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Abstract. This paper deals with a thermoelastic laminated beam along with structural damp-
ing and distributed delay term, where both the rotation angle and the transverse displacements
are affected by the heat conduction, which is described by Fourier’s law. Using the semigroup
method, we establish the existence and uniqueness of the solution. Regarding stability results,
we demon- strate exponential and polynomial stabilities of the system for the cases of equal and
non-equal wave speeds respectively.

1 Introduction

In the current work, we study the following thermoelastic laminated beam, together with struc-
tural damping and distributed delay term

Qﬁtt + G((ybz - ﬂrz) + 791 = 07

1,(3¢ = @)it = D3¢ = @)aw — G(¢ — V) =70 =0,

(1.1)
31,04 — 3Dy + 3G (¢ — U,) +40¢ + 45y, + 4 f:lz |2 ()| Ye(z,t — ¢)ds = 0,
QSgt - kaxm + 7(3¢ - ¢)t + ’Vﬂtz - 07
where
(w,5,t) € (0,1) x (s1,52) x (0,400),
with the following initial and boundary conditions
J(z,0) = Jo, ¥(z,0) = o, ¢(2,0) = ¢o, 0(2,0) =6y, =€ (0,1),
’ﬂt(xao):’ﬂb wt($70):’¢)17 ¢t(xa0):¢la MRS (071)7 (1 2)

9.(1,t) = 9.(0,¢) = ¢(1,¢) =(0,¢) =0, ¢>0,
6(0,8) = ¢(1,1) = 0(0,¢) = (1,¢) =0, >0,

here ¥ denotes the transverse displacement, ¢ represents the rotation angle, tis relative to the
amount of slip occurring along the interface and 6 is the difference temperature. The coefficients
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4, B, o, I,, G,and D are positive constants representing the adhesive stiffness, the adhesive
damping parameter, the density, the shear stiffness, the flexural rigidity, and the mass moment
of inertia, respectively. We denote by g3, k,7 > O the physical parameters from theory of
thermoelasticity.

Herein, ¢;, ¢, are positive numbers such that 0 < ¢; < ¢, and p; is an L* function satisfying
the following assumption

(Ay) The function u; : [s1, 2] — R is bounded, and it fulfills
2

5= [ lmolds >0,
<1

The laminated beam model has become quite popular, that scientists and engineers are inter-
ested in it. This model is a pertinent study topic, because of the wide industry applicability of
such materials. Hansen and Spies in [9], were the first to introduce the following beam with two
layers by developing this mathematical model

P10y + G(¢ — ). =0,
,02(31/1 - d’)tt - G(Qb - 191:) - D(3¢ - ¢)er =0,

Lately, a renewed focus on investigating the asymptotic behavior of the solution of several ther-
moelastic laminated beams has grown. For more details about this topic the reader may consult
[3,5,6,7,8,12].

The time delays problems are one of the most significant and active research areas recently.
Numerous studies have demonstrated that delay can lead to instability unless certain conditions
are incorporated, it also can lead to distinct solutions that differ from those found in prior studies.
Therefore, the issue of stability for systems that involve delay is highly crucial. To learn more
about this term, we refer the reader to the following papers [1, 2, 4, 13, 14, 15, 16].

In [11], Nicaise and Pignotti made a study on the following wave equation, together with linear
frictional damping and internal distributed delay

2
ug — Au~+ prug + a(x)/ p2(s)ug(t —s)ds, in Q x (0,00),

S1

assuming that
2
lall [ a(s) ds <
S1

the authors managed to prove that the solution is exponentially stable.

Recently, Fayssal [S] considered a thermoelastic laminated beam, along with structural damp-
ing and Fourier’s law, he established an exponential stability result for the problem with equal

wave speeds, i.e.
fo 1
c=\Vp (1.3)

The rest of the paper is structured this way, in section 2, we provide some resources required
for our research, then highlight our major results. In section 3, we establish the well-posedness
of the system, in Section 4, we introduce some fundamental lemmas required in the proof later.
In section 5, using the multiplier technique, we prove an exponential stability of the system in
case of equal wave speeds, and a polynomial one in the opposite case.

2 Preliminaries and main results

In this section, we state our major results, and provide some practical materials needed in the
proof later.



THERMOELASTIC LAMINATED BEAM 677

To achieve our goal, we start by introducing

g/(.%',p, Sy t) - wt(x7 t— (p),
where
(xapv§7t) € (07 1) X (07 1) X (<1;§2) X (07 +OO),
then, the variable % surely satisfies

% (z,p,s,t) + Zp(x,p,c,t) =0,
Y (2,0,6,t) = (,t).

Thereby, system (1.1) can be rewritten as

I,(3% — @) — D3¢ — @) yu — G(¢p — V) — 70 = 0,
3101t — 3Dy + 3G (¢ — Us) + 46 + 4P + 4 f:lz lp2()|% (2, 1,6,t)ds =0, (2.1)

93916 - keza: + 7(3¢ - d))t + ’77915:0 = 07

Hi(x,p,6,t) + Zp(x,p,6,t) =0,
certainly, system (2.1) is depending on the initial and boundary conditions below

I(z,0) =Yy, ¢(z,0) = ¢o, ¥(z,0) =1, 0(x,0) =0, =z (0,1),

9 (2,0) =9y, ¢(2,0) = ¢y, ¥i(z,0) =41, x€(0,1),

V. (1,t) =9,(0,t) = ¢(1,t) = ¢(0,t) =0, ¢ >0, (2.2)
¥(0,t) =(1,¢) = 60(0,t) =0(1,t) =0, ¢>0,

Y (z,p,s,0) = folz,ps), (z,p,6) € (0,1)x (s1,5) x R,

Now, let

(=3¢ -9,
¢(0,t) = ¢(1,t) =0, ¢(x,0) = Co, C(2,0) =1, (2,t) € (0,1) x Ry

Hence, (2.1) is equivalent to

Qﬁtt + G(3QZ} - C - 191’):6 + A/azr = 07
IgCtt - DC:MC - G(3'(/) - C - 191) — ’79 = O7
31,1 — 3DWeq + 3G (30 — ¢ — 0y) + 4% + 450 + 4 [ [12(<)|¥ (, 1,6, t)ds = 0,

Q39t - ka:pz + VCt + fyﬁta: = 0>

g%(m,pg,t) + @P(xvp7<at) =0.

(2.3)
For the purpose of applying Poincaré’s inequality for J, we shall consider minor transforma-
tion, using boundary conditions and (2.1);, we come to the conclusion that

2 1
% /0 9(z,t)dx =0, forall ¢t >0, (2.4)
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solving this ODE yields

I 1 1
/ Wz, t)de = t/ 91 (z)dz +/ Yo(z)dz, forall ¢>0.
0 0 0

As a consequence, if we denote by
~ 1 1
I t) = O(z,t) — t/ 91 () de — / Jo(w)da
0 0

1
/ I(z,t)dx =0, forall t>0.
0

we obtain

Furthermore, one can check that~(1§, o,1,0,%) fulfils system (2.1)—(2.2).
From now on, we will be using ¢ rather than ¥, but we will write ¥ for clarity of matters.
At this step, let us introduce the vector function U = (9, u, {, v, v, 2,0, % )T, with

u:’&ta
V:Cta
Z:d}ta

then, system (2.3) becomes

(t)=2AU(t), t>0,
2.5
{U(O) - UO — (190’191 COaClaw(hwlaHO?fO) ) ( )

here, A : D() C H :— H stands for a linear operator indicated by

u
—L(GBY = ¢ =)o +62)
1%
(Do + GG — ¢~ 92) +8)
z
£ (Dvn = GO = ¢ = 0,) = 460 = 482 = 3 [2 112(0)|# (w, 1,5, t)ds )
é (kezx - Y = 7“@)
~%

AU =

Now, we shall consider the ensuing energy space
H=JL(0,1) x L2(0,1) x H{(0,1) x L*(0,1) x H}(0,1) x L*(0, 1)

xL2(0,1) x L*((0,1) x (0,1) x (s1,%)),

where
L2(0,1) {weL ©0,1): [l o 0},
JL(0,1) :Hl(o,l)mLi(o,l),
J2(0,1) = {p e H*0,1): ¢,(0) = ¢, (1) =0} .

Then, we introduce

1 1 1 1 1
<U,0>H:Q/ uadx+lg/ VDdx—i—?)Ig/ dex+g3/ Hﬂ_dx—f—D/ CoCp dx
0 0 0 0 0

1 1 i
+G/O (32/}—(—191)(31/1—C—19x)d$+45/0 1/)1/)d:v+3D/0 Y, dx
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L rl ro B
+4/ / / Sl ()| Z % dsdpdz. (2.6)
0 JOo Jg

We deduce that H along with (2.6) is a Hilbert space, once we do that, we define D(2) by

UeH: 9el?0,1)NnJL0,1); ¢, v, 6 € H*(0,1) N HY(0,1);
D(A) = ue JHO,1); v, 2 € HY(0,1);
Y, W, e L2((0,1) x (0,1) x (¢1,%)), Z(z,0,6,t) =2

Obviously, D(2!) is dense in H.
Now, we are prepared to state our results.
Theorem 2.1. For any initial data Uy € D(2L), problem (2.2)-(2.3) admits a unique solution
UecCR,DER))NCHR,,H).

In addition, if Uy € H, then
UeCR4H).

We give the energy functional of the solution of (2.1)-(2.2) by
50 = 5 [ {o 4G~ 0+ LGu 60 + D — 0 + 31,07
+3Dy7 + 4697 + 0367 } da
+2 /0 1 /0 1 / N Slp2(9) |23 (2, p, <, t) dedpda. 2.7
<

Thereby, the stability results are as follows.

Theorem 2.2 (Exponential stability). Let (9, ¢,,0, %) be the solution of (2.1)—(2.2), suppose
that (Ay), and (1.3) hold. So, there exist oy, oy > 0, such that

E) < are ™, VWt >0. (2.8)

Theorem 2.3 (Polynomial stability). Let (9, ¢, 1), 0, %) be the solution of (2.1)—(2.2), suppose
that (A1) holds. So, there exists a positive constant X such that the energy functional satisfies

E(t) < ?, forall t> 0.

3 Well-posedness

In this part, we utilize the semigroup method to prove our well-posedness result.

Proof of Theorem 2.1. Let’s prove the dissipativity of 2. By (2.6) and for any U € D(), we
find

(AU, U)y :—4ﬁ/zda:—kj 02 dx — 4 // |2 ()2 (z, 1,6,t) dsdx

1 2
- / | nal01% dedpa.
0 JOo Jg
One can notice that

1 1 (S} 1 (S} 1
—4/ / / 12(9)|%, % dsdpdx = —2/ / / |12()|8,%% dpdsda:
0 0 S| 0 S| 0

I ra
= —2/ / 2 ()| 22 (2, 1,6, ) dedz— (3.1)
0 Jg

L ro
+2/ / l12()| 2% (2,0, 5,t) dedz.
0 Jg
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Applying Youg’s inequality, we obtain

L ro S 1
4 [ [ @k st dde <2 ([Chala) [ 2
0 Jg S 0
1 re
+2// 12()|2°(, 1,6, 1) deda,
0 Jg

therefore, by (A1) and given % (z,0,¢,t) = 2(z,t), we end up with

S 1 1
AU, Uy = —4 <B/ |u2(§)|dq>/o 22 dxfk/o 6% dz < 0.

S1

Thereby, 2l is dissipative.
Thereafter, we establish the surjectivity of (I — 2l), that is, we show that

VH = (hy, ha, h3, ha, hs, he, hy, hg) € H, U € D(A) :

(I-20)U = H. (3.2)

We have

¥ —u=h,

ou+ G (3P — (= Vz)z + 0. = 0ha,

¢ —v = has,

I,y — Dy — G(3¢ — ¢ = 0s) — 0 = I,h,

Y —z=hs,

31,2 — 3Dy + 3G (3¢ — ( — V) + 400 + 482 + 4 [ |1 ()| (2, 1,5, t)ds = 3I,hs,

038 — Kby + YV + yug = 03h7,

¥ (z,p,s,t) + % (z,p, s, t) = chg.

(3.3)
Solving (3.3)s, and using #'(x,0,,t) = z(x,t), we find
P
Y (x,p,s,t) =ze P+ gefgp/ e*“hg(z,0,¢,t) do.
0
Hence,
1
W (x,1,6,t) =ze 4+ ge_g/ e*“hg(z,0,¢,t) do. (3.4)
0
Inserting
u=1- hh
v = C - h‘37
z = Ql) - h57

and (3.4) into (3.3)2, (3.3)4, (3.3)6, and (3.3)7, we get

09+ G(3¢Y — (= Vy)a + 70 = o(h1 + ha),
IQC - DCx:z: - G(3¢ - C - ﬁm) - ’79 = Ig(h3 + h4)7
1% = 3D, + 3G (3¢ — ( = U,) = furhs + 31,h6 — 4 [ |pa(<)[se™ fol e*?hg dods,
030 — kO +C + 02 = Yhie + vh3 + 03h7,
3.5
where,

j =31, + 46 + 48+ 4 [ e~ |ua(<)] de,
fit =31, +4B8+4 [ e |ua(s)| ds.

We take the following variational formulation, to solve (3.5)

2((0,¢,4,0),(9,$,4,0)) = L(9,(,$,0)),  ¥(9,(,4,0)) € X, (3.6)



THERMOELASTIC LAMINATED BEAM 681

with, X = J1(0,1) x (H{(0, 1))3 is a Hilbert space endowed with the following norm

109, ¢, %, 0)% = 1139 = ¢ =l + 19113 + 1Call3 + 11z + 11613 + 1162113.

As a part of this step, we provide definitions for both the bilinear form 2 : X x X — R, and the
linear form L : X — R, as follows

1 1 1
Q«%QwﬁxhiawﬁDZQAQde+Igé<de+u“£dwdx
1 1 1
+Q3/ 00 dx + D/ CoCp dx + 3D/ hythy da
0 0 0 3.7)

1 1
+G/0 (31/}—@—19x)(31/1—4—ﬁm)dx+k/0 0,0, dz

1 1
Ty /0 (0,9 +9,0) dx + 4 /0 (¢B— &) da,

1 1 1
L(ﬁ,f,qﬁ,e_) = Q/ lg(hl -I—hz) dl‘+Ig/ é(h3+h4) dl‘-i—/ é(vhlm +’yh3 +Q3h7) dr
0 0 0

1 -
v [
0
We can easily prove the continuity of 2 and L. Moreover, from (3.7) together with integration
by parts, we conclude

S2 1
fihs +31,he — 4/ §|u2(§)|67</ € hg dadc} dr.
S1 0

1 1 1 1 1
2((0,¢,1,0), (9,¢,9,0)) :g/o 192dx+19/0 gzdxﬂu/o w2dx+g3/0 92dx+D/O ¢ dx

1 1 1
+3D/ z/Jidx+G/(3w—C—19z)2dx+k/ 02 dx
0 0 0

> M||(9,¢,9,0)[x, M >0.

From which, we conclude the coercivity of 2. It follows from the Lax-Milgram lemma that
(3.5) admits a unique solution satisfying

¥ €7J,(0,1),

and
¢, 1, 0 € Hy(0,1).

If we substitute 19, ¢, and 7 into (3.3)1, (3.3); and (3.3)s, we find
ue J,(0,1),

and
v, z € H}(0,1).

Besides, taking (¢, 1, 6) = (0,0,0) € (H}(0, 1))3 , relation (3.6) becomes

1 1

1 1
Q/ 9de —G | B —C(—9,.)0, dov + ’y/ 90, dv =0 [ D(hy + hy) dz,
0 0 0 0

which indicates that

1 1
—G/ Fp0y da = / b (00 + 3Gty — GCo + 10, — o(hy + h2)) dx, (3.8)
0 0
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for any 9 € J!(0,1). Next, considering ¢ € H} (0, 1), with

3(z) = @) - / 5(x) da,

it follows that, ¥ € J!(0, 1), then, replacing in (3.8), we arrive at

1 1
0 0

Thus, ¥ € H?(0, 1), and we have
GUyy = 00 + 3Gy, — G + 791 - Q(hl + hZ)

Now, for ® € H'(0,1)

1 1
G/ Dpe® dz = / @ (09 + 3G, — GCy + 105 — o(hy + hy))dz,  Y® € H'(0,1).
0 0

Thereby,
I 1
GO, — G/ 9, P, do = / @ (09 + 3G, — Gl + Y0,
0 0
— Q(h] + hz)) dx.
Because J!(0,1) ¢ H'(0,1), we see that

1 1
G|} — G/ Doy do = / [09 4 3Gy — GCy + 02 — 0(hy + ho)] D da,
0 0

forall J € J1(0,1). From (3.8), we get

Therefore, we can write 9,,(0) = 9,.(1) = 0. Hence 9 € J2(0, 1).
Likewise, it is simple to show that

(¢, 0) € (H2(0,1) N HL(0,1))°

The standard elliptic regularity guarantees the existence of a unique U € D(2l) which fulfils
(3.2). Thereby, 2 is surjective.

As a consequence, 2 is a maximal dissipative operator. Then, the well-posedness result follows
using Lumer—Philips theorem [10]. O

4 Technical lemmas

The main purpose of this section is to establish the essential practical lemmas required to prove
our stability results. To attain this goal, we apply a specific approach known as the multiplier
technique, which enables us to prove the stability results of problem (2.1). Nevertheless, this
method necessitates creating an appropriate Lyapunov functional equivalent to the energy, and
we will clarify on this in the next section. To simplify matters, we will employ x. > O to
represent a generic constant.

Lemma4.1. Let (9, ¢, 1), 0, %) be the solution of (2.1)—(2.2), then, the energy functional satisfies

1 1
%g(t) < —k/ 02 dx —w/ Yidz,  where w,t > 0. 4.1
0 0
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Proof. As a start, we multiply (2.1);, (2.1);, (2.1)3, and (2.1)4 by ¥, (3¢ — ¢¢), vy, and
6 respectively, we then integrate over (0, 1), and use both integration by parts and boundary
conditions (2.2) to get

2dt/ {007+ G(¢ = 02)* + 1,(3¢bs — ¢1)* + D(3by — ¢2)* + 31,07
1 1
+3DY2 + 4507 + 0367} dar + 48 / Vo + / o
0 0

1 ra
+4 / / Uelp2 () (2, 1,6, 1) dedz = 0. 4.2)
0 Jg

Applying Young’s inequality, we find

// |2 ()| (x, 1,6, t) dedx < = // |12 ()| 2% (2, 1,5, t) deda
1
+2(/ IZI Id<)/¢tdw
S1

Next, we multiply (2.1)s by #'|u2(s)| and integrate the result over (0, 1) x (0,1) x (s1,%2), W
get

- _5/ / / |12()[0, 2% (2, p, s, t) dsdpda
1
_*/ / |12()| 2% (w, 1,6, ) ded.

Combining (4.2), (4.3), (4.4), and (A,), we obtain
) < k/ 02dx — 4 ( / lpa(s |d<>/¢tdaﬁ<0

Lemma 4.2. Consider the functional

(1) ::g/ol(qsﬁx)/;ﬁt( )dy da 7@/ /ﬁt )dydz, 4.5)

then, it satisfies, for any €; > 0,

4.3)

(4.4)

. 1 1 1
(t) < —G/ (¢—19m)2d:1:+61/ 03dw+&/ Yidr
2 Jo 0 €1 Jo

| | (4.6)
+ X« <1 + ) / 0% dz.
€1 0
Proof. We proceed by differentiating .#, we find
1 T 1 T
AW =o [ =) [ nwydsto [ (0=0.) [ suips
4.7

QSQ/ Gt/ 'l?t dydx QSQ/ / ’lgtt dydx
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Then, making use of equations (2.1);, (2.1)4 and boundary conditions (2.2), we obtain

0 / " Dua(y)dy = — (G — 9.) +0),
0

Q39t = keww - 3’Y¢t + ’Y((é - ﬁw)t;

(4.8)

next, we substitute (4.8) into (4.7), integrate by parts and use fol I(x,t)dz = 0, to end up with

1 L 1 1
I(t) = 93/ 0*dx + Q—/ V40 dx — G/ (¢ —0,)dx
0 Y Jo 0

1 T 1
G
+39/ wt/ V¢ (y)dydz + {93 —7] / (¢ — 9,)0dx.
0 0 Y 0
Now, Young’s, Cauchy-Schwarz and Poincaré’s inequalities, give us for ¢; > 0,

k 1 . 1 1
B 9,0,de <X | Rde+ D[ 92da,
v Jo e Jo 2 Jo

I I I
[QSG — 7} / (¢ —95)0 dz < X« / 0>dz + g/ (¢ — V) dx,
v 0 0 2 Jo

1 x 1 1
39/ wt/ D¢ (y)dydz < X—/ wfdwri‘/ P2da.
0 0 €1 0 2 0

Finally, we decisively obtain estimate (4.6), once inserting (4.10)—(4.12) into (4.9).

and

Lemma 4.3. Consider the functional

1 1
S(t) = 319/0 Yetp da + 2/3/0 ? da,

then, it satisfies

1
0

1 1 1
fz’(t)g—%/ wzdx—3D/ wgdx+3fg/ zpfdx—l—x*/ (¢ —0,)* da
0 0 0

1 ro
+><*/ / 2 (<)|#% (2, 1, p, t) deda.
0 Jg

Proof. Simple calculations using (2.1); and integration by parts, indicate that

1 1 1 1
fz’(t):?)fg/o z/de:E—?)D/O widx—45/0 wzd:c—i%G/O V(o —V,) dx

1 IS
4 / / Plya(Q)| P (2, 1,p, ) deda.
0 S|

Thereby, using Young’s inequality, we obtain estimate (4.13).
Lemma 4.4. Consider the functional

I 1 1
A=~ [ Gt = 0000+ 30 = 0)da = & [ 0130, ~6,) o

then, it satisfies for any e¢; > 0,
/ I, 1 , 1 ) 1 ,
SF3(t) < -5 (3thy — ¢ )?dx + x| (¢ —0)dr+ e | (Bvw — ¢0)’da
0 0 0

1
X <1+1>/ (07 + o3 da.
0

€2

4.9)

(4.10)

@.11)

4.12)

(4.13)

(4.14)

(4.15)
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Proof. We differentiate .3, use equations (2.1); », and integrate by parts, to obtain

1
A1) = (gé)/ 0G0 — o) do = 5 [ (v —0nPda

1,
D

1
_ <_> / 9,30 — du)e dr — 2 RETRENRE

5 [ 69004 DY 0+ G901}

1
(3w )1t (300 + U, ¢>)dx—§ [ 00302 = 0 )i

1 1
+5 | B =0 (0, 4+ G0~ 0} da

3 1
-5 | 000+ GO =0+ DY o).}

Again, we integrate by parts and use boundary conditions, to get
fé(t):<—)/19t 3¢t — 1) 33—*/ (3¢ — o)’
+8 [ pas ] [ Qo oo ot 3/ (s — 02) da

D/ (6 — ¥, de—— (¢ 9,) wdx——/ Vodz.

Now, we make use of both Young’s and Poincaré’s inequalities, to find

1 1 1
2 / (30— 9)0, do < X / Bz + 2 / (3n — 62)2da,
G 0 €2 0 2 0

/ (34— @)athy do < X2 / vr+ 2 <3¢T $o)de,

u / (6 — 9.)0ds < X /0 (6 — V. da + x. / 02z,

3
g (¢ — 19)1/1dx<x*/(¢ ﬁ)dm+x*/1/)2dx

——7/ dexSX*/ widm—i—x*/ Gidx.
D Jo 0 0

(4.16)

4.17)

(4.18)

(4.19)

(4.20)

(4.21)

Estimate (4.15) is established by replacing (4.17)—(4.21) into (4.16) and maintaining hypothesis

(1.3).

Lemma 4.5. Consider the functional

1
t):= —g/ 99, de,
0

then, it satisfies, for any e3 > 0,

1 1 1
Fi(t) < —Q/ Vdx + 263/ (3thy — ¢ )*dx + 18¢; / Vidx
0 0 0

o (190) [0+ @y

O

(4.22)

(4.23)
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Proof. By differentiating the functional .#, utilizing (2.1); along with integration by parts, we

find | | X
I (t) :—g/ ﬂ%dz—y/ ﬂxed:c—G/ (¢ — )0, du
0 0 0

1 1 1
_ 2 _ 2 _ _
= Q/O 19tda:+G/O (¢ — V) dz G/O (¢ — Vy) da

1 1
+’Y/ (¢—19x)9dx—’y/ @0 dx.
0 0
We then exploit Young’s and Poincaré’s inequalities, to obtain
1 . [! & !
—G/ (p —0g)p dx < 2= (¢—19m)2dx+—/ P2 da.
0 €3 Jo 2 Jo
1 1
7/ (¢ —0,)0 dz < x*/ (¢ —Dp)*dx + x*/ 0% da.
0 0

1
0
1 X 1 e !
—»y/ ¢9dw§i/ Gidx—i-—/ P2 dz.
0 €3 Jo 2 Jo
Then, substituting (4.25), (4.26), and (4.27) into (4.24), we get
1 1 1 1
F(t) < —g/ V2dx + 63/ P2dx + X« <1 + ) / (¢ —0,)dx
0 0 €3/ Jo

1 1
+ X« (1 + ) / 02 dz.
€3 0

Notice that

1 1 1 1
24 _ 2 RY 2
/0 ¢rdx —/0 (¢pr — 3thy + 31)y) dx < 2/0 (3 — ¢y )7dx + 18/O Yrdx.

Hence, estimate (4.23) is proved.

Lemma 4.6. Consider the functional

1
A0 =1, [ (0= 030 - o),
0
then, it satisfies the estimate
D ! 1 1
JLUt) < -5 (3thy — ¢ )?dx + X*/o 0dx + JQ/O (3thy — ¢y)*dx:

0

1
+ X /0 (¢ — V) d.

Proof. Easy calculations, by (2.1), pursued by integration by parts, yield

1 1 1
S = -D /0 (30 — ¢ )2 + I, /0 (34 — 62 + /0 (3¢ — 6)0 da

+6 [ (30— 00— ).

Employing Young’s and Poincaré’s inequalities, we find

1 1 D 1
_ 2 D VRV
1 [ Gu-epdr<x [ Gart T [ Go, o

1
0
Consequently, if we insert (4.31) and (4.32) into (4.30), we obtain (4.29).

1 D 1
2 2

(4.24)

(4.25)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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Lemma 4.7. Consider the functional

1 1 3]
) = / / / <€ P|pua()|93 (@, pr, 1) dedpd, (4.33)
0 JO Jg

then, it satisfies

1 1 S
) < B / U2 dr — / / 12(0)| 2% (2, 1, 6, ) dedr
0 0 Sl

L rl e
— Wi / / / §|ﬂ2(§)‘@2(1’,p, s, t) dedpd,
0 JOo Jg

where w) is a positive constant.

(4.34)

Proof. Taking the derivative of .%, using (2.1)s5, and % (x,0,t) = 1;, we achieve what follows

1 1 3
(1) = —2/ / / e Pl ()| # (2,p. <, t) dedpdx
0 JOo Jg
1 1 2
_/ / / e P ua()| 7 (, p, s, t) ddpda
0 0 S

1 5
—/0/ ()| {e™*#?(x,1,5,t) — i (z, 1)} deda.

Frome™ < e P < 1, where 0 < p < 1, we arrive at

_/1/1 /Q e a2 ()| 2 (. p, <., 1) dedpda
+</ 2 (<) dc)/ wt (z,t)

/ / “a(Q)| P (1,6, )ded.

Since —e™* is an increasing function, then
—e ¢ < —e~ 2, forall ¢ € [, ]

Hence, if we denote w; = e~ 2 and use (A]), we easily prove (4.34). O

S Stability results

Let us here prove our stability results by using the lemmas already mentioned in section 4.

5.1 Exponential stability

Here, we establish our exponential stability result.

Proof of Theorem 2.2. We proceed by introducing a Lyapunov functional

L(t)=NE&({) +§6:Njfj(t), (5.1
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where constants N, N; >0, j =1,---,6, will be fixed later.
From (5.1), we are in liberty to write

() = NE(D)] < oMy / iy de-+ 22, |

/191: dy

131 Nz/ |wtw|da:+2ﬁzvz/ Yo+ 22 /\3wx—¢$>m|dx

1, 31,N.
#2235 o= 0o o0l e+ 225 [0~ ol as
1 1
o [ (901l de+ N5 [ (30 - 6)Bun — 6] da
0 0

1 1 ro
4 Ng / / / e Pa()| 2 (. p. . t) dedpd.
0 0 Sy

Thanks to Young’s, Cauchy-Schwarz and Poincaré’s inequalities, we get
1
() = NE@)] < m / {07+ (& = 92" + (3 — 60)* + 3w — 6a)’ + 07 + 47 + 07 + 6%} do
0

1 rl pe
+771/ / / §|M2(§)|@2(x,p,<,t) dsdpdzx,  where n; > 0.
o Jo Jq

Therefore, using the definition of the energy (2.7), we come to
|-Z(t) — NE(t)] < mé&(t),  where n >0,
i.e.
(N —m)&(t) < ZL(t) < (N +m)&(t). (5.2)

Now, differentiating the Lyapunov functional .Z(t), employing (4.1), (4.6), (4.13), (4.15), (4.23),
(4.29), and (4.34), and fixing

0 D
Ny = Ns =1 = -
4 5 , €1 4N3762 4N3’
we find
d G 1 !
GO <= (5N e N - x (142 ) <) [0 o
dt 2 €3 0

<2N3 >/ (3tpr — 1) da — <Z —263) /01(31/)a: — ¢)da

1
— 20N, ¢2d$ — (3DN2 — (1 + N3)X*N3 — 1863)/ widl‘
0 0

1 1
3 0

1 1
— (@wN — x«Ni — 3I,N, — 3Ng) / Yidx — g / 92da
0 0

1 1 S}
— w Ne / / / ()22 (@, py <. ) dedpda
0 0 Sl

1 re
_(w1N6_X*N2)/ / |M2(§)|@2((E,1,C,t) dedz.
0 Jq

Next, we choose our coefficients in (5.3), in a way that, they all become negative. We start by

selecting N3 big enough so that

I
5QN3—[Q>O,
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then, we take IV, fairly wide, such that
3DN, — (1 + Ng)X*N3 > 0.

After fixing the above constants, we can pick e sufficiently small, so that

D 3DN, — (1 + N3)X*N3 }

€3 <nlln{87 18

now, we select Ng huge enough such that
w1 Neg — X« N2 > 0.

Next, we fix N sufficiently large such that

G 1

Lastly, we take IV fairly huge, in a way that, we have (5.2) and

@wN — x« N} = 31,N, — 3Ng > 0,
EN — (1 + Ni)xaN1 = (1 + N3)xa N3 — X — X (1 + L) >0.

Hence, we conclude that
d 1
720 =-m / {08+ B = &) + (6 = 0a)? + 07 + ¥ + 00 + (B0 — 62)* + 03 } do
0

1 1 ro
_ms / / / |u2()| (2, p, <, ) dedpdr,  where 13 > 0.
0 0 S1

54
Now, taking advantage of both (2.7) and Poincaré’s inequality, we get

1
&(t) < 774/0 {07 + By — b)) + (¢ — 02)* + D> + 97 + 02 + 3y — ¢)* + 62} da

1 1 ro
+n4/ / / Slp2 ()| (x, p, s, t) dsdpdz,  where ny > 0,
0 JOo Jg

From which

1
—/ {07+ (B — b)) + (¢ — V) + D> + 97 + 02 + (3he — ¢)* + 02} da
0

1 1 ra
—/ / / §lpa(s)|Z*(z, p, s, t) dsdpdz
0 JOo Jg

< —ns&(t), where ns > 0. (5.5)

Thereby, if we merge (5.4) and (5.5), we arrive at

%f(t) < —ne&(t), where ne >0, (5.6)

next, using the fact that (5.2) is valid, we get

d M6
— < - h = . .
dt,f(t) < —m.Z(t), where 17 Nt >0 (5.7

Finally, by a simple integration of (5.7), and using (5.2), we obtain estimate (2.8). O



690 F. S. Djeradi, F. Yazid, D. Ouchenane, A. Rahmoune and A. Saadallah

5.2 Polynomial stability

In this subsection, we establish our polynomial stability result for (2.1) provided that

oL
G # D (5.8)
Proof of Theorem 2.3. Let us start by introducing the second order energy functional
éaz(t) = g(ﬁhqstvwhet»@t)' (59)
Proceeding exactly as we did in Lemma 4.1, we easily show that
d L o
—&() < -k | 0, dr—w | vrd. (5.10)
dt 0 0

In case of different wave speeds, we shall restimate the derivative of .#53(¢), from lemma 4.4, we
have

1 1
4 < 62/ (Bbe — 60 dr + x*/o (6— 0,)% do

I, 1 1
- (3% é)2dr + X (1 + Q) / 62 dx (5.11)

+x*( >/ U2 dx +(I>/ V1 (3¢h1 — 61) dx

By using the fourth equation in (2.1), and the integration by parts, we arrive at

1 1 1
/0 Vi (301 — ¢t) dx = _/0 (3¢t - ¢t)2 dx — %/0 9t(3¢t - ¢t) dx

1
- E/ ez(3¢t - ¢t)a: d(E

1
/ (3¢t ¢t) dx — %/0 9t(3¢t - ¢t) dx

dk
dty

which, together with estimate (5.11), gives us

d k 1 1 5 1 5
dt{%() 7/0 6, (302 — bu) dw}éez/o (3¢5 — 62) dw+x*/0 (6= 9,) da

1 ]
é (31/% 60)* dx + . <1 + Q) /0 (02 +7) dz

L F k <é§)>/ 010 (3thn — ¢3) da

I
_& (é—D)/ 6301 — &) do

Applying Young’s and Poincaré’s inequalities, the above estimate takes the following form

d k 1 1 5 1 5

+ X (1+1)/ (07, + 02 +7) do

€2

4

2G (31/115 (bt)z dm

(5.12)
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At this point, we introduce a Lyapunov functional

6
A(t):=NEB+aEM))+ D, NF(t)
=1, 3#3

(5.13)
k 1
- ax x — Wz d 9

f3<t>+7/0 (3¢ — ¢) x]

+ N;

where constants N, N; >0, j =1,---,6, will be fixed later.

Now, we take the derivative of Z(t), make use of (4.1), (4.13), (4.23), (4.29), (4.34), (5.10),
(5.12), and set

D

O8N5

If we maintain the same selection of Ny, N,, N4, N5, Ng, €], €3 as in the previous subsection,
and choose N3, N sufficiently large so that

€2

Y

2 N1
21> 0

and
wN — X*le —3I,N; — BNs > 0,

EN = xu(1+ NONy = X (14 N3) N3 — X — Xa (1 + i) >0,
EN — x.(1 + N3)N3 > 0,

we arrive at

%%(t) < —mé&(t), where vy > 0. (5.14)

Therefore, integrating (5.14) over (0,¢), and keeping in mind that &’(¢t) < 0, we reach the
following result

0
1
< —(#(0) — (1))
M
L0
m
1
< 7—(5(0) +&(t), Vvt > 0.
1
Hence,
A
&) < T vt > 0,
where A = %. This proof is then completed. O
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