=−l

Γ
(
n+ ν

2

)
Γ
(
n+ 3 − ν

2

)Hn,l,m(rs)Hn,l,m(rp) (1.1)

Hn,l,m(r) = ηn,l(r)Yl,m(θ1, θ2) (1.2)

where Yl,m(θ1, θ2)–spherical function on a unit two-dimensional sphere S2. The function ηn,l(r)
forms an orthogonal system with a weight of r2 in the domain 0⩽r<∞, which can be expressed
using polynomials of Gegenbauer Cl+1

n−l as

ηn,l(r) = 4l+1l!

√
(n+ 1) (n− l)!
π(n+ l+ 1)!

rl

(r2 + 1)l+ 3
2
Cl+1
n−l

(
r2 − 1
r2 + 1

)
(1.3)

Similarly to the representation of (1.1) in the space R3, one can represent the expansion by
hyperspherical functions Yn,l,m(ψs, θs;1, θs;2) on a three-dimensional sphere S3 as

|rs − rp|−ν =
π

3
2 23−νΓ

( 3−ν
2

)
Γ
(
ν
2

) ((1 − cosψs)(1 − cosψp))
ν
2 ×

×
∞∑
n=0

n∑
l=0

l∑
m=−l

Γ
(
n+ ν

2

)
Γ
(
n+ 3 − ν

2

)Yn,l,m(ψs, θs;1, θs;2)Y n,l,m(ψp, θp;1, θp;2) (1.4)

by performing a replacement in the form of

cosψs =
r2
s − 1
r2
s + 1

, 0 ⩽ ψs ⩽ π (1.5a)

ηn,l(rs) ⇒ (1 − cosψs)
3
2 η̃n,l(cosψs) (1.5b)

η̃n,l(cosψs) = 2l+
1
2 l!

√
(n+ 1)(n− l)!
π (n+ l+ 1)!

sinlψs Cl+1
n−l(cosψs) (1.5c)

Yn,l,m(ψs, θs;1, θs;2) = η̃n,l(cosψs)Yl,m(θs;1, θs;2), n ⩾ l ⩾ |m| (1.5d)

In this paper we will consider a similar expansion of (1.1) but with any number ofN arbitrary
D—dimensional vectors in Euclidean space. We will denote multidimensional unit vectors in
D–dimensional Euclidean space as ζs, where s means belonging to the vector. In this case, D of
the components of the vector ζs={ζs;k}, k=1, . . . , D can be expressed in terms of D−1 of polar
coordinates θs={θs;i}, i=1, . . . D−1 on the unit sphere SD−1, where for an arbitrary vector rs
in a spherical coordinate system rs=rsζs={rs,θs}, and the scalar product of the unit vectors α

and β as the cosine of the angle between them cosωαβ=(ζαζβ)=
D∑
k=1

ζα;kζβ;k. We will also not

specify the choice of polar coordinates and their components on SD−1 since is not essential here.
In total, there may be (2D−2)!

(D−1)!D! equivalent representation, and accordingly the same number of
equivalent representation exists for hyperspheric functions Yls,ms(θs), ms={ms;1, . . . ,ms;D−2}
(here and everywhere if there is an index of s, it means belonging to the corresponding unit
vector ζs). The theory of hyperspherical functions is well described in many literature data and
works (for example, in [6, Ch.11]), and we do not consider it here.

As an example, we note an important construction of the graphical method – hyperspherical
tree [7, Sec. 6.1.4]. In figure 1, thick lines show a T-tree for hyperspherical functions on the unit
sphere SD−1. In this case, the separation constant l, for the hyperspherical function Yl,m(θ),
we will denote separately. By analogy with the above example in three-dimensional space, by
introducing another variable (1.5a)ψs, we can make an orthogonal complement from the unit
sphere SD−1 to SD. The figure 1 of the thin line on the T-tree shows the complement to SD−1.
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Figure 1. Hyperspherical T-tree on the D–dimensional unit sphere SD = SD−1 ⊕S1. The space
on SD−1 is represented as a T-tree by thick lines with a separation constant l, S1–with thin lines
with a separation constant n.

We will denote the hyperspherical function on SD as Yn,l,m(ψ,θ) with separately designated
separation constants n and l.

The surface element on SD we will denote by dΩψ,θ, and on SD−1 as dΩθ. The relationship
between them

dΩψ,θ = sinD−1ψ dψ dΩθ

In all sections of this work, the integral over the surface of the unit hypersphere
∫
dΩθf(ζ) it is

implied that the integration is taken over the entireD−1 dimensional space. For an arbitrary sys-
tem of hyperspherical coordinates, the volume element in RD and the area of a D–dimensional
unit sphere are represented by the relations respectively as [6, Ch.11]

dr=dV
D
=rD−1dr dΩθ,

∫
dΩψ,θ=SD

=
2π

D+1
2

Γ
(
D+1

2

) , ∫ dΩθ=SD−1

So, for example, for hyperspherical functions satisfying the orthogonality condition∫
dΩθYls,ms(θ)Y lp,mp(θ) = δls,lpδms,mp∫

dΩψ,θYns,ls,ms(ψ,θ)Y np,lp,mp(ψ, θ) = δns,npδls,lpδms,mp

(1.6)

δms,mp
= δms;1,mp;1δms;2,mp;2 . . . δms;D−2,mp;D−2

where δp1,p2 is the Kronecker symbol.
Everywhere Cαµ (z) —Gegenbauer function. Γ(...)–Gamma function. The generalized hyper-

geometric function is as

pFq

[
a1, . . . , ap

b1, . . . , bq

 z
]
=

∞∑
k=0

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk

k!

where the symbols (a)k denote the Pochhammer’s symbol

(a)k =
Γ(a+ k)

Γ(a)

In our notation n={n1, . . . , nN
}, l={l1, . . . , lN }, mk={m1, . . . ,mN

} , and the total summation
means as ∑

n,l,mk

=
∞∑
n1=0

n1∑
l1=0

∑
m1

. . .

∞∑
n
N
=0

n
N∑

l
N
=0

∑
m

N



Expansion of a power-law functions 667

2 Representation of the form (1.1) forN > 2 multidimensional vectors

Theorem 2.1. For arbitraryD–dimensional vectors rs = {rs,θs}, s=1, 2, . . . , N , in a spherical
coordinate system, as well as real numbers 0<ν<D, a linear function |r1+ . . .+r

N
|−ν ∈R has

a expansion of the form

1
|r1 + . . .+ r

N
|ν

=
Γ
(
D−ν

2

)
π

D
2 Γ

(
ν
2

) ∑
n,l,mk

Gn,l,mk

N∏
p=1

(
(r2
p + 1)

D−ν
2 Hnp,lp,mp(rp)

)

Gn,l,mk
=

∞∫
0

duuν−1
∫
dΩθ

N∏
s=1

Ξ
(ν,D)
ns,ls,ms

(u,θ)

(2.1)

where
Ξ
(ν,D)
n,l,m(u,θ) = ξ

(ν,D)
n,l (u)Y l,m(θ) (2.2)

function

ξ
(ν,D)
n,l (u) =

il2π
D
2 ul

Γ
(
l+D

2

)
Γ
(
l+D−ν

2

)√(
n+D−1

2

)
(n+l+D−2)!

(n−l)!
×

×
∞∫

0

dz e−z−
u2
z z

D−ν
2 −1

2F2

−n+ l , n+ l+D − 1

l+
D

2
, l+D − ν

2

 z
 (2.3)

forms an orthogonal system with a weight of uν−1 in the domain of u ∈ [0 . . .∞)

∞∫
0

duuν−1ξ
(ν,D)
n1,l

(u)ξ
(ν,D)
n2,l

(u) =
(−1)l πD Γ

(
n1 +

ν
2

)
Γ
(
n1 +D − ν

2

) δn1,n2 (2.4)

and
Hn,l,m(r) = η

(D)
n,l (r)Yl,m(θ) (2.5)

where

η
(D)
n,l (r) = 22l+D−1

Γ

(
l+
D−1

2

)√
(n−l)!

(
n+D−1

2

)
π (n+l+D−2)!

rl

(r2+1)l+
D
2
C
l+D−1

2
n−l

(
r2−1
r2+1

)
(2.6)

forms an orthogonal system with weight rD−1

∞∫
0

dr rD−1η
(D)
n1,l

(r)η
(D)
n2,l

(r) = δn1,n2 (2.7)

The replacement of the variable rs(1.5a), the expansion of (2.1) can be represented as similar
to (1.4) but on a unit D–dimensional sphere SD. With the help of the orthogonal complement
specified in the introduction 1, such a transition will be carried out by substitutions

Yn,l,m(ψ,θ) = η̃
(D)
n,l (cosψ)Yl,m(θ) (2.8a)

η̃
(D)
n,l (cosψ)=2l+

D−2
2 Γ

(
l+
D−1

2

)√(
n+D−1

2

)
(n−l)!

π (n+l+D−2)!
sinlψCl+

D−1
2

n−l (cosψ) (2.8b)

Hn,l,m(r) ⇔ (1 − cosψ)
D
2 Yn,l,m(ψ,θ) (2.8c)

(r2 + 1)
D−ν

2 Hn,l,m(r) ⇔ 2
D−ν

2 (1 − cosψ)
ν
2 Yn,l,m(ψ,θ) (2.8d)
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In this case, the expansion of (2.1) by D–dimensional hyperspherical functions will take the
form

1
|r1+ . . .+r

N
|ν
=

Γ
(
D−ν

2

)
π

D
2 Γ

(
ν
2

) ∑
n,l,mk

Gn,l,mk

N∏
p=1

(
2

D−ν
2 (1− cosψp)

ν
2 Ynp,lp,mp(ψp,θp)

)
(2.9)

That is, in this expansion, we have moved from the D-dimensional Euclidean space RD, to the
space SD of the unitD-dimensional sphere. When replacing (2.8), the expansion |r1+ . . .+r

N
|−ν

can be represented as (2.1) or (2.9). The expressions (1.1)-(1.4) are a special case of the theorem
2.1 and the expressions (2.9) for D=3, N=2.

Example. ForN=2 andD–dimensional vectors rs from (2.1) taking into account (2.4) and (1.6)
we get

Gn,l,mk
= πD

Γ
(
n1 +

ν
2

)
Γ
(
n1 +D − ν

2

)δn1,n2δl1,l2δm1,m2 = πDgn1δn1,n2δl1,l2δm1,m2

∑
n,l,mk

(. . . ) =
∑
n,l,m

(. . . ) =
∞∑
n=0

n∑
l=0

∑
m

(. . . )

1
|r1 − r2|ν

=
π

D
2 Γ

(
D−ν

2

)
Γ
(
ν
2

) ((
r2

1+1
) (
r2

2+1
))D−ν

2
∑
n,l,m

gnHn,l,m(r1)Hn,l,m(r2) =

=
π

D
2 2D−νΓ

(
D−ν

2

)
Γ
(
ν
2

) ((1− cosψ1)(1− cosψ2))
ν
2
∑
n,l,m

gnYn,l,m(ψ1,θ1)Yn,l,m(ψ2,θ2)

and also

1
|r1 + r2|ν

=
π

D
2 Γ

(
D−ν

2

)
Γ
(
ν
2

) ((
r2

1+1
) (
r2

2+1
))D−ν

2
∑
n,l,m

gnHn,l,m(r1)Hn,l,m(r2) =

=
π

D
2 2D−νΓ

(
D−ν

2

)
Γ
(
ν
2

) ((1− cosψ1)(1− cosψ2))
ν
2
∑
n,l,m

gnYn,l,m(ψ1,θ1)Yn,l,m(ψ2,θ2) (2.10)

where ψs is defined in (1.5a). In particular for x, y ∈ R, ν<2

1
|x− y|ν

=
Γ
(
1 − ν

2

)
2Γ

(
ν
2

) (
(x2 + 1)(y2 + 1)

)1− ν
2

∞∑
n=0

+n∑
l=−n

Γ
(
n+ ν

2

)
Γ
(
n+ 2 − ν

2

)η(2)n,|l|(x)η(2)n,|l|(y) =
=

21−νΓ
(
1 − ν

2

)
Γ
(
ν
2

) ((1 − cosψx)(1 − cosψy))
ν
2

∞∑
n=0

+n∑
l=−n

Γ
(
n+ ν

2

)
Γ
(
n+ 2 − ν

2

)Θn,|l|(ψx)Θn,|l|(ψy)

where

Θn,l(z) =

√
(n− l)! (n+ 1

2)

(n+ l)!
P ln(cos z),

1∫
−1

dzΘn1,l(z)Θn2,l(z) = δn1,n2

and P ln(cos z)– Legendre function.
Consider the case when rk ∈ SD−1, |rk| = 1. From (2.5) and (2.6)

Hn,l,m(r) = η
(D)
n,l (1)Yl,m(θ)
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η
(D)
n,l (1) = 2l+

D
2 −1

Γ

(
l+
D−1

2

)√
(n−l)!

(
n+D−1

2

)
π (n+l+D−2)!

C
l+D−1

2
n−l (0) =

= 2n+
D
2 −1 Γ

(
n+l+D−1

2

)
Γ
(−n+l+1

2

)
√ (

n+D−1
2

)
(n−l)! (n+l+D−2)!

After summing by n we have the final result

al(ν,D) =
π

D
2 Γ

(
D−ν

2

)
2D−ν

Γ
(
ν
2

) ∞∑
n=0

gn η
(D)
n,l (1) η

(D)
n,l (1) =

= S
D−1

2D−ν−2 Γ
(
D
2

)
Γ
(
D−ν−1

2

)
Γ
(
l+ ν

2

)
√
π Γ

(
ν
2

)
Γ
(
l+D − 1 − ν

2

) (2.11)

In this infinite sum, the nonzero terms of the series correspond for n = l + 2k, k = 0 . . .∞.
Thus

1
|r1 − r2|ν

=
∑
l,m

al(ν,D)Yl,m(θ1)Yl,m(θ2), for |r1| = |r2| = 1

here Yl,m(θi) is a hyperspherical function on SD−1. Note that in [4, Sec.3], a similar result of
the decomposition of (2.11) was used for ν = −p ∈ N.

Proof. For output (2.1), we will proceed from [8], where it was shown that

1
|r1 + . . .+ r

N
|ν

=
∞∑

l1,...,lN =0

Vl1,...,lN (θ1, . . . ,θN )R
(ν,D)
l1,...,lN

(r1, . . . , rN ) (2.12a)

The function R(ν,D)
l1,...,lN

can be represented through the Lauricella’s hypergeometric function of

N−1 variables F (N−1)
C [9, Ch.7, eq.7.2.4(14)] as (here r

N
=max(r1, r2, . . . , rN ))

R
(ν,D)
l1,...,lN

(r1, . . . , rN ) =
(−1)lN
(r

N
)ν

(
ν
2

)
l

(
ν−D+2

2

)
l−l

N

N−1∏
p=1

(
D

2

)
lp

×

×
N−1∏
p=1

(
rp
r
N

)lp
F

(N−1)
C

 l+
ν

2
,
ν −D + 2

2
+ l − l

N

l1 +
D

2
, . . . , l

N−1 +
D

2


(
r1

r
N

)2

, . . . ,

(
r
N−1

r
N

)2

 (2.12b)

and

Vl1,...,lN (θ1, . . . ,θN ) =

∫
dΩθ

S
D−1

N∏
i=1

li +
D
2 − 1

D
2 − 1

C
D
2 −1
li

((ζiζ)) =

=
(
S

D−1

)N−1 ∑
m1,...,mN

N∏
p=1

Ylp,mp (θp)

∫
dΩθ

N∏
p=1

Y lp,mp (θ) (2.12c)

where in the last expression we use the Gegenbauer addition theorem by hyperspherical functions

C
D
2 −1
l ((ζ1ζ2)) = S

D−1

D
2 − 1

l+ D
2 − 1

∑
m

Yl,m(θ1)Y l,m(θ2) (2.13)

Using the expression [10, Ch.2, eq.2.12.44(7)] of the integral from products for the Bessel
function Jλk

(cku)
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∞∫
0

duuα−1
N∏
k=1

Jλk
(cku) =

2α−1 (cN )
λ
N
−β

Γ

(
β
2

)
Γ

(
λ

N
− β

2 + 1
) ×

×
N−1∏
k=1

(ck)λk

Γ(λk + 1)
F

(N−1)
C

 β

2
,
β

2
− λ

N

λ1 + 1 , . . . , λ
N−1 + 1


(
c1

c
N

)2

, . . . ,

(
c
N−1

c
N

)2
 (2.14)

where for real parameter α, λk, ck

N ⩾ 2; ck > 0, k = 1, . . . , N ; c
N
> c1 + . . .+ c

N−1 ;

−(λ1 + . . .+ λ
N
) < α <

N

2
+ 1; β = α+ λ1 + . . .+ λ

N

For the expression (2.12b) with values

ck = 2rk, λk = lk +
D

2
− 1, k = 1, . . . , N ;

α = ν −N

(
D

2
− 1

)
= ν −

N∑
k=1

(
D

2
− 1

)
;

(
β = l1 + . . .+ l

N
+ ν = 2l+ ν; 0 < ν <

N(D − 1)
2

+ 1
)

will be presented in the following form

R
(ν,D)
l1,...,lN

(r1, . . . , rN ) =
2 Γ

(
D−ν

2

)
(S

D−1)
NΓ

(
ν
2

)
Γ
(
D
2

) ∞∫
0

duuν−1
N∏
k=1

φ
(D)
lk

(rku) (2.15)

where we introduce a function of the form

φ
(D)
l (x) =

il 2π
D
2 Jl+D

2 −1(2x)

(x)
D
2 −1

(2.16)

Unlike (2.12b), the expression (2.15) is symmetric over all rk, k=1, . . . , N .

Orthogonalization R(ν,D)
l1,...,lN

(r1, . . . , rN )

Let ϕn(r) be an arbitrary orthogonal system of functions in the domain of value r∈E with
weight ρ(r)>0. ∫

E

dr ρ(r)ϕn(r)ϕm(r) = δn,m (2.17)

Represent the expression (2.15) in series of these functions

R
(ν,D)
l (r1, . . . , rN ) =

∑
n

Al,n

N∏
k=1

ϕ(D)
nk

(rk) (2.18)

then from (2.17) and (2.18) the coefficients An,l will be in the form

An,l =

∫
E

dr1ρ(r1)ϕ
(D)
n1

(r1) . . .

∫
E

dr
N
ρ(r

N
)ϕ(D)
n
N
(r

N
)R

(ν,D)
l (r1, . . . , rN )

If enter a function of the form (using (2.16))

ξ
(ν,D)
n,l (u) =

∫
E

drρ(r)ϕn(r)φ
(D)
l (ru) = il 2π

D
2

∫
E

drρ(r)ϕn(r)
Jl+D

2 −1(2ru)

(ru)
D
2 −1

(2.19)
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we obtain the coefficient of the following form

An,l =
2 Γ

(
D−ν

2

)
(S

D−1)
NΓ

(
ν
2

)
Γ
(
D
2

) ∞∫
0

duuν−1
N∏
k=1

ξ
(ν,D)
nk,lk

(u) (2.20)

We find such functions ϕn(r) with the domain E, in which the functions ξ(ν,D)
n,l (u) in (2.19) will

also form an orthogonal system of the function with weight uν−1. Indeed

∞∫
0

duuν−1ξ
(ν,D)
n1,l

(u)ξ
(ν,D)
n2,l

(u) =

=

∫
E

dr1 ρ(r1)ϕn1(r1)

∫
E

dr2 ρ(r2)ϕn2(r2)

∞∫
0

duuν−1φ
(D)
l (r1u)φ

(D)
l (r2u) =

= (−1)l 4πD
∫
E

dr1 ρ(r1)ϕn1(r1)

∫
E

dr2 ρ(r2)ϕn2(r2)×

×
∞∫

0

duuν−1
Jl+D

2 −1(2r1u)

(r1u)
D
2 −1

Jl+D
2 −1(2r2u)

(r2u)
D
2 −1

(2.21)

The integral by u can be expressed at N = 2 from (2.14) or found from the general expression
from (2.12b) and represented as

∞∫
0

duuν−1
Jl+D

2 −1(2r1u)

(r1u)
D
2 −1

Jl+D
2 −1(2r2u)

(r2u)
D
2 −1

=

=
Γ
(
l+ ν

2

)
2Γ

(
D−ν

2

)
Γ
(
l+ D

2

)
(r2)ν

(
r1

r2

)l
2F1

 l+
ν

2
,
ν −D + 2

2

l+
D

2


(
r1

r2

)2

 =

=
2

D−ν−3
2

√
π Γ

(
D−ν

2

)
(r1r2)

ν
2

e−i π
ν−D+1

2 Q
ν−D+1

2

l+D−3
2
(z)

√
z2 − 1

ν−D+1
2

(2.22)

z =
r2

1 + r2
2

2r1r2
> 1

where in the last expression we expressed the hypergeometric series in terms of the Legendre
function of the second kind [11, Ch.3, eq.3.2(45)].

In the paper [5], it was obtained that for the Legendre function of the second kind, the addition
theorem of the following form is valid

e−i π µQµv (z)√
z2 − 1

µ =
22v+ 3

2 Γ(v + 1)2

√
π

(√
z2

1 + 1
√
z2

2 + 1
)v+µ+1×

×
∞∑
n=0

(−1)nn! (n+v+1)
Γ(n+ 2v + 2)

Cv+1
n

 z1√
z2

1 + 1

Cv+1
n

 z2√
z2

2 + 1

 e−i π (µ−
1
2)Q

µ− 1
2

n+v+ 1
2
(z3)√

z2
3 − 1

µ− 1
2

z = z1z2 + z3

√
z2

1 + 1
√
z2

2 + 1, z3 > 1
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given the limit at z3→1 of [11, Sec.3.9.2]

lim
z3→1

e−i π (µ−
1
2)Q

µ− 1
2

n+v+ 1
2
(z3)√

z2
3 − 1

µ− 1
2

=
Γ(n+v+µ+1)Γ

( 1
2−µ

)
2µ+ 1

2 Γ(n+v−µ+2)
, µ<

1
2

and also by introducing other variables

z1 =
r2

1 − 1
2r1

, z2 =
1 − r2

2
2r2

where z = z1z2 +
√
z2

1 + 1
√
z2

2 + 1 =
r2

1 + r2
2

2r1r2

by v = l+ D−3
2 , µ = ν−D+1

2 , we get the following expansion

e−i π (
ν−D+1

2 )Q
ν−D+1

2

l+D−3
2
(z)

√
z2 − 1

ν−D+1
2

=
24l+ 3M+ν−5

2 Γ
(
D−ν

2

)
Γ
(
l+ D−1

2

)2
(r1r2)l+

ν
2

√
π
(
(r2

1 + 1)(r2
2 + 1)

)l+ ν
2

×

×
∞∑
n=l

(n− l)!
(
n+ D−1

2

)
Γ
(
n+ ν

2

)
(n+ l+D − 2)! Γ

(
n+D − ν

2

)Cl+D−1
2

n−l

(
r2

1 − 1
r2

1 + 1

)
C
l+D−1

2
n−l

(
r2

2 − 1
r2

2 + 1

)
ν < D

Thus, introducing functions of the form (2.6), we write (2.22) as

∞∫
0

duuν−1
Jl+D

2 −1(2r1u)

(r1u)
D
2 −1

Jl+D
2 −1(2r2u)

(r2u)
D
2 −1

=

=
1
4
(
(r2

1 + 1)(r2
2 + 1)

)D−ν
2

∞∑
n=l

Γ
(
n+ ν

2

)
Γ
(
n+D − ν

2

)η(D)
n,l (r1)η

(D)
n,l (r2)

given this expression, we get for (2.21) in the form

∞∫
0

duuν−1ξ
(ν,D)
n1,l

(u)ξ
(ν,D)
n2,l

(u) = (−1)l πD
∞∑
n=l

Γ
(
n+ ν

2

)
Γ
(
n+D − ν

2

)×
×
∫
E

dr1 ρ(r1)ϕn1(r1)(r
2
1 + 1)

D−ν
2 η

(D)
n,l (r1)

∫
E

dr2 ρ(r2)ϕn2(r2)(r
2
2 + 1)

D−ν
2 η

(D)
n,l (r2) (2.23)

Obviously, for

ϕn(r) = (r2 + 1)
D−ν

2 η
(D)
n,l (r), ρ(r) =

rD−1

(r2 + 1)D−ν (2.24)

provided (2.7) and the domainE>0, the function ξ(ν,D)
n,l (u) will form an orthogonal system (2.4).

Comparing (2.12a) with (2.12c) and also with (2.18)-(2.20), introducing the functions (2.2) and
(2.5) and changing the order of summing the series, we get (2.1).

3 The function ξ(ν,D)
n,l (u) and its other representations.

From (2.19) and (2.24) we have that

ξ
(ν,D)
n,l (u) = 2 il π

D
2

∞∫
0

dr rD−1 η
(D)
n,l (r)

(r2 + 1)
D−ν

2

Jl+D
2 −1(2ru)

(ru)
D
2 −1

(3.1)
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or in the form, using the expression (2.6) for η(D)
n,l (r) as the hypergeometric Gauss function for

the Gegenbauer function [11, Sec. 3.15]

ξ
(ν,D)
n,l (u) =

il 4π
D
2

Γ
(
l+ D

2

)√(
n+ D−1

2

)
(n+ l+D − 2)!
(n− l)!

×

× ul+D−ν
∞∫

0

dt
tl+

D
2 Jl+D

2 −1(2t)

(t2 + u2)l+D− ν
2

2F1

−n+ l , n+ l+D − 1

l+
D

2

 u2

t2 + u2

 (3.2)

Unlike η(D)
n,l (r)(2.6), the function ξ(ν,D)

n,l (u) is not expressed elementary in the general case. Thus,
revealing the hypergeometric series in (3.2) and using integrals from the Bessel function [10,
Ch.2, eq.2.12.4(28)]

∞∫
0

dx
xv+1Jv(cx)

(x2 + z2)ρ
=
cρ−1zv−ρ+1

2ρ−1Γ(ρ)
Kv−ρ+1(cz), −1 < v < 2ρ− 1

2

we can represent (3.2) as a finite series (here, by definition, the condition K−µ(z) = Kµ(z)
holds for the MacDonald function)

ξ
(ν,D)
n,l (u) =

il 4π
D
2

Γ
(
l+ D

2

)
Γ

(
l+D − ν

2

)√(
n+ D−1

2

)
(n+ l+D − 2)!
(n− l)!

×

×
n−l∑
m=0

(−n+ l)m(n+ l+D − 1)m(
l+ D

2

)
m

(
l+D − ν

2

)
m
m!

(u)l+m+D−ν
2 KD−ν

2 +m(2u)

Using an integral of the form [12, Ch.2, eq.2.3.16(1)] (u2>0)
∞∫

0

dt e−t−
u2
t t

D−ν
2 +m−1 = 2(u)

D−ν
2 +mKD−ν

2 +m(2u)

and comparing this expression with the previous one, we get (2.3). Similarly to the expression
(3.2), can also get a general expression

ξ
(ν,D)
n,l (u) =

il 4π
D
2 Γ

(
D−ν

2 +λ+1
)

Γ
(
l+D

2

)
Γ
(
l+D−ν

2

) √(
n+D−1

2

)
(n+l+D−2)!

(n− l)!
×

× ul+D−ν
∞∫

0

dt
tλ+1Jλ(2t)

(t2+u2)
D−ν

2 +λ+1 3F2

−n+ l , n+l+D−1 ,
D−ν

2
+λ+1

l+
D

2
, l+D−ν

2


u2

t2+u2


λ > −1, λ+D − ν +

3
2
> 0

4 Conclusion

The paper presents the expansion of |r2+. . .+r
N
|−ν fromN vectors rk ∈ RD inD dimensional

space in the form of (2.1) by functions (2.5), which represents the product of an orthogonal radial
function, and an angular hyperspherical function on the unit sphere SD−1. Or an equivalent
decomposition of (2.9) by hyperspherical functions on the unit sphere SD. The choice of such
functions in the expansion is because, as can be seen from (2.23) and (2.24), the function (2.3)
formed an orthogonal system. This is convenient because for N=2 the expansions (2.1) and
(2.9) take a simple form as in the Example 2, in which there are no complex integral coefficients
Gn,l,mk

.
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