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Abstract In this paper, we present a new method for studying the Euclidean operator radius
of two adjointable operators on Hilbert C∗-modules. Our method enables us to obtain some new
results and generalize some known theorems for bounded operators on Hilbert spaces to two
bounded adjointable operators on Hilbert C∗-module spaces.

1 Introduction

Let (H; ⟨., .⟩) be a complex Hilbert space and denote by B(H) the set of all bounded linear
operators on H . The numerical radius of T ∈ B(H) is defined by [1]:

w(T ) = sup{|⟨Tx, x⟩| : x ∈ H, ∥x∥ = 1}. (1.1)

It is well known that w(.) defines a norm on B(H), which is equivalent to the usual operator
norm ∥.∥. In fact, for any T ∈ B(H),

w(T ) ⩽ ∥T∥ ⩽ 2w(T ). (1.2)

Kittaneh proved that for any T ∈ B(H),

w(T ) ⩽
1
2
(∥T∥+ ∥T 2∥ 1

2 ), (1.3)

and
1
4
∥T ∗T + TT ∗∥ ⩽ w2(T ) ⩽

1
2
∥T ∗T + TT ∗∥. (1.4)

The above inequalities can be found in [2, 3], respectively. For other results on the numerical
radius (see [4], [5], [2], [6], [7]).
Let (B,C) be a pair of bounded linear operators on H . The Euclidean operator radius is defined
by [8]:

we(B,C) = sup

{(
|⟨Bx, x⟩|2 + |⟨Cx, x⟩|2

) 1
2

: x ∈ H, ∥x∥ = 1

}
. (1.5)

As pointed out in [9], the following inequality holds:
√

2
4

∥C∗C +D∗D∥ 1
2 ⩽ we(C,D) ⩽ ∥C∗C +D∗D∥ 1

2 . (1.6)

There are many inequalities involving the Euclidean operator radius (see [8], [9], [10]).
By a Hilbert C∗-module, we mean a linear space with an inner product that takes values in a
C∗-algebra. This idea initially arose in a paper by Kaplansky (see [13]), who created the theory
for commutative unital algebras. Paschke (see [14]) and Rieffel (see [15]) expanded the theory to
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include general C∗-algebras. For further details (see [16], [11], [12]). The different structure of
Hilbert C∗-modules makes it appear that different definitions of some concepts, which are natu-
ral extensions of some standard definitions, are required for studying some inequalities in Hilbert
C∗-modules, even though it is possible to prove some inequalities in Hilbert C∗-module spaces
using standard methods. Our new definitions of the Euclidean operator radius and numerical ra-
dius for bounded adjointable operators on Hilbert C∗-modules are the natural extensions of these
concepts to operators on Hilbert spaces and they appear in this work. We establish some basic
inequalities in the operational radius of adjointable bounded operators on Hilbert C∗-modules,
using these definitions and specialized methods.
We recall some fundamental definitions in the theory of Hilbert modules that will be used in this
paper.

Definition 1.1. ([17]). Let A be a C∗-algebra. An inner-product A-module is a linear space E
which is a right A-module with compatible scalar multiplication:

λ(xa) = (λx)a = x(λa) for all x ∈ E, a ∈ A and λ ∈ C

together with a map ⟨., .⟩ : E × E −→ A, which has the following properties:

(i) ⟨x, x⟩ ⩾ 0, if ⟨x, x⟩ = 0 then x = 0,

(ii) ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩,

(iii) ⟨x, ya⟩ = ⟨x, y⟩a,

(iv) ⟨x, y⟩∗ = ⟨y, x⟩,

for all x, y, z ∈ E, a ∈ A, α, β ∈ C.

We can define a norm on E by ∥x∥ = ∥⟨x, x⟩∥ 1
2 . An inner-product A-module that is complete

concerning its norm is called a Hilbert A-module or a Hilbert C∗-module over the C∗-algebra
A. We define L(E) which is a C∗-algebra to be the set of all maps T : E −→ E for which there
is a map T ∗ : E −→ E which satisfies ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ E. Let L−1(E) denote
the set of all invertible operators in L(E).

Definition 1.2. ([12, page 89 ]). A state on a C∗-algebra A is a positive linear functional on A
of norm one. We denote the state space of A by S(A).

Definition 1.3. ([18]). Let E is a Hilbert right A-module. We define the numerical radius of
T ∈ L(E) by

wA(T ) = sup{|ϱ⟨x, Tx⟩| : x ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = 1}. (1.7)

In fact, in this case, the C∗-algebra A is the set of complex numbers and S(A) contains only
the identity function on the set of complex numbers.
Moreover, we assume that A is a C∗-algebra and E is an inner product A-module.
In order to drive our main results, we need the following lemmas:

Lemma 1.4. ([18]). wA(T ) = ∥T∥ for every self-adjoint element of L(E).

Lemma 1.5. ([14]). For T ∈ L(E), we have ⟨Tx, Tx⟩ ⩽ ∥T∥2⟨x, x⟩ for every x ∈ E.

Lemma 1.6. ([12, page 88, Theorem 3.3.2]). Let A be a C∗-algebra. If ϱ is a positive linear
functional on A, then

ϱ(a∗) = ϱ(a), for all a ∈ A.

Lemma 1.7. ([18]). Let T ∈ L(E) and ϱ ∈ S(A). The following statements are equivalent:
a) ϱ⟨x, Tx⟩ = 0 for every x ∈ E with ϱ⟨x, x⟩ = 1,
b) ϱ⟨x, Tx⟩ = 0 for every x ∈ E.

Lemma 1.8. ([18]). Let T ∈ L(E), then T = 0 if and only if ϱ⟨x, Tx⟩ = 0 for every x ∈ E and
ϱ ∈ S(A).

For T ∈ L(E), then T is self-adjoint if and only ϱ⟨x, Tx⟩ is positive for every x ∈ E and
ϱ ∈ S(A).
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Lemma 1.9. ([20]). For a, b ≥ 0 and 0 ≤ α ≤ 1,

aαb1−α ≤ αa+ (1 − α)b ≤ (αar + (1 − α)br)
1
r for r ≥ 1.

Lemma 1.10. ([18]). Let T ∈ L(E), T ≥ 0 and x ∈ E, then for every ϱ ∈ S(A)

(i) (ϱ⟨x, Tx⟩)r ≤ ∥x∥2(1−r)ϱ⟨x, T rx⟩ for r ≥ 1,

(ii) (ϱ⟨x, Tx⟩)r ≥ ∥x∥2(1−r)ϱ⟨x, T rx⟩ for 0 < r ≤ 1.

Lemma 1.11. ([18, page 12]). Let a, b, e ∈ E and ϱ ∈ S(A) with ϱ⟨e, e⟩ = 1, then

|ϱ⟨a, e⟩ϱ⟨e, b⟩| ⩽ 1
2
(ϱ⟨a, a⟩ 1

2 ϱ⟨b, b⟩ 1
2 + |ϱ⟨a, b⟩|).

Lemma 1.12. ([19, Cauchy-Schwarz inequality]). Let T ∈ B(H) and 0 ≤ α ≤ 1, then

|⟨x, Ty⟩|2 ≤ ⟨x, |T |2αx⟩⟨y, |T ∗|2(1−α)y⟩,

for all any x, y ∈ H .

The following result is a consequence of Lemma 1.12.

Corollary 1.13. Let x ∈ E and ϱ ∈ S(A), ϱ⟨., .⟩ is a semi-inner product. Suppose that T ∈ L(E)
and 0 ≤ α ≤ 1, then

|ϱ⟨x, Ty⟩|2 ≤ ϱ⟨x, |T |2αx⟩ϱ⟨y, |T ∗|2(1−α)y⟩,

for all any x, y ∈ E.

In this section, we provide a new definition of the Euclidean operator radius for bounded
adjointable operators on Hilbert C∗-modules, which are of course the natural generalizations
of this concept to operators on Hilbert spaces. By using this definition and applying special
techniques, we prove some fundamental inequalities in the Euclidean operator radius of two
adjointable bounded operators on Hilbert C∗-modules.

2 Main results

We start with this definition.

Definition 2.1. Suppose that E is a Hilbert right A-module. We define the Euclidean operator
radius of B,C ∈ L(E) by

we(B,C) = sup

{(
|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2

) 1
2

: x ∈ E, ϱ ∈ S(A), ϱ⟨x, x⟩ = 1

}
. (2.1)

Note that our definition is a natural extension of the definition of Euclidean operator radius
of two bounded operators on Hilbert spaces.

Lemma 2.2. Let B,C ∈ L(E), then for every x ∈ E and ϱ ∈ S(A)(
|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2

) 1
2

⩽ we(B,C)ϱ⟨x, x⟩.

Theorem 2.3. The Euclidean operator radius we(., .) : L(E)×L(E) → [0,∞) for two operators
satisfies the following properties:

(i) we(B,C) = 0 if and only if B = C = 0,

(ii) we(λB, λC) = |λ|we(B,C) for any λ ∈ C,

(iii) we(B + V,C + T ) ⩽ we(B,C) + we(V, T ),
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(iv) we(U∗BU,U∗CU) = we(B,C) for any unitary operator U : E −→ E,

(v) we(T ∗BT, T ∗CT ) ⩽ ∥T∥2we(B,C) for any operator T : E −→ E,

(vi) w2
e(B,B) = 2w2

A(B),

(vii) If B ∈ L(E) and B = C + iD is the Cartesian decomposition of B, then w2
e(C,D) =

w2
A(B).

Proof. The first seven properties can be easily deduced using the definition of we.
Let x ∈ E and ϱ ∈ S(A) with ϱ⟨Tx, Tx⟩ ≠ 0. Then

ϱ

〈
Tx

(ϱ⟨Tx, Tx⟩) 1
2
,

Tx

(ϱ⟨Tx, Tx⟩) 1
2

〉
= 1,

so that(∣∣∣∣∣ϱ
〈

Tx

(ϱ⟨Tx, Tx⟩) 1
2
, B

(
Tx

(ϱ⟨Tx, Tx⟩) 1
2

)〉∣∣∣∣∣
2

+

∣∣∣∣∣ϱ
〈

Tx

(ϱ⟨Tx, Tx⟩) 1
2
, C

(
Tx

(ϱ⟨Tx, Tx⟩) 1
2

)〉∣∣∣∣∣
2) 1

2

⩽ we(B,C).

Hence (
|ϱ⟨Tx,BTx⟩|2 + |ϱ⟨Tx,CTx⟩|2

) 1
2

⩽ we(B,C)ϱ⟨Tx, Tx⟩.

By Lemma 1.5,

(
|ϱ⟨x, T ∗BTx⟩|2 + |ϱ⟨x, T ∗CTx⟩|2

) 1
2

⩽ we(B,C)∥T∥2ϱ⟨x, x⟩.

By taking supremum over ϱ⟨x, x⟩ = 1,

we(T
∗BT, T ∗CT ) ⩽ ∥T∥2we(B,C).

Let ϱ⟨Tx, Tx⟩ = 0. By the Cauchy-Schwarz inequality, we have

|ϱ⟨x, T ∗BTx⟩|2 ⩽ ϱ⟨Tx, Tx⟩ϱ⟨BTx,BTx⟩.

It follows that |ϱ⟨x, T ∗BTx⟩| = |ϱ⟨x, T ∗CTx⟩| = 0.
Therefore, we deduce (v).

We can now generalize (1.6) for Hilbert C∗-modules.

Theorem 2.4. If C,D ∈ L(E), then

1
2
∥C∗C +D∗D∥ 1

2 ⩽ we(C,D) ⩽ ∥C∗C +D∗D∥ 1
2 , (2.2)

where the constants 1
2 and 1 are best possible in (2.2).

Proof. Let C,D ∈ L(E). There are self-adjoint elements a, b, c, d ∈ L(E) such that C = a+ ib
and D = c+ id. For every vector x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1.

Since ϱ⟨x, (a+ b+ c+ d)x⟩ ∈ R, then
(
ϱ⟨x, (a+ b+ c+ d)x⟩

)2

= |ϱ⟨x, (a+ b+ c+ d)x⟩|2.
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We have

|ϱ⟨x, (a+ b+ c+ d)x⟩|2 =

(
ϱ⟨x, (a+ b+ c+ d)x⟩

)2

=

(
ϱ⟨x, (a+ b)x⟩+ ϱ⟨x, (c+ d)x⟩

)2

⩽ 2
(
ϱ⟨x, (a+ b)x⟩2 + ϱ⟨x, (c+ d)x⟩2

)

= 2
(
ϱ⟨x, ax⟩+ ϱ⟨x, bx⟩

)2

+ 2
(
ϱ⟨x, cx⟩+ ϱ⟨x, dx⟩

)2

⩽ 4
(
ϱ⟨x, ax⟩2 + ϱ⟨x, bx⟩2

)
+ 4
(
ϱ⟨x, cx⟩2 + ϱ⟨x, dx⟩2

)
= 4

(
|ϱ⟨x, (a+ ib)x⟩|2 + |ϱ⟨x, (c+ id)x⟩|2

)
= 4

(
|ϱ⟨x,Cx⟩|2 + |ϱ⟨x,Dx⟩|2

)
.

By taking supremum over all x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

w2
A(a+ b+ c+ d) ⩽ 4w2

e(C,D).

By lemma 1.4, we have wA(a+ b+ c+ d) = ∥a+ b+ c+ d∥. Thus

∥a+ b+ c+ d∥2 ⩽ 4w2
e(C,D).

Since

ϱ⟨x, (a+ b− c− d)x⟩2 =

(
ϱ⟨x, (a+ b)x⟩ − ϱ⟨x, (c+ d)x⟩

)2

⩽
(
|ϱ⟨x, (a+ b)x⟩|+ |ϱ⟨x, (c+ d)x⟩|

)2

⩽ 2
(
ϱ⟨x, (a+ b)x⟩2 + ϱ⟨x, (c+ d)x⟩2

)

= 2
(
ϱ⟨x, ax⟩+ ϱ⟨x, bx⟩

)2

+ 2
(
ϱ⟨x, cx⟩+ ϱ⟨x, dx⟩

)2

⩽ 4
(
ϱ⟨x, ax⟩2 + ϱ⟨x, bx⟩2

)
+ 4
(
ϱ⟨x, cx⟩2 + ϱ⟨x, dx⟩2

)
= 4

(
|ϱ⟨x, (a+ ib)x⟩|2 + |ϱ⟨x, (c+ id)x⟩|2

)
= 4

(
|ϱ⟨x,Cx⟩|2 + |ϱ⟨x,Dx⟩|2

)
.

By taking supremum over all x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

w2
A(a+ b− c− d) ⩽ 4w2

e(C,D).

By lemma 1.4, we have wA(a+ b− c− d) = ∥a+ b+ c+ d∥. Thus

∥a+ b− c− d∥2 ⩽ 4w2
e(C,D).
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Since

ϱ⟨x, (a− b+ c− d)x⟩2 =

(
ϱ⟨x, (a− b)x⟩+ ϱ⟨x, (c− d)x⟩

)2

⩽ 2
(
ϱ⟨x, (a− b)x⟩2 + ϱ⟨x, (c− d)x⟩2

)

= 2
(
ϱ⟨x, ax⟩ − ϱ⟨x, bx⟩

)2

+ 2
(
ϱ⟨x, cx⟩ − ϱ⟨x, dx⟩

)2

⩽ 2
(
|ϱ⟨x, ax⟩|+ |ϱ⟨x, bx⟩|

)2

+ 2
(
|ϱ⟨x, cx⟩|+ |ϱ⟨x, dx⟩|

)2

⩽ 4
(
ϱ⟨x, ax⟩2 + ϱ⟨x, bx⟩2

)
+ 4
(
ϱ⟨x, cx⟩2 + ϱ⟨x, dx⟩2

)
= 4

(
|ϱ⟨x, (a+ ib)x⟩|2 + |ϱ⟨x, (c+ id)x⟩|2

)
= 4

(
|ϱ⟨x,Cx⟩|2 + |ϱ⟨x,Dx⟩|2

)
.

By taking supremum over all x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

w2
A(a− b+ c− d) ⩽ 4w2

e(C,D).

By lemma 1.4, we have wA(a− b+ c− d) = ∥a− b+ c− d∥.
Thus

∥a− b+ c− d∥2 ⩽ 4w2
e(C,D).

Replacing c by d in the above inequality, we obtain that

∥a− b+ d− c∥2 ⩽ 4w2
e(C,D).

Moreover,

16w2
e(C,D) ⩾ ∥(a+ b+ c+ d)2 + (a+ b− c− d)2 + (a− b+ c− d)2 + (a− b+ d− c)2∥

⩾ 4∥a2 + b2 + c2 + d2∥.

Therefore,
1
4
∥C∗C +D∗D∥ ⩽ w2

e(C,D).

For every vector x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, by the Cauchy-Schwarz inequality, we
have

|ϱ⟨x,Cx⟩|2 + |ϱ⟨x,Dx⟩|2 ⩽ ϱ⟨x, x⟩ϱ⟨Cx,Cx⟩+ ϱ⟨x, x⟩ϱ⟨Dx,Dx⟩
⩽ ϱ⟨x,C∗Cx⟩+ ϱ⟨x,D∗Dx⟩
⩽ ϱ⟨x, (C∗C +D∗D)x⟩
⩽ ∥C∗C +D∗D∥.

By taking supremum over all ϱ⟨x, x⟩ = 1, we have

w2
e(C,D) ⩽ ∥C∗C +D∗D∥.

Remark 2.5. (i) The lower bound of we(B,C) obtained in Theorem 2.4 is stronger than the
lower bound in (1.6).
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(ii) If we take C = D in (2.2) and Theorem 2.3 (vi), then we get the following upper bound
( see [18]) for the numerical radius of a bounded linear operator C on L(E) :

1
2
∥C∥ ⩽ wA(C) ⩽ ∥C∥.

(iii) We observe that, if C and D are self-adjoint operators, then (2.2) becomes

1
2
∥C2 +D2∥ 1

2 ⩽ we(C,D) ⩽ ∥C2 +D2∥ 1
2 . (2.3)

(iv) If C = B + iD is the cartesian decomposition of C, then

C∗C + CC∗ = 2(B2 +D2),

by the inequality (2.3) and Theorem 2.3 (vii), then we have

1
8
∥C∗C + CC∗∥ ⩽ w2

A(C) ⩽
1
2
∥C∗C + CC∗∥.

Theorem 2.6. For any B,C ∈ L(E) and r ⩾ 1, we have the inequality:

w2
e(B,C) ⩽ w2

A(B − C) + 2− 1
r ∥(CC∗)r + (B∗B)r∥ 1

r + wA(CB). (2.4)

Proof. Let B,C ∈ L(E). For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1,

|ϱ⟨x,Bx⟩|2 − 2Re(ϱ⟨x,Bx⟩ϱ⟨x,Cx⟩) + |ϱ⟨x,Cx⟩|2 = |ϱ⟨x,Bx⟩ − ϱ⟨x,Cx⟩|2

= |ϱ⟨x, (B − C)x⟩|2

⩽ w2
A(B − C).

Thus,

|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2 ⩽ w2
A(B − C) + 2Re

(
ϱ⟨x,Bx⟩ϱ⟨x,Cx⟩

)
⩽ w2

A(B − C) + 2|ϱ⟨x,Bx⟩ϱ⟨x,Cx⟩|
= w2

A(B − C) + 2|ϱ⟨C∗x, x⟩ϱ⟨x,Bx⟩|

⩽ w2
A(B − C) + (ϱ⟨C∗x,C∗x⟩) 1

2 (ϱ⟨Bx,Bx⟩) 1
2 + |ϱ⟨C∗x,Bx⟩|

(by Lemma 1.11)

⩽ w2
A(B − C) +

(
1
2
ϱ⟨x,CC∗x⟩r + 1

2
ϱ⟨x,B∗Bx⟩r

) 1
r

+ |ϱ⟨x,CBx⟩|

(by Lemma 1.9)

⩽ w2
A(B − C) + 2− 1

r

(
ϱ⟨x, (CC∗)rx⟩+ ϱ⟨x, (B∗B)rx⟩

) 1
r

+ |ϱ⟨x,CBx⟩|

(by Lemma 1.10)

⩽ w2
A(B − C) + 2− 1

r

(
ϱ⟨x, (CC∗)r + (B∗B)rx⟩

) 1
r

+ |ϱ⟨x,CBx⟩|

⩽ w2
A(B − C) + 2− 1

r ∥(CC∗)r + (B∗B)r∥ 1
r + wA(CB).

By taking supremum over all ϱ⟨x, x⟩ = 1, we have

w2
e(B,C) ⩽ w2

A(B − C) + 2− 1
r ∥(CC∗)r + (B∗B)r∥ 1

r + wA(CB).
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Remark 2.7. If we take B = C and r = 1 in (2.4) and Theorem 2.3 (vi), we get the following
upper bound ( see [18]) for the numerical radius of a bounded linear operator B on L(E):

w2
A(B) ⩽

1
2
(wA(B

2) + ∥B∥2).

Theorem 2.8. For any B,C ∈ L(E) and p, q ≥ 1 with 1
p + 1

q = 1, we have the inequality:

w2
e(B,C) ⩽

∥∥∥∥∥|B|p + |C|p
∥∥∥∥∥

1
p

.

∥∥∥∥∥|B∗|q + |C∗|q
∥∥∥∥∥

1
q

. (2.5)

Proof. Let B,C ∈ L(E). For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2 ⩽ ϱ⟨x, |B|x⟩ϱ⟨x, |B∗|x⟩+ ϱ⟨x, |C|x⟩ϱ⟨x, |C∗ | x⟩ (Corollary 1.13)

⩽

(
ϱ⟨x, |B|x⟩p + ϱ⟨x, |C|x⟩p

) 1
p

.

(
ϱ⟨x, |B∗|x⟩q + ϱ⟨x, |C∗|x⟩q

) 1
q

⩽

(
ϱ⟨x, |B|px⟩+ ϱ⟨x, |C|px⟩

) 1
p

.

(
ϱ⟨x, |B∗|qx⟩+ ϱ⟨x, |C∗|qx⟩

) 1
q

⩽

(
ϱ⟨x, (|B|p + |C|p)x⟩

) 1
p

.

(
ϱ⟨x, (|B∗|q + |C∗|q)x⟩

) 1
q

⩽

∥∥∥∥∥|B|p + |C|p
∥∥∥∥∥

1
p

.

∥∥∥∥∥|B∗|q + |C∗|q
∥∥∥∥∥

1
q

By taking supremum over all ϱ⟨x, x⟩ = 1, we have

w2
e(B,C) ⩽

∥∥∥∥∥|B|p + |C|p
∥∥∥∥∥

1
p

.

∥∥∥∥∥|B∗|q + ∥|C∗|q
∥∥∥∥∥

1
q

.

Lemma 2.9. ([19]). Let T ∈ B(H), and f and g be non-negative continuous functions on [0,∞)
satisfying f(t)g(t) = t for all t ∈ [0,∞). Then

|ϱ⟨x, Ty⟩| ⩽ ∥f(|T |)x∥∥g(|T ∗|)y∥,

for all any x, y ∈ H .

The following result is a consequence of Lemma 2.9.

Corollary 2.10. For ϱ ∈ S(A), ϱ⟨., .⟩ is a semi-inner product. Suppose that T ∈ L(E), and f
and g be non-negative continuous functions on [0,∞) satisfying f(t)g(t) = t for all t ∈ [0,∞).
Then

|ϱ⟨x, Ty⟩| ⩽ ϱ⟨f(|T |)x, f(|T |)x⟩ 1
2 ϱ⟨g(|T ∗|)y, g(|T ∗|)y⟩ 1

2 ,

for all any x, y ∈ E.

The above results enable us to state the following.

Theorem 2.11. Let B, T,C,D, S,M ∈ L(E) and let f and g be non-negative continuous func-
tions on [0,∞) satisfying f(t)g(t) = t for all t ∈ [0,∞). Then

w2r
e (B∗TC,D∗SM) ⩽ 2r−1

∥∥∥∥∥α
(
B∗f2(|T |)B

) r
α

+ (1 − α)

(
C∗g2(|T ∗|)C

) r
1−α

+ α

(
D∗f2(|S|)D

) r
α

+ (1 − α)

(
M∗g2(|S∗|)M

) r
1−α

∥∥∥∥∥, (2.6)

for r ⩾ 1 and 0 < α < 1.
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Proof. For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

|ϱ⟨x,B∗TCx⟩|2 = |ϱ⟨Bx, TCx⟩|2

⩽ ϱ⟨f(|T |)Bx, f(|T |)Bx⟩ϱ⟨g(|T ∗|)Cx, g(|T ∗|)Cx⟩
(by Corollary 2.10)

= ϱ⟨x,B∗f2(|T |)Bx⟩ϱ⟨x,C∗g2(|T ∗|)Cx⟩

= ϱ⟨x,
(
(B∗f2(|T |)B)

1
α

)α

x⟩ϱ⟨x,
(
(C∗g2(|T ∗|)C)

1
1−α

)1−α

x⟩

⩽ ϱ⟨x,
(
B∗f2(|T |)B

) 1
α

x⟩αϱ⟨x,
(
C∗g2(|T ∗|)C

) 1
1−α

x⟩1−α

(by Lemma 1.10)

⩽

(
αϱ⟨x,

(
B∗f2(|T |)B

) 1
α

x⟩r + (1 − α)ϱ⟨x,
(
C∗g2(|T ∗|)C

) 1
1−α

x⟩r
) 1

r

(by Lemma 1.9)

⩽

(
αϱ⟨x,

(
B∗f2(|T |)B

) r
α

x⟩+ (1 − α)ϱ⟨x,
(
C∗g2(|T ∗|)C

) r
1−α

x⟩

) 1
r

(by Lemma 1.10).

Thus,

|ϱ⟨x,B∗TCx⟩|2r ⩽ ϱ⟨x, (α
(
B∗f2(|T |)B

) r
α

+ (1 − α)

(
C∗g2(|T ∗|)C

) r
1−α

)x⟩,

by convexity of the function f(t) = tr on [0,∞), we have(
|ϱ⟨x,B∗TCx⟩|2 + |ϱ⟨x,D∗SMx⟩|2

)r

⩽ 2r−1

(
|ϱ⟨x,B∗TCx⟩|2r + |ϱ⟨x,D∗SMx⟩|2r

)

⩽ 2r−1

[
ϱ⟨x, [α

(
B∗f2(|T |)B

) r
α

+ (1 − α)

(
C∗g2(|T ∗|)C

) r
1−α

+ α

(
D∗f2(|S|)D

) r
α

+ (1 − α)

(
M∗g2(|S∗|)M

) r
1−α

]x⟩

]
. (2.7)

Now, taking the supremum over all x ∈ E with ϱ⟨x, x⟩ = 1, we obtain

w2r
e (B∗TC,D∗SM) ⩽ 2r−1

∥∥∥∥∥α
(
B∗f2(|T |)B

) r
α

+ (1 − α)

(
C∗g2(|T ∗|)C

) r
1−α

+ α

(
D∗f2(|S|)D

) r
α

+ (1 − α)

(
M∗g2(|S∗|)M

) r
1−α

∥∥∥∥∥.
Choosing B = C = D = M = I and α = 1

2 , wet get:

Corollary 2.12. Let T,C, S,M ∈ L(E) and let f and g be non-negative continuous functions on
[0,∞) satisfying f(t)g(t) = t for all t ∈ [0,∞). Then

w2r
e (T, S) ⩽ 2r−2

∥∥∥∥∥f4r(|T |) + g4r(|T ∗|) + f4r(|S|) + g4r(|S∗|)

∥∥∥∥∥, (2.8)

for r ⩾ 1.



Euclidean operator radius Inequalities for Hilbert C∗-modules 765

Letting f(t) = g(t) = t
1
2 , wet get:

Corollary 2.13. Let B, T,C,D, S,M ∈ L(E). Then

w2r
e (B∗TC,D∗SM) ⩽ 2r−1

∥∥∥∥∥α(B∗|T |B)
r
α + (1 − α)(C∗|T ∗|C)

r
1−α

+ α(D∗|S|D)
r
α + (1 − α)(M∗|S∗|M)

r
1−α

∥∥∥∥∥, (2.9)

for r ⩾ 1 and 0 < α < 1.

Corollary 2.14. Let B,C,D,M ∈ L(E). Then

w2r
e (B∗C,D∗M) ⩽ 2r−1

∥∥∥∥∥α(B∗B)
r
α + (1 − α)(C∗C)

r
1−α + α(D∗D)

r
α + (1 − α)(M∗M)

r
1−α

∥∥∥∥∥,
(2.10)

for r ⩾ 1 and 0 < α < 1.

Choosing B = D and C = M , we get:

Corollary 2.15. Let B,C ∈ L(E). Then

w2r
e (B∗C,B∗C) ⩽ 2r

∥∥∥∥∥α(B∗B)
r
α + (1 − α)(C∗C)

r
1−α

∥∥∥∥∥, (2.11)

for r ⩾ 1 and 0 < α < 1.

In particular, if we choose w2r
e (B∗C,B∗C) = 2rw2r

A (B∗C), we have

w2r
A (B∗C) ⩽

∥∥∥∥∥α(B∗B)
r
α + (1 − α)(C∗C)

r
1−α

∥∥∥∥∥, (2.12)

for r ⩾ 1 and 0 < α < 1.
We remark that, in [5] Dragomir, has proved the inequality (2.12) in a Hilbert space.
In this theorem, we show that the previous findings enable us to generalize some results about
the Euclidean operator radius of the operators on Hilbert spaces to the Euclidean operator radius
on Hilbert C∗-modules.

Theorem 2.16. Let B,C ∈ L(E), r ⩾ 1 and 0 ⩽ α ⩽ 1, then

w2r
e (B,C) ⩽ 2r−1

∥∥∥∥α|B|2r + (1 − α)|B∗|2r + α|C|2r + (1 − α)|C∗|2r
∥∥∥∥. (2.13)

Proof. For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

|ϱ⟨x,Bx⟩|2 ⩽ ϱ⟨x, |B|2αx⟩ϱ⟨x, |B∗|2(1−α)x⟩ (by Corollary 1.13)

⩽ ϱ⟨x, |B|2x⟩αϱ⟨x, |B∗|2x⟩1−α (by Lemma 1.10)

⩽

(
αϱ⟨x, |B|2x⟩r + (1 − α)ϱ⟨x, |B∗|2x⟩r

) 1
r

(by Lemma 1.9)

⩽

(
αϱ⟨x, |B|2rx⟩+ (1 − α)ϱ⟨x, |B∗|2rx⟩

) 1
r

(by Lemma 1.10)

=

(
ϱ⟨x, (α|B|2r + (1 − α)|B∗|2r)x⟩

) 1
r

.
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Thus,

|ϱ⟨x,Bx⟩|2r ⩽ ϱ⟨x, (α|B|2r + (1 − α)|B∗|2r)x⟩,

by the convexity of the function f(t) = tr on [0,∞), we have

(|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2)r ⩽ 2r−1(|ϱ⟨x,Bx⟩|2r + |ϱ⟨x,Cx⟩|2r)
⩽ 2r−1ϱ⟨x, (α|B|2r + (1 − α)|B∗|2r + α|C|2r + (1 − α)|C∗|2r)x⟩.

By taking supremum over all ϱ⟨x, x⟩ = 1, we have

w2r
e (B,C) ⩽ 2r−1

∥∥∥∥α|B|2r + (1 − α)|B∗|2r + α|C|2r + (1 − α)|C∗|2r
∥∥∥∥. (2.14)

Using this theorem we give the following corollary.

Corollary 2.17. If B ∈ L(E), r ⩾ 1 and 0 ⩽ α ⩽ 1, then

w2r
A (B) ⩽

∥∥∥∥α|B|2r + (1 − α)|B∗|2r
∥∥∥∥. (2.15)

Proof. If in Theorem 2.16, we choose B = C, then by Theorem 2.3 (vi) we get

w2r
e (B,B) = 2rw2r

A (B),

which implies the desired result.

In particular, if we choose r = 1, α = 1
2 , we have

w2
A(B) ⩽

1
2

∥∥∥∥BB∗ +B∗B

∥∥∥∥. (2.16)

Corollary 2.18. Let B = C + iD be the Cartesian decomposition of B and r ⩾ 1. Then

w2r
A (B) ⩽ 2r−1

∥∥∥∥|C|2r + |D|2r
∥∥∥∥. (2.17)

The proof is obvious by the inequality (2.13) on choosing α = 1
2 and by Theorem 2.3 (vii).

Theorem 2.19. For any B,C ∈ L(E) and 0 ⩽ α ⩽ 1, we have

we(B,C) ⩽
1
2

∥∥∥∥(|B|2α + |B∗|2(1−α))2 + (|C|2α + |C∗|2(1−α))2
∥∥∥∥

1
2

. (2.18)
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Proof. For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1. We have

|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2 ⩽

(
ϱ⟨x, |B|2αx⟩ 1

2 ϱ⟨x, |B∗|2(1−α)x⟩ 1
2

)2

+

(
ϱ⟨x, |C|2αx⟩ 1

2 ϱ⟨x, |C∗|2(1−α)x⟩ 1
2

)2

(by Corollary 1.13)

≤ 1
4

(
ϱ⟨x, |B|2αx⟩+ ϱ⟨x, |B∗|2(1−α)x⟩

)2

+
1
4

(
ϱ⟨x, |C|2αx⟩+ ϱ⟨x, |C∗|2(1−α)x⟩

)2

(by Lemma 1.9)

=
1
4

(
ϱ⟨x, (|B|2α + |B∗|2(1−α))x⟩2 + ϱ⟨x, (|C|2α + |C∗|2(1−α))x⟩2

)
≤ 1

4

(
ϱ⟨x, (|B|2α + |B∗|2(1−α))2x⟩+ ϱ⟨x, (|C|2α + |C∗|2(1−α))2x⟩

)
(by Lemma 1.10)

⩽
1
4
ϱ⟨x,

(
(|B|2α + |B∗|2(1−α))2 + (|C|2α + |C∗|2(1−α))2

)
x⟩

⩽
1
4

∥∥∥∥(|B|2α + |B∗|2(1−α))2 + (|C|2α + |C∗|2(1−α))2
∥∥∥∥.

Taking supremum over all x ∈ E with ϱ⟨x, x⟩ = 1, we get

w2
e(B,C) ⩽

1
4

∥∥∥∥(|B|2α + |B∗|2(1−α))2 + (|C|2α + |C∗|2(1−α))2
∥∥∥∥.

Theorem 2.20. Let B,C ∈ L(E) and 0 ⩽ α ⩽ 1. Then

w2
e(B,C) ⩽ wA(|B|2α + i|C|2α)wA(|B∗|2(1−α) + i|C∗|2(1−α)). (2.19)

Proof. Let x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1. Then

|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2 ⩽ ϱ⟨x, |B|2αx⟩ϱ⟨x, |B∗|2(1−α)x⟩+ ϱ⟨x, |C|2αx⟩ϱ⟨x, |C∗|2(1−α)x⟩
(by Corollary 1.13)

⩽

[(
ϱ⟨x, |B|2αx⟩2 + ϱ⟨x, |C|2αx⟩2

)

×

(
ϱ⟨x, |B∗|2(1−α)x⟩2 + ϱ⟨x, |C∗|2(1−α)x⟩2

)] 1
2

(by the inequality (ab+ cd)2 ⩽ (a2 + c2)(b2 + d2) for a, b, c, d ∈ R)

=

∣∣∣∣ϱ⟨x, |B|2αx⟩+ iϱ⟨x, |C|2αx⟩
∣∣∣∣∣∣∣∣ϱ⟨x, |B∗|2(1−α)x⟩+ iϱ⟨x, |C∗|2(1−α)x⟩

∣∣∣∣
=

∣∣∣∣ϱ⟨x, (|B|2α + i|C|2α)x⟩
∣∣∣∣∣∣∣∣ϱ⟨x, (|B∗|2(1−α) + i|C∗|2(1−α))x⟩

∣∣∣∣
⩽ wA(|B|2α + i|C|2α)wA(|B∗|2(1−α) + i|C∗|2(1−α))

Taking supremum over all x ∈ E with ϱ⟨x, x⟩ = 1, we get

w2
e(B,C) ⩽ wA(|B|2α + i|C|2α)wA(|B∗|2(1−α) + i|C∗|2(1−α)).
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Remark 2.21. It is not difficult to verify that w2
A(|B|2α+ i|C|2α) ⩽

∥∥∥∥(B∗B)2α+(C∗C)2α
∥∥∥∥ and

w2
A(|B∗|2(1−α) + i|C∗|2(1−α)) ⩽ ∥(BB∗)2(1−α) + (CC∗)2(1−α)∥.

Therefore,

wA(|B|2α + i|C|2α)wA(|B∗|2(1−α) + i|C∗|2(1−α)) ⩽

∥∥∥∥(B∗B)2α + (C∗C)2α
∥∥∥∥

1
2

.

∥∥∥∥(BB∗)2(1−α) + (CC∗)2(1−α)

∥∥∥∥
1
2

. (2.20)

Theorem 2.22. Let B,C ∈ L(E) and let f and g be non-negative continuous functions on [0,∞)
satisfying f(t)g(t) = t for all t ∈ [0,∞). Then

1
2

max{w2
A(B + C), w2

A(B − C)} ⩽ we(f
2(|B|), f2(|C|))we(g

2(|B∗|), g2(|C∗|)). (2.21)

Proof. For every x ∈ E and ϱ ∈ S(A) with ϱ⟨x, x⟩ = 1, we have

|ϱ⟨x, (B + C)x⟩|2 = |ϱ⟨x,Bx⟩+ ϱ⟨x,Cx⟩|2

⩽ 2(|ϱ⟨x,Bx⟩|2 + |ϱ⟨x,Cx⟩|2)
⩽ 2(ϱ⟨f(|B|)x, f(|B|)x⟩ϱ⟨g(|B∗|)x, g(|B∗|)x⟩
+ ϱ⟨f(|C|)x, f(|C|)x⟩ϱ⟨g(|C∗|)x, g(|C∗|)x⟩) (by Corollary 2.10)

⩽ 2(ϱ⟨x, f2(|B|)x⟩ϱ⟨x, g2(|B∗|)x⟩+ ϱ⟨x, f2(|C|)x⟩ϱ⟨x, g2(|C∗|)x⟩)

⩽ 2(ϱ⟨x, f2(|B|)x⟩2 + ϱ⟨x, f2(|C|)x⟩2)
1
2 (ϱ⟨x, g2(|B∗|)x⟩2 + ϱ⟨x, g2(|C∗|)x⟩2)

1
2

⩽ 2we(f
2(|B|), f2(|C|))we(g

2(|B∗|), g2(|C∗|)).

Taking supremum over ϱ⟨x, x⟩ = 1, we get

1
2
w2

A(B + C) ⩽ we(f
2(|B|), f2(|C|))we(g

2(|B∗|), g2(|C∗|)). (2.22)

Similarly, we can prove that:

1
2
w2

A(B − C) ⩽ we(f
2(|B|), f2(|C|))we(g

2(|B∗|), g2(|C∗|)). (2.23)

Combining the inequalities (2.22) and (2.23), we get

1
2

max{w2
A(B + C), w2

A(B − C)} ⩽ we(f
2(|B|), f2(|C|))we(g

2(|B∗|), g2(|C∗|)).

In particular, if we take f(t) = g(t) = t
1
2 , then

1
2

max{w2
A(B + C), w2

A(B − C)} ⩽ we(|B|, |C|)we(|B∗|, |C∗|). (2.24)

Corollary 2.23. For any self-adjoint bounded linear operators B,C ∈ L(E), we have

1
2

max{∥B + C∥2, ∥B − C∥2} ⩽ w2
e(B,C). (2.25)
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