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Abstract A lattice L is said to be lower-finite if the set [0, a] is finite for every element a of L.
This article provides a detailed proof that, if M is a subset of a complete lower-finite distributive
lattice L that contains the join-irreducible elements of L, and a an element of M which is not
join-irreducible, then

∑
b∈M∩[0,a]

µM (b, a)b belongs to the submodule ⟨a∧b+a∨b−a−b | a, b ∈ L⟩

of the module ZL. This property was initially established by Zaslavsky for finite distributive
lattice. It will be seen that this property is the main ingredient to obtain the fundamental theorem
of dissection theory of Zaslavsky. This articles ends with a concrete application of that theorem
to face counting for submanifold arrangements.

1 Introduction

Recall that a distributive lattice is a partially order set with join and meet operations which dis-
tribute over each other. Standard examples are sets whose join and meet are the usual union and
intersection. Other examples include the Lindenbaum algebra of logics that support conjunc-
tion and disjunction, every Heyting algebra, and Young’s lattice formed by all integer partitions
ordered by inclusion of their Young diagrams. This article mainly aims to provide a complete
proof that, if L is a complete lower-finite distributive lattice, M a subset of L containing its join-
irreducible elements, f : L → G a valuation on L to a module G, and a an element of M which
is not join-irreducible, then ∑

b∈[0,a]∩M

µM (b, a)f(b) = 0. (1.1)

Its proof is carried out in several stages. We first consider the general case of posets in Section 2.
A proof of the lemma of Zorn [20] and an introduction to the Möbius algebra Möb(L) of a
lower-finite poset L are namely provided. Although diverse proofs of Zorn’s lemma can easily
be found in the literature, new ones are still proposed other time like that of Lewin [11]. The
proof in Section 2 is inspired by the notes of Debussche [5] in § 2.II. The Möbius algebra was
discovered by Solomon [15] who defined it for finite posets. We give a proof of the Möbius

inversion formula, and of the fact that
{ ∑

b∈[0,a]

µL(b, a)b

∣∣∣∣ a ∈ L

}
is a complete set of orthogonal

idempotents in Möb(L).
We study the special case of lattices in Section 3. After viewing some essential generalities, we
focus on the distributive lattices, and establish diverse properties like the distributivity of a lattice
L if and only if, for all a, b, c ∈ L, c ∨ a = c ∨ b and c ∧ a = c ∧ b imply a = b.
Those last properties are necessary to investigate the valuation algebra in Section 4. It is the
central part of this article, and principally inspired from the articles of Geissinger [7, 8], and
Zaslavsky [19]. In that section is particularly proved that if M is a subset of a complete lower-
finite distributive lattice L containing its join-irreducible elements, and a an element of M which
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is not join-irreducible, then
∑

b∈M∩[0,a]

µM (b, a)b belongs to the submodule ⟨a ∧ b + a ∨ b − a −

b | a, b ∈ L⟩ of ZL. That allows to deduce Equation 1.1.
Thereafter, Equation 1.1 is used to deduce the fundamental theorem of dissection theory in
Section 5. This latter affirms that, if A is a subspace arrangement in a simple topological
space T , and L a meet-refinement of LA , then

∑
C∈CA

χ(C) =
∑
X∈L

µL(X,T )χ(X). In its

original form in Theorem 1.2 of his article, Zaslavsky [19] stated this formula for CW com-
plexes. Remark that if all chambers have the same Euler characteristic c ̸= 0, then they are

#CA =
1
c

∑
X∈L

µL(X,T )χ(X) in number. Deshpande [6] showed a similar result in Theo-

rem 4.6 of his article for the special case of a submanifold arrangement with chambers having
the same Euler characteristic (−1)l.
We finally compute the f-polynomial of submanifold arrangements from the dissection theorem
of Zaslavsky in Section 6. Chamber counting has probably its origin in the article of Steiner
[16] who studied the partition of plane using circles and lines, then that of R3 using planes and
spheres. About 150 years later, Alexanderson and Wetzel [1] computed the numbers of the i-
dimensional faces for an arbitrary set of planes, and Zaslavsky [18] for hyperplane arrangements
in a Euclidean space of any dimension. One of our formulas is a generalization of those results as
it considers a submanifold arrangement A such that χ(X) = (−1)dim X for everyX ∈ LA ∪FA ,
and states that fA (x) = (−1)rk A MA (−x,−1) where MA is the Möbius polynomial of A .
Moreover, Pakula [12] computed in Corollary 1 of his article the number of chambers of a
pseudosphere arrangement with simple complements. Another formula is a generalization of his
result considering a submanifold arrangement A such that

∀C ∈ FA : χ(C) = (−1)dim C and ∀X ∈ LA : χ(X) =

{
2 if dimX ≡ 0 mod 2
0 otherwise

,

and states

fA (x) = (−1)n−rk A
(
MA (x,−1)+γnMA (−x,−1)

)
with γn :=

{
1 if dimX ≡ 0 mod 2
−1 otherwise

.

For some related study on lattices, see [2], [10], [13].

2 Poset

We begin with the general case of posets. A proof of the Zorn’s lemma is provided in particular,
and the Möbius algebra is described. That algebra plays a key role in this article.

Definition 2.1. A partial order is a binary relation ⪯ over a set L such that, for a, b, c ∈ L,

• a ⪯ a,

• if a ⪯ b and a ⪰ b, then a = b,

• if a ⪯ b and b ⪯ c, then a ⪯ c.

The set L with a partial order is called a partially ordered set or poset, and two elements
a, b ∈ L are said comparable if a ⪯ b or a ⪰ b.

Definition 2.2. A poset L has an uppest resp. lowest element 1 resp. 0 ∈ L if, for every a ∈ L,
one has a ⪯ 1 resp. a ⪰ 0. The poset is said to be complete if it has an uppest and a lowest
element.

2.1 Zorn’s Lemma

Definition 2.3. A subset C of a poset P is a chain if any two elements in C are comparable.
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Denote by CL the set formed by the chains of a poset L. A subset S of L has an upper resp. lower
bound if there exists u resp. l ∈ L such that s ⪯ u resp. l ⪯ s for each s ∈ S. The upper resp.
lower bound u resp. l is said strict if u resp. l /∈ S.

Definition 2.4. A poset L is said to be inductive if every chain included in L has an upper bound.

For an inductive poset L, and C ∈ CL, let C≺ be the set formed by the strict upper bound of
C, and denote by EL the set {C ∈ CL | C≺ ̸= ∅}. The axiom of choice allows to deduce the
existence of a function c : 2L \ {∅} → L such that, for every A ∈ 2L \ {∅}, we have c(A) ∈ A.
Define the function m : EL → L, for C ∈ EL, by m(C) := c(C≺).

Definition 2.5. Let S,A be subsets of a poset L. The set S is called a segment of A if

S ⊆ A and ∀s ∈ S, ∀a ∈ A : s ⪰ a⇒ a ∈ S.

Definition 2.6. An upper resp. lower bound u resp. l of the subset S of a poset L is called a join
resp. meet if u ⪯ a resp. b ⪯ l for each upper resp. lower bound a resp. b of S.

Definition 2.7. A chain C of an inductive poset L is called a good set if, for every segment S of
C with S ̸= C, we have S≺ ∩ C ̸= ∅ and m(S) is the meet of S≺ ∩ C.

For elements a, b of a poset, by a ≺ b we mean that a ⪯ b and a ̸= b.

Lemma 2.8. LetA,B be nonempty good sets of an inductive poset L. Then, eitherA is a segment
of B or vice versa.

Proof. Note first that ∅ is a chain of L. As L is inductive, ∅ has then an upper bound in L which
is necessary a strict upper bound, hence ∅ ∈ EL. Moreover, since ∅ is obviously a segment of
both A and B which are good sets, then m(∅) ∈ ∅≺ ∩A ∩B and A ∩B ̸= ∅.
For a ∈ A ∩ B, the sets Sa,A := {s ∈ A | s ≺ a} and Sa,B := {s ∈ B | s ≺ a} are clearly
segments of A and B respectively. Set C := {a ∈ A ∩ B | Sa,A = Sa,B}, and let b ∈ C, c ∈ A,
with b ≻ c. We have c ∈ Sb,A = Sb,B , then c ∈ B which implies c ∈ A ∩ B. If d ∈ Sc,A,
then d ≺ c ≺ b implies d ∈ Sb,A = Sb,B , hence b ∈ Sc,B and Sc,A ⊆ Sc,B . Similarly, we have
Sc,B ⊆ Sc,A, then c ∈ C. Therefore, C is a segment of A and B.
Suppose now that C ̸= A and C ̸= B. As A,B are good sets, then m(C) ∈ A ∩B. Remark that
C ⊔

{
m(C)

}
= Sm(C),A = Sm(C),B , then m(C) ∈ C which is absurd. Hence C = A or C = B,

in other words, A is a segment of B or vice versa.

Denoting by GL the set formed by the good sets of an inductive poset L, set UL :=
⋃

A∈GL

A.

Theorem 2.9. If L is an inductive poset, then UL is a good set.

Proof. For a, b ∈ UL, there exist good sets Sa, Sb such that a ∈ Sa and b ∈ Sb. Using Lemma 2.8,
we get either Sa ⊆ Sb or Sb ⊆ Sa. That means either a ⪯ b or a ⪰ b, and UL is consequently a
chain.
Let A ∈ GL, a ∈ A, and b ∈ UL with a ⪰ b. There is B ∈ GL with b ∈ B. From Lemma 2.8,

• if A is a segment of B, then A is a segment and b ∈ A,
• if B is a segment of A, then B ⊆ A and b ∈ A.

In any case, we have b ∈ A, then A is a segment of UL.
Consider a segment S of UL such that S ̸= UL. Since UL is a chain, necessarily UL \ S ⊆ S≺.
Let a ∈ UL \ S, and A ∈ GL such that a ∈ A. As A is a segment of UL, then S ⊊ A and S is
a segment of A. Moreover, m(S) is the meet of S≺ ∩ A. If there exists b ∈ S≺ ∩ UL such that
b ≺ m(S), we would get b ∈ A, which is absurd. Therefore, m(S) is the meet of S≺ ∩ UL, and
UL is a good set.

Definition 2.10. An element a of a poset L is said to be maximal if there does not exist an
element b ∈ L \ {a} such that b ≻ a.

Corollary 2.11 (Zorn’s Lemma). Every inductive poset L has a maximal element.

Proof. Recall that, since UL is a chain, it consequently possesses an upper bound. Suppose
UL≺ ̸= ∅, and let u ∈ UL≺. Then UL ⊔ {u} is a good set which is absurd. Hence, UL has a
unique upper bound, contained in UL, which is a maximal element of L.
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2.2 Möbius Algebra

For two elements a, b of a poset L such that a ⪯ b, denote by [a, b] the set {c ∈ L | a ⪯ c ⪯ b}.

Definition 2.12. A poset L is locally finite if, for all a, b ∈ L such that a ⪯ b, [a, b] is finite.

For a locally finite poset L, denote by Inc(L) the module of the functions f : L2 → Z with the
property that, if x, y ∈ L, then f(x, y) = 0 if x ⪯̸ y.

Definition 2.13. The incidence algebra Inc(L) of a locally finite poset L is the module of func-
tions f : L2 → Z, having the property f(a, b) = 0 if a ⪯̸ b, with distributive multiplication
h = f · g defined, for f, g ∈ Inc(L), by

h(a, b) := 0 if a ⪯̸ b and h(a, b) :=
∑

c∈[a,b]

f(a, c)g(c, b) otherwise.

Its multiplicative identity is the Kronecker delta δ : L2 → Z with δ(a, b) :=

{
1 if a = b,

0 otherwise
.

Definition 2.14. For a locally finite poset L, the zeta function ζL and the Möbius function µL

in the incidence algebra Inc(L) are defined, for a, b ∈ L with a ⪯ b, by

ζL(a, b) := 1 and µL(a, b) :=


1 if a = b

−
∑

c∈[a,b]
c ̸=b

µL(a, c) = −
∑

c∈[a,b]
c ̸=a

µL(c, b) otherwise .

Lemma 2.15. For a locally finite poset L, the zeta function is the multiplicative inverse of the
Möbius function in the incidence algebra Inc(L).

Proof. For a, b ∈ L with a ⪯ b, we have ζL · µL(a, a) = µL · ζL(a, a) = 1 = δ(a, a), but also

ζL ·µL(a, b) =
∑

c∈[a,b]

µL(c, b) = 0 = δ(a, b) and µL ·ζL(a, b) =
∑

c∈[a,b]

µL(a, c) = 0 = δ(a, b).

The proof of the following proposition is inspired from the original proof of Rota [14] in Propo-
sition 2 of his article.

Proposition 2.16 (Möbius Inversion Formula). Let L be a locally finite poset, a, b ∈ L with
a ⪯ b, and f, g two functions from L onto a module M over Z. Then,

∀x ∈ [a, b] : g(x) =
∑

c∈[a,x]

f(c) ⇐⇒ ∀x ∈ [a, b] : f(x) =
∑

c∈[a,x]

g(c)µL(c, x).

Proof. Assume first that, for every x ∈ [a, b], g(x) =
∑

c∈[a,x]

f(c). Using Lemma 2.15, we get

∑
c∈[a,x]

g(c)µL(c, x) =
∑

c∈[a,x]

∑
d∈[a,c]

f(d)µL(c, x) =
∑

c∈[a,x]

∑
d∈[a,c]

f(d)ζL(d, c)µL(c, x)

=
∑

d∈[a,c]

∑
c∈[a,x]

f(d)ζL(d, c)µL(c, x) =
∑

d∈[a,c]

f(d)
∑

c∈[a,x]

ζL(d, c)µL(c, x)

=
∑

d∈[a,c]

f(d) ζL · µL(d, x) =
∑

d∈[a,c]

f(d)δ(d, x)

= f(x).
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Similarly, if f(x) =
∑

c∈[a,x]

g(c)µL(c, x) for every x ∈ [a, b], we obtain

∑
c∈[a,x]

f(c) =
∑

c∈[a,x]

∑
d∈[a,c]

g(d)µL(d, c) =
∑

c∈[a,x]

∑
d∈[a,c]

g(d)µL(d, c)ζL(c, x) =
∑

d∈[a,c]

g(d)δ(d, x)

= g(x).

Definition 2.17. We say that a poset L is lower-finite if the set {b ∈ L | b ⪯ a} is finite for any
a ∈ L.

For a lower-finite poset L and a ∈ L, let uL(a) be the element
∑
c∈L
c⪯a

µL(c, a)c of ZL.

Definition 2.18. The Möbius Algebra Möb(L) of a lower-finite poset L is the module ZL with
distributive multiplication defined, for a, b ∈ L, by

a · b :=
∑
c∈L

c⪯a, c⪯b

uL(c).

Remark that the Möbius algebra was initial defined for finite posets by Solomon [15]. For a
lower-finite poset L with a lowest element, define the algebra AL := ⟨αa | a ∈ L⟩ over Z with
multiplication

αaαb :=

{
αa if a = b,

0 otherwise
.

To each a ∈ L, associate an element a′ ∈ AL by setting a′ :=
∑

b∈[0,a]

αb.

Lemma 2.19. For a lower-finite poset L with a lowest element, the set {a′ | a ∈ L} forms a basis
of the algebra AL.

Proof. From the Möbius inversion formula, we get αa =
∑

b∈[0,a]

µ(b, a)b′. The set {a′ | a ∈ L}

consequently generates AL. Suppose that there exists a finite set I ⊆ L and an integer set
{ia}a∈I such that

∑
a∈I

iaa
′ = 0. If b is a maximal element of I , then αb

∑
a∈I

iaa
′ = ibαb = 0,

hence ib = 0. Inductively, we deduce that ia = 0 for every a ∈ I . The set {a′ | a ∈ L} is
therefore independent.

The following results were initially established by Greenl [9] for finite lattice.

Theorem 2.20. For a lower-finite poset L with a lowest element, the map ϕ : L → AL, a 7→ a′

extends to an algebra isomorphism from Möb(L) to AL.

Proof. The map ϕ clearly becomes a module homomorphism by linear extension, and an iso-
morphism by Lemma 2.19. Moreover, for a, b ∈ L,

ϕ(a · b) = ϕ
( ∑

c∈[0,a]∩[0,b]

uL(c)
)
=

∑
c∈[0,a]∩[0,b]

ϕ
( ∑

d∈[0,c]

µ(d, c)d
)

=
∑

c∈[0,a]∩[0,b]

∑
d∈[0,c]

µ(d, c)d′ =
∑

c∈[0,a]∩[0,b]

αc,

and ϕ(a)ϕ(b) = a′b′ =
∑

c∈[0,a]

αc ×
∑

d∈[0,b]

αd =
∑

c∈[0,a]∩[0,b]

αc. Then ϕ(a · b) = ϕ(a)ϕ(b), and ϕ is

consequently an algebra isomorphism.
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Corollary 2.21. For a lower-finite poset L with a lowest element, the set {uL(a) | a ∈ L} is a
complete set of orthogonal idempotents in Möb(L).

Proof. Since ϕ
(
uL(a)

)
=

∑
b∈[0,a]

µL(b, a)b
′ = αa, then {uL(a) | a ∈ L} is a basis of Möb(L).

Moreover ϕ
(
uL(a) · uL(a)

)
= αa = ϕ

(
uL(a)

)
, so the uL(a)’s are idempotents.

Finally ϕ
(
uL(a) · uL(b)

)
= αaαb = 0 if a ̸= b, hence the uL(a)’s are orthogonal.

Corollary 2.22. Let L be a lower-finite poset with a lowest element, and M a subset of L con-
taining 0. Then, the linear map j : Möb(L) → Möb(M), which on the basis {uL(a) | a ∈ L}
has the values

j
(
uL(a)

)
:=

{
uM (a) if a ∈M,

0 otherwise,

is an algebra homomorphism.

Proof. Using Corollary 2.21, j
(
uL(a) · uL(a)

)
= j

(
uL(a)

)
= uM (a) = j

(
uL(a)

)
· j
(
uL(a)

)
if

a ∈ M . Otherwise, j
(
uL(a) · uL(a)

)
= 0 = j

(
uL(a)

)
· j
(
uL(a)

)
. For a, b ∈ L with a ̸= b,

j
(
uL(a) · uL(b)

)
= 0 = j

(
uL(a)

)
· j
(
uL(b)

)
.

3 Lattice

We study the special but important case of lattices. After viewing some generalities, we focus on
distributive ones, and establish diverse properties which are necessary to investigate the valuation
algebra in the next section.

Definition 3.1. A poset L is a join-semilattice resp. meet-semilattice if each 2-element subset
{a, b} ⊆ L has a join resp. meet denoted by a ∨ b resp. a ∧ b. It is called a lattice if L is both a
join- and meet-semilattice, moreover ∨ and ∧ become binary operations on L.

Proposition 3.2. If a lattice L is lower-finite, then it has a lowest element.

Proof. For any a ∈ L, the principal ideal id(a) has a lowest element which is 0a :=
∧

x∈id(a)

x.

Consider b ∈ L \ {a} and the lowest element 0b of id(b). The fact 0a ∧ 0b ̸= 0a would contradict
the fact that 0a is the lowest element of id(a). Hence, L has a lowest element 0.

3.1 Generalities on Lattice

Definition 3.3. A sublattice of a lattice L is a nonempty subset M ⊆ L such that, for all a, b ∈
M , we have a ∨ b ∈M and a ∧ b ∈M .

Definition 3.4. A lattice homomorphism is a function φ : L1 → L2 between two lattices L1
and L2 such that, for all a, b ∈ L1,

φ(a ∨ b) = φ(a) ∨ φ(b) and φ(a ∧ b) = φ(a) ∧ φ(b).

Definition 3.5. An ideal of a lattice L is a sublattice I ⊆ L such that, for any a ∈ I and b ∈ L,
we have a ∧ b ∈ I . If in addition I ̸= L and, for any a ∧ b ∈ I , either a ∈ I or b ∈ I , then I is a
prime ideal.

Definition 3.6. Dually, a filter of a lattice L is a sublattice F ⊆ L such that, for any a ∈ F and
b ∈ L, we have a ∨ b ∈ F . If in addition F ̸= L and, for any a ∨ b ∈ F , either a ∈ F or b ∈ F ,
then F is a prime filter.

Proposition 3.7. A subset M of a lattice L is a prime ideal if and only if the subset L \M is a
prime filter.

Proof. Assume that M is a prime ideal:
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• If a, b ∈ L \M , clearly a ∧ b ∈ L \M and a ∨ b ∈ L \M since (a ∨ b) ∧ b ∈ L \M , then
L \M is a sublattice.

• If a ∈M and b ∈ L \M , once again a ∨ b ∈ L \M since (a ∨ b) ∧ b ∈ L \M , then L \M
is a filter.

• If a ∨ b ∈ L \M , it is clear that both a, b cannot be all in M , then L \M is prime.

One similarly proves that if M is a prime filter, then L \M is a prime ideal.

Definition 3.8. Let L be a lattice, and a ∈ L. The principal ideal generated by a is the ideal
id(a) := {b ∈ L | b ⪯ a}, dually the principal filter generated by a is the filter fil(a) := {b ∈
L | b ⪰ a}.

Definition 3.9. An element a of a lattice L is join-irreducible if, for any subset S ⊆ L, a =
∨
b∈S

b

implies a ∈ S. Denote by ji(L) the set formed by the join-irreducible elements of L.

Lemma 3.10. Let L be a lattice, and a ∈ L. Then, a ∈ ji(L) if and only if a ̸=
∨
b∈L
b≺a

b.

Proof. If a ∈ ji(L), as a /∈ {b ∈ L | b ≺ a}, then a ̸=
∨
b∈L
b≺a

b.

Assume now that a ̸=
∨
b∈L
b≺a

b, and let S ⊆ L such that a =
∨
b∈S

b. Since b ⪯ a for every b ∈ S, the

only possibility is a ∈ S, and consequently a ∈ ji(L).

The proof of the following proposition is inspired from that of Proposition 2.2 in the article of
Bhatta and Ramananda [3].

Proposition 3.11. Let L be a lower-finite lattice, and a ∈ L. Then, a =
∨

b∈ id(a)∩ji(L)

b.

Proof. It is obvious if a ∈ ji(L). Now, assume that a ∈ L \ ji(L) and a ̸=
∨

b∈ id(a)∩ji(L)

b. The set

S =
{
x ∈ L

∣∣∣ x ̸=
∨

b∈ id(x)∩ji(L)

b
}

is nonempty and has a minimal element c as L is lower-finite.

Since c ̸=
∨

b∈ id(c)∩ji(L)

b, then c /∈ ji(L), and it follows from Lemma 3.10 that c =
∨
b∈L
b≺c

b. Clearly,

c is an upper bound of the set X =
⋃
b∈L
b≺c

id(b) ∩ ji(L). If u is another upper bound of X , then

u is an upper bound of id(x) ∩ ji(L) for every x ∈ L with x ≺ c. As c is minimal in S, then
x =

∨
b∈ id(x)∩ji(L)

b if x ≺ c, hence u is an upper bound of {b ∈ L | b ≺ c} implying u ⪰ c.

Observe that X =
⋃
b∈L
b≺c

(
id(b) ∩ ji(L)

)
= ji(L) ∩

⋃
b∈L
b≺c

id(b) = ji(L) ∩ id(c). Therefore, c is a

minimal upper bound for id(c) ∩ ji(L) which is a contradiction.

For two elements a, b of a lattice L such that a ⪯ b, let ja,b : [a ∧ b, b] → [a, a ∨ b] and
ma,b : [a, a ∨ b] → [a ∧ b, b] be functions respectively defined by

ja,b(x) := a ∨ x and ma,b(x) := x ∧ b.

Definition 3.12. A lattice L is modular if, for all a, b ∈ L, x ∈ [a ∧ b, b], and y ∈ [a, a ∨ b], we
have

x = ma,b ja,b(x) and y = ja,b ma,b(y).
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Proposition 3.13. A lattice L is modular if and only if, for all a, b, z ∈ L, we have

(a ∨ z) ∧ (a ∨ b) = a ∨
(
z ∧ (a ∨ b)

)
and (a ∧ z) ∨ (a ∧ b) = a ∧

(
z ∨ (a ∧ b)

)
.

Proof. Assume first that L is modular. We have a ⪯ (a ∨ z) ∧ (a ∨ b) ⪯ a ∨ b. Letting
u = (a ∨ z) ∧ (a ∨ b), we get

u = ja,b ma,b(u) = a ∨
(
(a ∨ z) ∧ (a ∨ b) ∧ b

)
= a ∨

(
(a ∨ z) ∧ b

)
.

Since it is true for all a, b, z ∈ L, interchanging z and b, we obtain u = a∨
(
z∧(a∨b)

)
. Likewise,

we have a ∧ b ⪯ (z ∧ b) ∨ (a ∧ b) ⪯ b. Letting v = (z ∧ b) ∨ (a ∧ b), we get

v = ma,b ja,b(v) = b ∧
(
(z ∧ b) ∨ (a ∧ b) ∨ a

)
= b ∧

(
(b ∧ z) ∨ a

)
.

Since it is true for all a, b, z ∈ L, interchanging z and a, we obtain v = b ∧
(
z ∨ (a ∧ b)

)
.

Assume now that (a ∨ z) ∧ (a ∨ b) = a ∨
(
z ∧ (a ∨ b)

)
and (a ∧ z) ∨ (a ∧ b) = a ∧

(
z ∨ (a ∧ b)

)
for all a, b, z ∈ L. If a ⪯ z ⪯ a ∨ b, then

z = (a ∨ b) ∧ z = (a ∨ b) ∧ (a ∨ z) = a ∨
(
b ∧ (a ∨ z)

)
.

Since a ∨ z = z, then z = a ∨ (z ∧ b) = ja,b ma,b(z). Likewise, if a ∧ b ⪯ z ⪯ b, then

z = (a ∧ b) ∨ z = (b ∧ a) ∨ (z ∧ b) = b ∧
(
a ∨ (z ∧ b)

)
.

And since z ∧ b = z, then z = b ∨ (a ∧ z) = ma,b ja,b(z).

3.2 Distributive Lattice

Proposition 3.14. Let L be a poset, and a, b, c ∈ L. The condition

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) is equivalent to a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Proof. Assume that a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). Then,

(a ∨ b) ∧ (a ∨ c) =
(
(a ∨ b) ∧ a

)
∨
(
(a ∨ b) ∧ c

)
= a ∨

(
(a ∨ b) ∧ c

)
= a ∨ (a ∧ c) ∨ (b ∧ c)
= a ∨ (b ∧ c).

Similarly, if we assume a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), then we obtain

(a ∧ b) ∨ (a ∧ c) =
(
(a ∧ b) ∨ a

)
∧
(
(a ∧ b) ∨ c

)
= a ∧ (b ∨ c).

Definition 3.15. A lattice L is distributive if, for all a, b, c ∈ L, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Denote by IL the poset formed by the ideals of a lattice L with inclusion as partial order. It is a
lattice such that, for I, J ∈ IL, I ∨ J :=

⋂
K∈IL
I,J⊆K

K and I ∧ J :=
⋃

K∈IL
K⊆I∩J

K.

Theorem 3.16. Let L be a distributive lattice, I an ideal of L, and F a filter of L such that
I ∩ F = ∅. Then, there exists a prime ideal P of L such that I ⊆ P and P ∩ F = ∅.

Proof. Set XI,F := {M ∈ IL | I ⊆M, M ∩F = ∅}. It is a poset with inclusion as partial order,
and is nonempty since I ∈ XI,F . Consider a chain E ∈ CXI,F

, and let E =
⋃
C∈E

E. If a, b ∈ E,

then a ∈ A and b ∈ B for some A,B ∈ E . Since E is a chain, either A ⊆ B or A ⊇ B hold, so
let assume A ⊆ B. Then, a ∈ B, and a ∨ b ∈ B ⊆ E, as B is an ideal. Moreover, if c ∈ L, then
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a ∧ c ∈ A ⊆ E, as A is also an ideal. We deduce that E ∈ IL. Besides, I ⊆ E and E ∩ F = ∅≺
obviously hold. Hence, E is an upper bound of E in XI,F . Therefore, XI,F is an inductive poset,
and Zorn’s lemma allows to state that it has a maximal element P .
Suppose that P is not prime. Then, there exists a, b ∈ L such that a, b /∈ P but a ∧ b ∈ P . The
maximality of P yields

(
P ∨ id(a)

)
∩ F ̸= ∅ and

(
P ∨ id(b)

)
∩ F ̸= ∅. Thus, there are p, q ∈ P

such that p ∨ a ∈ F , q ∨ b ∈ F , and (p ∨ a) ∧ (q ∨ b) ∈ F since F is a filter. Expanding by
distributivity, we obtain

(p ∨ a) ∧ (q ∨ b) =
(
(p ∨ a) ∧ q

)
∨
(
(p ∨ a) ∧ b

)
= (p ∧ q) ∨ (a ∧ q) ∨ (p ∧ b) ∨ (a ∧ b)

which belongs to P . That means P ∩ F ̸= ∅ or a contradiction.

Corollary 3.17. Let L be a distributive lattice, I ∈ IL, and a ∈ L such that a /∈ I . Then, there
exists a prime ideal P of L such that I ⊆ P and a /∈ P .

Proof. Remark that I ̸= fil(a) = ∅, otherwise, if b ∈ I ̸= fil(a), then b ∧ a = a ∈ I , which is
absurd. Now, for the proof, we apply Theorem 3.16 to I and F = fil(a).

Corollary 3.18. Let L be a distributive lattice, and a, b ∈ L such that a ̸= b. Then, L has a prime
ideal containing exactly one of a and b.

Proof. If a and b are not comparable or b ≺ a, then a /∈ id(b). It remains to apply Corollary 3.17
to I = id(b).

Theorem 3.19. A lattice L is distributive if and only if, for all a, b, c ∈ L, c ∨ a = c ∨ b and
c ∧ a = c ∧ b imply a = b.

Proof. Suppose first that L is distributive and that there exist a, b, c ∈ L such that a ∨ c = b ∨ c
and a ∧ c = b ∧ c. Then,

a = a ∨ (a ∧ c) = a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) = (a ∨ b) ∧ (b ∨ c) = b ∨ (a ∧ c),

which implies a ⪯ b, and similarly we have b ⪯ a.
Suppose now that a ∨ c = b ∨ c and a ∧ c = b ∧ c imply a = b. If x ∈ [a ∧ b, b],

• as x ⪯ b∧(a∨x) then a∨x ⪯ a∨
(
b∧(a∨x)

)
, as a∨x ⪰ b∧(a∨x) then a∨x ⪰ a∨

(
b∧(a∨x)

)
,

hence a ∨ x = a ∨
(
b ∧ (a ∨ x)

)
on one side,

• on the other side, a ∧ x = a ∧ b ∧ x = a ∧ b ∧ (a ∨ x).

By canceling a, we obtain x = ma,b ja,b(x). If y ∈ [a, a ∨ b], as y ⪰ a ∨ (b ∧ y) then b ∧ y ⪰
b∧

(
a∨ (b∧y)

)
, as b∧y ⪯ a∨ (b∧y) then b∧y ⪯ b∧

(
a∨ (b∧y)

)
, hence b∧y = b∧

(
a∨ (b∧y)

)
on one side, and b ∨ y = a ∨ b ∨ y = a ∨ b ∨ (b ∧ y) on the other side. By canceling b, we obtain
y = ja,b ma,b(y). Therefore, L is modular.
Let a∗ = a∧(b∨c), b∗ = b∧(c∨a), and c∗ = c∧(a∨b). Then, a∗∧b∗ = a∧(c∨a)∧b∧(b∨c) = a∧b,
a∗∧c∗ = a∧c, and b∗∧c∗ = b∧c. Set d = (a∨b)∧(b∨c)∧(c∨a). Using twice Proposition 3.13,
we get

a∗ ∨ b∗ = a∗ ∨
(
b ∧ (a ∨ c)

)
= (a∗ ∨ b) ∧ (a ∨ c)

=
((

(b ∨ c) ∧ a
)
∨ b

)
∧ (a ∨ c) = (b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c)

= d.

By symmetry, we also have a∗ ∨ c∗ = b∗ ∨ c∗ = d. Hence,

• c∗ ∨ a∗ ∨ (b ∧ c) = c∗ ∨ b∗ ∨ (a ∧ c) = d,
• and c∗ ∧

(
a∗ ∨ (b ∧ c)

)
= (c∗ ∧ a∗) ∨ (b ∧ c) = (c∗ ∧ b∗) ∨ (a ∧ c) = c∗ ∧

(
b∗ ∨ (a ∧ c)

)
.

By canceling c∗, we obtain a∗ ∨ (b ∧ c) = b∗ ∨ (a ∧ c), whence

a∗ ∨ (b ∧ c) = a∗ ∨ (b ∧ c) ∨ b∗ ∨ (a ∧ c) = a∗ ∨ b∗ = d.

It follows that (a ∨ b) ∧ c = c∗ = c∗ ∧ d = c∗ ∧
(
a∗ ∨ (b ∧ c)

)
= (a ∧ c) ∨ (b ∧ c), hence L is

consequently distributive.
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4 Valuation on Lattice

This section is the central part of this article. After defining the valuation algebra and showing
some important properties, we prove that if M is a subset of a complete lower-finite distributive
lattice L containing its join-irreducible elements, and a an element of M which is not join-
irreducible, then

∑
b∈M∩[0,a]

µM (b, a)b belongs to the submodule ⟨a ∧ b+ a ∨ b− a− b | a, b ∈ L⟩

of ZL. It would not have been possible to write the first two subsections without the articles of
Geissinger [7, 8], and the third without that of Zaslavsky [19].

Definition 4.1. A valuation on a lattice L is a function f from L to a module G such that, for all
a, b ∈ L,

f(a ∧ b) + f(a ∨ b) = f(a) + f(b).

4.1 Valuation Module

Definition 4.2. The valuation module of a lattice L is the module Val(L) := ZL/N(L), where
N(L) is the submodule ⟨a ∧ b+ a ∨ b− a− b | a, b ∈ L⟩ of the module ZL.

Proposition 4.3. Let i : L → Val(L) be the natural induced map for a lattice L. Then, i is a
valuation, and, for every valuation f : L → G, there exists a unique module homomorphism
h : Val(L) → G such that the following diagram is commutative

L Val(L)

G

f

i

h

Proof. It is clear that i is a valuation as i(a∧b)+ i(a∨b)− i(a)− i(b) = a∧b+a∨b−a−b = 0.
Besides, we get the homomorphism h by setting

∀a ∈ L : h(a) := f(a) and ∀x, y ∈ Val(L) : h(x+ y) = h(x) + h(y).

Proposition 4.4. For lattices L1, L2 with natural induced maps i1, i2 respectively, a lattice ho-
momorphism φ : L1 → L2 induces a unique module homomorphism ψ : Val(L1) → Val(L2)
such that, for every a ∈ L1, ψi1(a) = i2φ(a).

Proof. We obtain the homomorphism ψ by setting

∀a ∈ L1 : ψ(a) := φ(a) and ∀x, y ∈ Val(L1) : ψ(x+ y) = ψ(x) + ψ(y).

Proposition 4.5. For any prime ideal or prime filter M of a lattice L with natural induced map
i, each element of i(M) is linearly independent of those in i(L \M) and vise versa.

Proof. Assume that M is a prime ideal, and consider the indicator function 1M : L→ Z defined

as 1M (a) :=

{
1 if a ∈M

0 otherwise
. For a, b ∈ L,

• if a, b ∈M , we clearly have 1M (a ∧ b) + 1M (a ∨ b) = 1M (a) + 1M (b) = 2,

• if a ∈M and b /∈M , since (a∨b)∧b = b /∈M , then a∨b /∈M and 1M (a∧b)+1M (a∨b) =
1M (a) + 1M (b) = 1,

• if a, b /∈ M , then a ∧ b /∈ M , the fact (a ∨ b) ∧ b = b /∈ M implies a ∨ b /∈ M , and
1M (a ∧ b) + 1M (a ∨ b) = 1M (a) + 1M (b) = 0.



718 Hery Randriamaro

Therefore, 1M is a valuation on L. One similarly proves that if M is prime filter, then 1M is
also a valuation on L. We know from Proposition 4.3 that there exists a unique homomorphism

h : Val(L) → Z such that the diagram
L Val(L)

Z

1M

i

h
is commutative. As hi(a) = 1, for

every a ∈M , and
〈
i(b)

∣∣ b ∈ L \M
〉
⊆ kerh, each element of i(M) is then linearly independent

of those in i(L \M). Likewise, Proposition 3.7 allows to state that 1L\M is a valuation, then one
also proves that each element of i(L \M) is linearly independent of those in i(M).

Proposition 4.6. The natural induced map i : L → Val(L) of a lattice L is an injection if and
only if L is distributive.

Proof. If L is distributive, we know from Corollary 3.18 that any two different elements a, b ∈ L
can be separated by a prime ideal, hence Proposition 4.5 allows to deduce that i(a) and i(b) are
independent in Val(L).
IfL is not distributive, then, by Theorem 3.19, it contains distinct elements a, b, cwith c∨a = c∨b
and c ∧ a = c ∧ b. Hence, i(a) + i(c) = i(c ∨ a) + i(c ∧ a) = i(c ∨ b) + i(c ∧ b) = i(b) + i(c),
and i(a) = i(b).

Proposition 4.7. Let L be a distributive lattice, and a1, . . . , an, b ∈ L with b /∈
[ ∧
i∈[n]

ai,
∨
i∈[n]

ai
]
.

Then, b is linearly independent of {a1, . . . , an} in Val(L).

Proof. If b /∈ id
( ∨

i∈[n]

ai

)
, then there exists a prime ideal P such that {a1, . . . , an} ⊆ P and

b /∈ P by Corollary 3.17, and b is linearly independent of {a1, . . . , an} by Proposition 4.5.
If b ∈ id

( ∨
i∈[n]

ai

)
, then b /∈ fil

( ∧
i∈[n]

ai

)
, otherwise b ∈

[ ∧
i∈[n]

ai,
∨
i∈[n]

ai
]

which is a contradic-

tion. Hence, id(b) ∩ fil
( ∧

i∈[n]

ai

)
= ∅, and there exists a prime ideal P such that id(b) ⊆ P and

P ∩ fil
( ∧

i∈[n]

ai

)
= ∅ by Theorem 3.16. As {a1, . . . , an} ⊆ fil

( ∧
i∈[n]

ai

)
, we once again obtain

the independence of b by Proposition 4.5.

As the lattice L with either the operation ∨ or ∧ form a semigroup, the module ZL may con-
sequently be considered as an algebra with either ∨ or ∧ as multiplication. Besides, if L is
distributive, Proposition 4.6 allows to identify L with i(L).

Proposition 4.8. If L is a distributive lattice, then N(L) is an ideal of the algebra ZL for both ∨
and ∧ as multiplication.

Proof. For a, b, c ∈ L, we have

(a ∧ b+ a ∨ b− a− b) ∧ c = (a ∧ b) ∧ c+ (a ∨ b) ∧ c− a ∧ c− b ∧ c
= (a ∧ c) ∧ (b ∧ c) + (a ∧ c) ∨ (b ∧ c)− a ∧ c− b ∧ c

which belongs to N(L). Then, by linearly extension, we get (a ∧ b+ a ∨ b− a− b) ∧ t ∈ N(L)
for any t ∈ ZL. Similarly, we have

(a ∧ b+ a ∨ b− a− b) ∨ c = (a ∨ c) ∧ (b ∨ c) + (a ∨ c) ∨ (b ∨ c)− a ∨ c− b ∨ c ∈ N(L).

4.2 Valuation Algebra

If the lattice L is distributive, Proposition 4.8 allows to state that the valuation module Val(L)
becomes a commutative algebra for either ∨ or ∧ as multiplication.
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Definition 4.9. The valuation algebra is the algebra
(
Val(L),∨

)
or

(
Val(L),∧

)
for a distributive

lattice L.

Lemma 4.10. Let L be a complete distributive lattice, and define the map τ : Val(L) → Val(L)
by τ(x) := 1+ 0− x. Then, for a, b ∈ L, we have τ(a ∨ b) = τ(a) ∧ τ(b).

Proof. We have 1+ 0− a ∨ b = 1+ 0+ a ∧ b− a− b = (1+ 0− a) ∧ (1+ 0− b).

Proposition 4.11. Let L be a complete distributive lattice, n ∈ N∗, and a1, . . . , an ∈ L. Then,
we have 1−

∨
i∈[n]

ai =
∧
i∈[n]

(1− ai), that is

∨
i∈[n]

ai =
n∑

k=1

(−1)k−1
∑
I⊆[n]
#I=k

∧
i∈I

ai.

Proof. Using Lemma 4.10 and 0 ∧ (1− ai) = 0, we obtain

τ
( ∨

i∈[n]

ai

)
= 0+ 1−

∨
i∈[n]

ai =
∧
i∈[n]

τ(ai) =
∧
i∈[n]

(0+ 1− ai) = 0+
∧
i∈[n]

(1− ai).

Then 1−
∨
i∈[n]

ai =
∧
i∈[n]

τ(ai) =
∧
i∈[n]

(1− ai) = 1+
n∑

k=1

(−1)k
∑
I⊆[n]
#I=k

∧
i∈I

ai.

Corollary 4.12. Let L be a complete distributive lattice, n ∈ N∗, a1, . . . , an ∈ L, and f a
valuation on L. Then,

f
( ∨

i∈[n]

ai

)
=

n∑
k=1

(−1)k−1
∑
I⊆[n]
#I=k

f
(∧

i∈I

ai

)
.

Proof. If f is a valuation to module G, we know from Proposition 4.3 that a unique module
homomorphism h : Val(L) → G such that hi = f exists. Then, using Proposition 4.11, we
obtain

f
( ∨

i∈[n]

ai

)
= h

( ∨
i∈[n]

ai

)
=

n∑
k=1

(−1)k−1
∑
I⊆[n]
#I=k

h
(∧

i∈I

ai

)
=

n∑
k=1

(−1)k−1
∑
I⊆[n]
#I=k

f
(∧

i∈I

ai

)
.

Theorem 4.13. Let L be a complete lower-finite distributive lattice. Then, Val(L) is equal to
Zji(L) as modules.

Proof. We obviously have 0 ∈ ji(L). Let a ∈ L, and assume that every b ∈ L such that
a ≻ b is a linear combination in Val(L) of a finite number of elements in ji(L). We know from
Proposition 3.11 that there exists a subset {b1, . . . , bn} of ji(L) such that a =

∨
i∈[n]

bi. Using

Proposition 4.11, we get a =
n∑

k=1

(−1)k−1
∑
I⊆[n]
#I=k

∧
i∈I

bi with a ≻
∧
i∈I

bi for each I ⊆ [n]. Thus ji(L)

generates Val(L).
Assume now that every subset with cardinality n − 1 in ji(L) is independent, and consider a
subset of n elements {a1, . . . , an} ⊆ ji(L). We can suppose that an is a maximal element in that
set. Since an ̸=

∨
i∈[n−1]

ai, then an /∈
[ ∧
i∈[n−1]

ai,
∨

i∈[n−1]

ai
]
. We deduce from Proposition 4.7

that {a1, . . . , an} is independent. Hence ji(L) is an independent set in Val(L).
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Corollary 4.14. If L is a complete lower-finite distributive lattice, then every valuation of L is
determined by its values on ji(L) which can be assigned arbitrarily.

Proof. If f is a valuation to a module G, we know from Proposition 4.3 that a unique module
homomorphism h : Val(L) → G such that hi = f exists. We know from Theorem 4.13 that, if
a ∈ L, there exist subsets {λ1, . . . , λn} ⊆ Z and {a1, . . . , an} ⊆ ji(L) such that a =

∑
i∈[n]

λiai.

Then, f(a) = h(a) = h
( ∑

i∈[n]

λiai

)
=

∑
i∈[n]

λih(ai) =
∑
i∈[n]

λif(ai).

For a poset L, and a, b ∈ L, we write a⋖ b if a ≺ b and {c ∈ L | a ≺ c ≺ b} = ∅.

Proposition 4.15. Let L be a distributive lattice, and a ∈ ji(L) such that a is not minimal. Then,
there exists a unique element a∗ ∈ L such that a∗ ⋖ a.

Proof. Suppose that there exist two different elements b, c ∈ L such that b⋖ a and c⋖ a. Then,
b ∨ c ⪰ b, b ∨ c ⪰ c, and b ∨ c /∈ {b, c}. The only possibility is b ∨ c = a which contradicts the
join-irreducibility of a.

Let L be a distributive lattice having a lowest element 0. Define

e0 := 0 ∈ Val(L) and ea := a− a∗ ∈ Val(L) for each a ∈ ji(L) \ {0}.

Theorem 4.16. Let L be a complete lower-finite distributive lattice. Then,
{
ea | a ∈ ji(L)

}
is an

orthogonal idempotent basis of Val(L).

Proof. For a, b ∈ ji(L) \ {0} with a ̸= b, we have e0 ∧ e0 = e0 and ea ∧ e0 = a∧ 0− a∗ ∧ 0 = 0,
ea ∧ ea = a ∧ a− a ∧ a∗ − a∗ ∧ a+ a∗ ∧ a∗ = a− a∗ − a∗ + a∗ = ea, and

ea ∧ eb = a ∧ b− a ∧ b∗ − a∗ ∧ b+ a∗ ∧ b∗

=

{
b− b∗ − b+ b∗ if a∗ = b

a∗ ∧ b∗ − a∗ ∧ b∗ − a∗ ∧ b∗ + a∗ ∧ b∗ otherwise

= 0.

Then,
{
ea | a ∈ ji(L)

}
is orthogonal idempotent. Assume now that every subset with cardinality

n− 1 in
{
ea | a ∈ ji(L)

}
is independent, and consider a subset of n elements {ea1 , . . . , ean}. We

can suppose that an is a maximal element in the set {a1, . . . , an}. Since an ̸=
∨

i∈[n−1]

ai∨
∨
i∈[n]

a∗i ,

then an /∈
[ ∧
i∈[n−1]

ai ∧
∧
i∈[n]

a∗i ,
∨

i∈[n−1]

ai ∨
∨
i∈[n]

a∗i
]
. We deduce from Proposition 4.7 that an

is independent of {a1, . . . , an−1, a
∗
1 , . . . , a

∗
n}. Hence ean

is independent of {ea1 , . . . , ean−1}, and
{ea1 , . . . , ean} is consequently an independent set in Val(L). Finally, since there is a natural
bijection a 7→ ea between ji(L) and

{
ea | a ∈ ji(L)

}
, by Theorem 4.13 the latter is also a basis

of Val(L).

4.3 Identities on Valuation Algebra

Theorem 4.17. Let L be a complete lower-finite distributive lattice. Then,

∀x ∈ L : x =
∑

a,b∈ji(L)
b⪯a⪯x

µji(L)(b, a)b.

Proof. If a ∈ ji(L), then a = ea + a∗, particularly 0 = e0. Now, consider any x ∈ L \ ji(L), and
assume that, for every b ∈ L such that b ≺ x, we have b =

∑
d∈ji(L)
d⪯b

ed. There exist b, c ∈ L \ {x}



VALUATION ALGEBRA 721

such that x = b ∨ c. Note that b ∧ c =
∑

d∈ji(L)
d⪯b∧c

ed as the ed’s are orthogonal idempotent. Hence,

b ∨ c = b + c − b ∧ c =
∑

d∈ ji(L)∩(id(b)∪id(c))

ed. Besides, remark that, for any y ∈ ji(L) ∩ id(x),

there exist b, c ∈ L \ {x} such that y ⪯ b and b ∨ c = x. Therefore, x =
∑

d∈ji(L)
d⪯x

ed.

Let b be the natural bijection a 7→ ea between ji(L) and
{
ea | a ∈ ji(L)

}
. For a ∈ ji(L), we have

i(a) =
∑

d∈ ji(L)∩[0,a]

b(d). Then, using the Möbius inversion formula, we obtain

b(a) =
∑

d∈ ji(L)∩[0,a]

µji(L)(d, a)i(d) or ea =
∑

d∈ji(L)
d⪯a

µji(L)(d, a)d.

We obtain the result by combining x =
∑

a∈ji(L)
a⪯x

ea with ea =
∑

d∈ji(L)
d⪯a

µji(L)(d, a)d.

Lemma 4.18. If L is a lower-finite distributive lattice, then
(
ZL,∧

)
is naturally isomorphic to

the Möbius algebra
(
Möb(L), ·

)
.

Proof. For a ∈ L, we have uL(a) =
∑

c∈[0,a]

µL(c, a)c. The Möbius inversion formula conse-

quently allows to state that a =
∑

c∈[0,a]

uL(c). Then, for a, b ∈ L, we have

a · b =
∑

c∈[0,a]∩[0,b]

uL(c) =
∑

c∈[0,a∧b]

uL(c) = a ∧ b.

Lemma 4.19. If L is a complete lower-finite distributive lattice, then
(
Möb(L)/N(L), ·

)
is iso-

morphic to the Möbius algebra
(

Möb
(
ji(L)

)
, ·
)

.

Proof. By Lemma 4.18, we get Möb(L)/N(L) ≃ ZL/N(L) ≃ Val(L). We know from The-
orem 4.13 that Val(L) is isomorphic to Zji(L) as modules. Now, as algebras,

(
Val(L),∧

)
is

naturally isomorphic to
(

Möb
(
ji(L)

)
, ·
)

since, for a, b ∈ ji(L), Theorem 4.17 allows to state
that

a · b =
∑

c∈[0,a]∩[0,b]∩ji(L)

uji(L)(c) =
∑

c∈[0,a∧b]∩ji(L)

uji(L)(c) = a ∧ b.

The following theorem is the main result of this article. Zaslavsky [19] originally proved it in
Theorem 2.1 of his article for every finite distributive lattice. This latter is obviously complete,
lower-finite, and contains its join-irreducible elements.

Theorem 4.20. Let L be a complete lower-finite distributive lattice, and M a subset of L such
that ji(L) ⊆M . If a ∈M \ ji(L), then

uM (a) ∈ N(L).

Proof. Consider the linear maps j : Möb(L) → Möb
(
ji(L)

)
, j1 : Möb(L) → Möb(M), and

j2 : Möb(M) → Möb
(
ji(L)

)
which on the basis {uL(a) | a ∈ L}, and {uM (a) | a ∈ M}
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respectively have the values

j
(
uL(a)

)
:=

{
uji(L)(a) if a ∈ ji(L),
0 otherwise

, j1
(
uL(a)

)
:=

{
uM (a) if a ∈M,

0 otherwise
,

and j2
(
uM (a)

)
:=

{
uji(L)(a) if a ∈ ji(L),
0 otherwise

.

Then, j, j1, and j2 are algebra homomorphisms by Corollary 2.22. Moreover, as the diagram

Möb(L) Möb(M)

Möb
(
ji(L)

)j

j1

j2

is commutative, then uM (a) ∈ ker j2 ⊆ ker j if a ∈M \ ji(L).
Finally, since Möb

(
ji(L)

)
≃ Möb(L)/ ker j like proved in II-Theorem 6.12 of the book of Burris

and Sankappanavar [4], we obtain ker j = N(L) using Lemma 4.19, and then uM (a) ∈ N(L) if
a ∈M \ ji(L).

Corollary 4.21. Let L be a complete lower-finite distributive lattice, M a subset of L such that
ji(L) ⊆M , and f : L→ G a valuation on L. If a ∈M \ ji(L), then∑

b∈[0,a]∩M

µM (b, a)f(b) = 0.

Proof. Let h : Val(L) → G be the module homomorphism associated to f as in Proposition 4.3.
We already know from Lemma 4.18 that Val(L) ≃ Möb(L)/N(L). By Theorem 4.20, we then
obtain ∑

b∈[0,a]∩M

µM (b, a)b = 0

h
( ∑

b∈[0,a]∩M

µM (b, a)b
)
= h(0)

∑
b∈[0,a]∩M

µM (b, a)h(b) = 0

∑
b∈[0,a]∩M

µM (b, a)f(b) = 0.

5 Dissection Theory

We use Corollary 4.21 to prove the fundamental theorem of dissection theory in this section.
Denote by Hn(T ) the nth singular homology group of a topological space T for n ∈ N.

Definition 5.1. A topological space T is simple if the groups Hn(T ) have finite ranks, only
finitely many of them are nontrivial, and rankH0(T ) = 1.

Definition 5.2. Let us call subspace arrangement a finite set of simple subspaces in in a simple
topological space T .

For a subspace arrangement A in T , let LA :=
{ ⋂

H∈B

H ∈ 2T \ {∅}
∣∣∣ B ⊆ A

}
be the poset

with partial order ⪯ defined, for A,B ∈ LA , by A ⪯ B if and only if A ⊆ B.
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Definition 5.3. Let A be a subspace arrangement in a simple topological space T . A meet-
refinement of LA is a finite poset L ⊆ 2T \ {∅} with the same partial order as that defined for
LA such that

⋃
X∈L

X =
⋃

H∈A

H and

• any element in LA is a union of elements in L,
• any nonempty intersection of elements in L is also a union of elements in L.

Denote by C(X) the set formed by the connected components of a topological space X , and let

A be a subspace arrangement of T . The set Lc
A := LA ⊔

{
C
( ⋂

H∈B

H
) ∣∣∣∣ B ⊆ A ,

⋂
H∈B

H ̸= ∅
}

is for instance a meet-refinement of LA .

Definition 5.4. Let A be a subspace arrangement in a simple topological space T , and denote
by CA the set formed by the connected components of T \

⋃
H∈A

H . An element of CA is called

chamber.

Consider a subspace arrangement A , and a meet-refinement L of LA . Let D(L) be the finite
distributive lattice of sets generated by L ⊔ CA through unions and intersections, that is

D(L) :=
{ ⋃

A∈M

A ⊔
⋃

X∈D

X
∣∣∣M ⊆ L, D ⊆ CA

}
.

In that case, for A,B ∈ D(L), we have A ∨B = A ∪B and A ∧B = A ∩B.

Lemma 5.5. Let A be a subspace arrangement in a simple topological space T , and L a meet-
refinement of LA . Then, ji

(
D(L)

)
⊆ {∅} ⊔ L ⊔ CA .

Proof. Every element of D(L) \ ({∅}⊔L⊔CA ) is the union of at least two elements of L⊔CA .
Then, none of them can be join-irreducible.

Theorem 5.6. Let A be a subspace arrangement in a simple topological space T , L a meet-
refinement of LA , and f a valuation on D(L). Then,∑

C∈CA

f(C) =
∑

X∈L⊔{∅}

µL⊔{∅}(X,T )f(X).

Proof. Note first that T ∈ L but T /∈ ji
(
D(L)

)
as T =

⋃
H∈A

H ⊔
⋃

C∈CA

C. From Corollary 4.21

and Lemma 5.5, we get ∑
A∈{∅}⊔L⊔CA

µ{∅}⊔L⊔CA
(A, T )f(A) = 0.

The result is finally obtained after taking into account the following remarks:

• if C ∈ CA , then µ{∅}⊔L⊔CA
(C, T ) = −µ{∅}⊔L⊔CA

(C,C) = −1,
• if X ∈ {∅} ⊔ L, then [X,T ] ∩ CA = ∅, hence µ{∅}⊔L⊔CA

(X,T ) = µ{∅}⊔L(X,T ).

Definition 5.7. The Euler characteristic of a topological space T is

χ(T ) :=
∑
n∈N

(−1)n rankHn(T ).

We can now state the fundamental theorem of dissection theory.

Corollary 5.8 (Fundamental Theorem of Dissection Theory). Let A be a subspace arrangement
in a simple topological space T , and L a meet-refinement of LA . Then,∑

C∈CA

χ(C) =
∑
X∈L

µL(X,T )χ(X).
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Proof. It is known that χ(A) + χ(B) = χ(A ∪ B) + χ(A ∩ B), for A,B ⊆ T , like stated for
example at the end of § 12.4 in the book of tom Dieck [17]. The Euler characteristic is then a
valuation on D(L). Moreover, χ(∅) = 0 by definition. We consequently obtain the result by
using Theorem 5.6 with χ as a valuation.

Example 5.9. Consider the arrangement A of parametric 1-spheresH1 :


x = cos(π4 )
y = sin(π4 ) cos(t),
z = sin(π4 ) sin(t)

H2 :


x = − cos(π8 )
y = sin(π8 ) cos(t),
z = sin(π8 ) sin(t)

H3 :


x = cos(π6 ) sin(t)
y = cos(π6 ) cos(t),
z = sin(π6 )

H4 :


x = cos(π3 ) sin(t)
y = cos(π3 ) cos(t),
z = − sin(π3 )

where

t ∈ [0, 2π], in S2 represented on Figure 1. On one side, CA has 6 chambers having Euler
characteristic 1, and 1 with Euler characteristic 0, then

∑
C∈CA

χ(C) = 6. On the other side,

∑
X∈LA

µLA (X,S2)χ(X) =µLA (S2,S2)χ(S2) +
∑
i∈[4]

µLA (Hi,S2)χ(Hi)

+ µLA (H1 ∩H3,S2)χ(H1 ∩H3) + µLA (H2 ∩H3,S2)χ(H2 ∩H3)

= 1 × 2 + 4 × (−1)× 0 + 1 × 2 + 1 × 2

= 6.

Figure 1. 1-Sphere Arrangement of Example 5.9

Corollary 5.10. Let A be a subspace arrangement in a simple topological space T , and L a
meet-refinement of LA . Suppose that every chamber of A has the same Euler characteristic
c ̸= 0. Then,

#CA =
1
c

∑
X∈L

µL(X,T )χ(X).
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Proof. It is obviously a consequence of the fundamental theorem of dissection theory where
χ(C) = c for C ∈ CA .

6 Face Counting for Submanifold Arrangement

We use the fundamental theorem of dissection theory to compute the f-polynomial of submani-
fold arrangements having specific face properties.

Definition 6.1. Let A be a subspace arrangement in a simple topological space T , and X ∈ LA .
The induced subspace arrangement on X is the subspace arrangement in X defined by

AX :=
{
H ∩X

∣∣ H ∈ A , H ∩X /∈ {∅, X}
}
.

Let FA :=
⊔

X∈LA

CAX
, and call an element of FA a face of A .

Definition 6.2. A n-dimensional manifold or n-manifold is a topological space with the prop-
erty that each point has a neighborhood that is homeomorphic to Rn, and a submanifold of a
n-manifold T is a k-manifold included in T where k ∈ [0, n]. Moreover, we say that a manifold
is simple if it is simple as a topological space.

Definition 6.3. Let us call submanifold arrangement in a simple n-manifold T a finite set A
of simple submanifolds in T such that every element of LA ∪ FA is a submanifold.

Example 6.4. Consider the arrangement A of 1-manifolds H1 : y = 6 sin(x), H2 : y = x +

cos(x), H3 :
x2

64
+
y2

25
= 1 in R2 represented on Figure 2. We see that

∑
X∈LA

µLA (X,R2)χ(X) =µLA (R2,R2)χ(R2) + µLA (H1,R2)χ(H1) + µLA (H2,R2)χ(H2)

+ µLA (H3,R2)χ(H3) + µLA (H1 ∩H2,R2)χ(H1 ∩H2)

+ µLA (H1 ∩H3,R2)χ(H1 ∩H3) + µLA (H2 ∩H3,R2)χ(H2 ∩H3)

= 1 × 1 + (−1)× (−1) + (−1)× (−1) + (−1)× 0 + 1 × 3 + 1 × 10 + 1 × 2

= 18

is the number of chamber in CA .

Definition 6.5. Let A be a submanifold arrangement in a simple n-manifold T , and x a variable.
For k ∈ [0, n], denote by fk(A ) the number of k-dimensional faces of A . The f-polynomial of
A is

fA (x) :=
∑

k∈[0,n]

fk(A )xn−k.

Proposition 6.6. Let A be a submanifold arrangement in a simple n-manifold T . Suppose that

∀k ∈ [0, n], ∀X ∈ LA , dimX = k : χ(X) = lk,

∀k ∈ [0, n], ∀C ∈ FA , dimC = k : χ(C) = ck ̸= 0.

Then,

fA (x) =
∑

i∈[0,n]

∑
Y ∈LA
dim Y =i

∑
k∈[0,i]

∑
X∈LAY
dim X=k

lk
ci
µLA (X,Y )xn−k.
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Figure 2. Submanifold Arrangement of Example 6.4

Proof. Using the fundamental theorem of dissection theory, we get

fi(A ) =
∑

Y ∈LA
dim Y =i

#CLAY

=
1
ci

∑
Y ∈LA
dim Y =i

∑
X∈LAY

µLAY
(X,Y )χ(X)

=
∑

Y ∈LA
dim Y =i

∑
k∈[0,i]

∑
X∈LAY
dim X=k

lk
ci
µLAY

(X,Y )

=
∑

Y ∈LA
dim Y =i

∑
k∈[0,i]

∑
X∈LAY
dim X=k

lk
ci
µLA (X,Y ).

Definition 6.7. Let A be a submanifold arrangement in a simple n-manifold T . The rank of
X ∈ LA is rkX := n− dimX , and that of A is rk A := max{rkX | X ∈ LA }.

Definition 6.8. Let A be a submanifold arrangement in a simple n-manifold T , and x, y two
variables. The Möbius Polynomial of A is

MA (x, y) :=
∑

X,Y ∈LA

µLA (X,Y )xrk Xyrk A −rk Y .

Corollary 6.9. Let A be a submanifold arrangement in a simple n-manifold T . Suppose that
χ(X) = (−1)dim X for every X ∈ LA ∪ FA . Then,

fA (x) = (−1)rk A MA (−x,−1).
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Proof. From Proposition 6.6, we obtain

fA (x) =
∑

i∈[0,n]

∑
Y ∈LA
dim Y =i

∑
k∈[0,i]

∑
X∈LAY
dim X=k

(−1)k−iµLA (X,Y )xn−k

=
∑

Y ∈LA

∑
X∈LAY

(−1)dim X−dim Y µLA (X,Y )xn−dim X

=
∑

Y ∈LA

∑
X∈LAY

(−1)n−dim Y µLA (X,Y )(−1)dim X−nxn−dim X

=
∑

Y ∈LA

∑
X∈LAY

(−1)rk Y µLA (X,Y )(−x)rk X

= (−1)rk A
∑

Y ∈LA

∑
X∈LAY

µLA (X,Y )(−x)rk X(−1)rk Y−rk A

= (−1)rk A MA (−x,−1).

Corollary 6.10. Let A be a submanifold arrangement in a simple n-manifold T . Suppose

∀C ∈ FA : χ(C) = (−1)dim C and ∀X ∈ LA : χ(X) =

{
2 if dimX ≡ 0 mod 2
0 otherwise

.

Moreover, define γn :=

{
1 if dimX ≡ 0 mod 2
−1 otherwise

. Then,

fA (x) = (−1)n−rk A
(
MA (x,−1) + γnMA (−x,−1)

)
.

Proof. From Proposition 6.6, we obtain

fA (x) =
∑

i∈[0,n]

∑
Y ∈LA
dim Y =i

∑
k∈[0,i]

∑
X∈LAY
dim X=k

(−1)−iχ(X)µLA (X,Y )xn−k

=
∑

Y ∈LA

∑
X∈LAY

(−1)− dim Y χ(X)µLA (X,Y )xn−dim X

= (−1)n
∑

Y ∈LA

∑
X∈LAY

χ(X)µLA (X,Y )xrk X(−1)rk Y

= (−1)n−rk A
∑

Y ∈LA

∑
X∈LAY

χ(X)µLA (X,Y )xrk X(−1)rk A −rk Y

= (−1)n−rk A
∑

Y ∈LA

∑
X∈LAY

µLA (X,Y )xrk X(−1)rk A −rk Y

+ (−1)n−rk A γn
∑

Y ∈LA

∑
X∈LAY

µLA (X,Y )(−x)rk X(−1)rk A −rk Y

= (−1)n−rk A MA (x,−1) + (−1)n−rk A γnMA (−x,−1).
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