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Abstract In this study, we establish that a fixed point theorem is valid for multi-valued non-
self F -contraction mappings within metrically convex partial metric spaces. Additionally, we
provide an example to support and illustrate our findings.

1 Introduction

In 1965, Halpern [12] initiated research on fixed points for non-self mappings. Later in 1972,
Assad and Krik [7] established fixed point theorems for multi-valued non-self mappings in met-
rically convex spaces. Gajic and Rakocevic [11] established a fixed point theorem for non-self
mappings with a Takahashi convex structure in metric space. Khan [13] demonstrated hybrid
pairings of non-self multi-valued mappings in a convex metric space.

In 1994, Matthews [19] introduced the concept of partial metric spaces as a generalization
of metric spaces, relaxing the condition that the self-distance of a point must be zero. He also
extended the Banach contraction principle to partial metric spaces, which have since found broad
applications in areas such as computer networking, data organization, and programming. In
recent years, various researchers extended fixed point theorems in metric spaces to partial metric
spaces [see, [1, 2, 4, 16, 17, 25, 26] ]. Also several fixed point theorems has been demonstrated
in various spaces one can see [9, 20, 22, 24].

Wardowski [28] presented an intriguing generalisation of the Banach contraction principle in
2012, employing a distinct contraction known as the F -contraction. Since then, other academics
have utilised F -contractions to demonstrate fixed point theorems in a variety of spaces. Some of
which found in [3, 10, 14, 15, 21, 23, 27].

In this study we extend and generalize the concepts from Altun et al. [5], Assad and Kirk [7],
Sgroi and Vetro [23] and Paesano and Vetro [21] to metrically convex partial metric spaces.

2 Preliminaries

In this section, we introduce definitions, lemmas, propositions, and some well-known results that
will be used to create the new result.

In 1972, Assad and Kirk [7] defined the metrically convex space as follows:

Definition 2.1. [7] A metric space (X, d) is said to be metrically convex if for all x, y ∈ X with
x ̸= y, there exists a point z ∈ X (x ̸= z ̸= y) such that

d(x, z) + d(z, y) = d(x, y).
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Theorem 2.2. [7] Let (X, d) be a complete metrically convex metric space, K a non empty
closed subset of X and T : K → CB(X) be a mapping. Assume that the following conditions
hold:

(i) Tx ∈ K for each x ∈ ∂K,

(ii) there exists k ∈ (0, 1) ∀ x, y ∈ K,

d(Tx, Ty) ≤ kd(x, y).

Then T has a unique fixed point in K.

They also proved the following lemma:

Lemma 2.3. [7] If K is a nonempty closed subset of a complete and metrically convex metric
spaces (X, d), then for any x ∈ K, y /∈ K, there exists a point z ∈ ∂K (the boundary of K) such
that

d(x, z) + d(z, y) = d(x, y).

Kumar and Rugumisa [18] gave the following definition in the context of non-self mapping
in partial metric space.

Definition 2.4. [18] Let T : K → CBp(X) be a multivalued mapping, where K ⊆ X . We say
that T is a self-mapping if K = X , otherwise T is called a non-self mapping. If there an element
x ∈ K such that x ∈ Tx, we say that x is a fixed point of T in X .

Wardowski [28] defined the function F as follows:
Let F be a function defined as F : R+ → R, which satisfies the following conditions:

(F1) F is strictly increasing, i.e. for all α, β ∈ R+ we have α < β implying F (α) < F (β);

(F2) For each sequence {αn}n∈N of positive numbers lim
n→∞

αn = 0, if and only if lim
n→∞

F (αn) =

−∞;

(F3) There exists k ∈ (0, 1) such that

lim
n→∞

(αn)
kF (αn) = 0.

Then the family of all functions F : R+ → R satisfying the condition (F1) − (F3) is denoted
by F.

Some examples of F ∈ F are:

(1) F (α) = lnα;

(2) F (α) = α+ lnα;

(3) F (α) = ln(α2 + α).

Definition 2.5. [28] Let (X, d) be a metric space. A self-mapping T on X is called an F-
contraction mapping if there exists F ∈ F and τ ∈ R+ such that for all x, y ∈ X ,

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

In 2012, Wardowski [28] proved the following fixed point theorem:

Theorem 2.6. [28] Let (X, d) be a complete metric space and T : X → X be a F-contraction
mapping. If there exists τ > 0 such that for all x, y ∈ X, d(Tx, Ty) > 0, implies

τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (2.1)

then T has a unique fixed point.

Cosentino et al. [10] gave the definition of multi-valued F -contractions in b-metric space as
follows:
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Definition 2.7. [10] Let (X, d, s) be a b-metric space. A multi-valued mapping T : X → CB(X)
is called an F -contraction of Nadler type if there exists F ∈ F and τ > R+ such that

2τ + F (sH(Tx, Ty)) ≤ F (d(x, y)),

for all x, y ∈ X with Tx ̸= Ty.

Altun et al. [5] proved the following fixed point theorem for multi-valued non-self F -
contractions on convex metric spaces.

Theorem 2.8. [5] Let (X, d) be a complete and metrically convex metric space, K a non empty
closed subset of X , T : K → CB(X) and F ∈ F. Assume that the following conditions hold:

(i) Tx ∈ K for each x ∈ ∂K,

(ii) there exists τ > 0 such that for each x, y ∈ K with H(Tx, Ty) > 0, it satisfies

τ + F (H(Tx, Ty)) ≤ F (d(x, y)).

Then T has a fixed point in K.

The partial metric space and its properties was defined by Matthew [19] as follows:

Definition 2.9. [19] A partial metric on a non-empty set X is a mapping p : X ×X → R+, such
that for all x, y, z ∈ X ,

(P0) 0 ≤ p(x, x) ≤ p(x, y),

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(P2) p(x, y) = p(y, x) and

(P3) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is said to be a partial metric space.

As an example, let X = R+ and let p(x, y) = max{x, y} for all x, y ∈ X . Then (X, p) is a
partial metric space.

Each partial metric p on X generates a T0 topology τp on X with a base being the family of
open balls {Bp(x, ε) : x ∈ X, ε > 0} where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all
x ∈ X and ε > 0.

Lemma 2.10. [19] If p is a partial metric on X , then the function dp : X ×X → R given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y),

for all x, y ∈ X , is a metric on X .

Furthermore, a sequence {xn} in (X, dp) converges to a point x ∈ X with respect to τp if and
only if

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(x, xn) = p(x, x).

Definition 2.11. [19]

(i) A sequence {xn} in a partial metric space (X, p) is called a p-Cauchy sequence if and only
if lim

n,m→∞
p(xn, xm) exists and is finite.

(ii) A sequence {xn} is a Cauchy sequence in (X, p) if and only it is a p-Cauchy sequence in a
metric (x, dp).

(iii) A partial metric space (X, p) is said to be p-complete if every p-Cauchy sequence {xn} in
X is p-convergent, with respect to τp, to a point x ∈ X such that

lim
n,m→∞

p(xn, xm) = p(x, x).
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Aydi et al. [8] provide the following description and features of the partial Hausdorff metric.
Let CBp(X) be the family of non-empty, closed, and bounded subsets of a partial metric space
(X, p), induced by the partial metric p. A is a bounded subset in (X, p) if there exists x0 ∈ X
and N ∈ N such that for any a ∈ A, we have a ∈ Bp(x0, N).

p(x0, a) ≤ p(a, a) +N.

For all A,B ∈ CBp(X) and x ∈ X , we define:

p(x,A) = inf{p(x, a) : a ∈ A};

δp(A,B) = sup{p(a,B) : a ∈ A};

δp(B,A) = sup{p(b, A) : b ∈ B}.

Lemma 2.12. [6] Let (X, p) be partial metric space and A any non-empty set in (X, p), then

a ∈ Ā ⇔ p(a,A) = p(a, a), (2.2)

where Ā denotes the closure of A with respect to the partial metric p. Note that A is closed in
(X, p) if and only if A = Ā.

Define the partial Hausdorff metric Hp : CBp × CBp → R+ as

Hp(A,B) = max{δp(A,B), δp(B,A)}.

We provide the following properties of the partial Hausdorff metric Hp from Aydi et al. [8].

Proposition 2.13. [8] Let (X, p) be a partial metric space, then for any A,B,C ∈ CBp(X), we
have

(i) δp(A,A) = sup{p(a, a) : a ∈ A};

(ii) δp(A,A) ≤ δp(A,B);

(iii) δp(A,B) = 0 =⇒ A ⊆ B;

(iv) δp(A,B) = δp(A,C) + δp(C,B)− infc∈C p(c, c).

Note the following lemma from Aydi et al. [8].

Lemma 2.14. [8] Let (X, p) be a partial metric space, for A,B ∈ CBp(X) and h > 1 for any
a ∈ A, there exists b = b(a) ∈ B such that

p(a, b) ≤ hHp(A,B).

3 Main Results

This section commence with the following definition of a metrically convex partial metric space
by Kumar and Rugumisa [18].

Definition 3.1. [18] A partial metric space (X, p) is said to be metrically convex if the corre-
sponding metric space (X, dp) is metrically convex in the sense of Lemma 2.3, where dp(x, y) =
2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X.

Kumar and Rugumisa [18] formulated the following lemma:

Lemma 3.2. [18] Let K be a non-empty subset of a metrically convex partial metric space
(X, p) which is closed in (X, dp). If x ∈ K and y ∈ X\K, then there exists a point z ∈ ∂K (the
boundary of K) such that

p(x, z) + p(z, y) = p(x, y) + p(z, z). (3.1)

We expand Cosentino et al. [10]’s definition to multi-valued F -contractions in partial metric
space, as follows:
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Definition 3.3. Let (X, p) be a complete partial metric space. A multi-valued mapping T : X →
CBp(X) is called an F -contraction of Assad and Kirk type if there exists F ∈ F and τ > R+

such that

2τ + F (Hp(Tx, Ty)) ≤ F (kd(x, y)),

for all x, y ∈ X with Tx ̸= Ty.

We prove the following theorem for non-self mappings using F -contraction mappings in
metrically convex partial metric spaces.

Theorem 3.4. Let (X, p) be a complete metrically convex partial metric space and K a non-
empty closed subset of X . Suppose that T : K → CBp(X) is a multi-valued F -contraction
mapping. Assume that the following conditions hold:

(i) Tx ∈ K for each x ∈ ∂K,

(ii) for all x, y ∈ K with Hp(Tx, Ty) > 0, there exists k ∈ (0, 1) and
τ > 0 such that

2τ + F (Hp(Tx, Ty)) ≤ F (kp(x, y)). (3.2)

If T satisfies Rothe’s type condition that is x ∈ ∂K ⇒ Tx ⊂ K, then T has a fixed point z in K,
such that p(z, z) = 0.

Proof. Suppose that T has no fixed points, then p(x0, Tx0) > 0 for all x ∈ K. We proceed by
constructing two sequences {xn} ∈ K and {yn} ∈ K in the following way: Let x0 ∈ ∂K and
y1 ∈ Tx0, if y1 ∈ K, let x1 = y1, then our proof would be completed. Since T is a multivalued
F -contraction mapping x1 ∈ Tx0. If y1 /∈ K, then, by Lemma 3.2 there exists x1 ∈ ∂K such
that

p(x0, x1) + p(x1, y1) = p(x0, y1) + p(x1, x1). (3.3)

Thus for x1 ∈ K and using Lemma 2.14, we can choose y2 ∈ Tx1 such that

p(x1, Tx1) < hHp(Tx0, Tx1).

We deduce that

p(x1, y2) ≤ hHp(Tx0, Tx1).

As a results, we get

p(x1, y2) ≤ p(y1, y2) ≤ hHp(Tx0, Tx1).

By the continuity of F , there exists a real number h > 1 such that

F
(
p(y1, y2)

)
≤ F

(
hHp(Tx0, Tx1)

)
< F

(
Hp(Tx0, Tx1)

)
+ τ. (3.4)

Using Lemma 2.14, Equation 3.4 and (3.2), we get

2τ + F
(
p(y1, y2)) ≤ 2τ + F

(
Hp(Tx0, Tx1)

)
+ τ.

However, if y2 ∈ K, let x2 = y2. If y2 /∈ K. Then, using Lemma 3.2 there exists x2 ∈ ∂K such
that

p(x1, x2) + p(x2, y2) = p(x1, y2) + p(x2, x2).

Thus x2 ∈ K and using Lemma 2.14, we can choose y3 ∈ Tx2 such that

p(x2, Tx2) < hHp(Tx1, Tx2).

We deduce that

p(x2, y3) ≤ hHp(Tx1, Tx2).
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As a results, we get

p(x2, y3) ≤ p(y2, y3) ≤ hHp(Tx1, Tx2).

Since τ ∈ R+ and F is continuous, there exists a real number h > 1 such that

F
(
p(y2, y3)

)
≤ F

(
hHp(Tx1, Tx2)

)
< F

(
Hp(Tx1, Tx2)

)
+ τ. (3.5)

By Lemma 2.14, Equation 3.7 and (3.2), we obtain

2τ + F
(
p(y2, y3)) ≤ 2τ + F

(
Hp(Tx1, Tx2)

)
+ τ.

Continuing this way, we constructing the sequences {xn}n≥0 and {yn}n≥1 such that:

(i) If xn ∈ Txn, then xn is a fixed point of T and we have completed the proof.

(ii) If yn ∈ K, we set xn = yn;

(iii) If yn /∈ K, then xn ̸= yn by Lemma 3.2, there exists xn ∈ ∂K such that

p(xn, xn+1) + p(xn+1, yn+1) = p(xn, yn+1) + p(xn+1, xn+1).

(iv) If xn /∈ Txn, then by Lemma 2.14, we can choose yn+1 ∈ Txn such that p(xn, Txn) <
hHp(Txn−1, Txn). Consequently, we get

p(xn, yn+1) ≤ p(yn, yn+1) ≤ hHp(Txn−1, Txn).

By the property of F , we have

F
(
p(yn, yn+1)

)
≤ F

(
hHp(Txn−1, Txn)

)
< F

(
Hp(Txn−1, Txn)

)
+ τ.

Therefore,

p(xn, yn+1) ≤ hHp(Txn−1, Txn),

=⇒ p(xn, yn+1) ≤ Hp(Txn−1, Txn) + τ.

Let us consider the situation where xn /∈ Txn for all n ∈ N. We will show that there is z ∈ K
such that xn → z as n → ∞.

As Txn is a closed set, we have

p(xn, Txn) > p(yn, yn+1) ≥ 0. (3.6)

We partition the sequence {xn} into sets P and Q. Let P = {xi ∈ xn : xi = yi, i = 1, 2, . . . }
and Q = {xi ∈ xn : xi ̸= yi, i = 1, 2, . . . }.

Note that by the construction of sequence, that xn ∈ Q ⇒ xn ∈ ∂K. From the construction
of proof, we note that if xn ∈ Q for some n, then xn−1, xn+1 ∈ P .

Now for n ≥ 2, we have the following three cases:
Case 1. If xn, xn+1 ∈ P , then yn = xn, yn+1 = xn+1. Assume that xn = yn = Txn−1,
xn+1 = yn+1 = Txn. Then, we have

p(xn, xn+1) = p(xn, yn+1) = p(yn, yn+1).

Since {xn} ∈ K for all n ∈ N, we shows that xn, xn+1 ∈ ∂K. Now,

p(xn, xn+1) = p(Txn−1, Txn).

Using Lemma 2.14, we have

p(xn, xn+1) ≤ hHp(Txn−1, Txn).

Consequently, we get

p(xn, xn+1) ≤ p(xn, yn+1) ≤ p(yn, yn+1),

≤ hHp(Txn−1, Txn) < Hp(Txn−1, Txn) + τ.
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Letting x = xn−1 and y = xn in (3.2), we have

2τ + F
(
p(xn, xn+1)

)
= 2τ + F

(
p(xn, yn+1)

)
,

≤ 2τ + F
(
Hp(Txn−1, Txn)

)
+ τ,

≤ F
(
kp(xn−1, xn)

)
+ τ. (3.7)

The expression (3.7) implies

2τ + F
(
p(xn, xn+1)

)
≤ F

(
kp(xn−1, xn)

)
+ τ,

τ + F
(
p(xn, xn+1)

)
≤ F

(
kp(xn−1, xn)

)
.

As F is increasing, by (F1) we have

p(xn, xn+1) < kp(xn−1, xn).

From k < 1, we deduce

p(xn, xn+1) < p(xn−1, xn),

τ + F (p(xn, xn+1)) ≤ F (p(xn−1, xn))− τ.

Which is equivalent to

F (p(xn, xn+1)) ≤ F (p(xn−1, xn))− τ.

Case II
If xn ∈ P , xn+1 ∈ Q. Assume that xn = yn = Txn−1, xn+1 ̸= yn+1 = Txn. Then, we have

p(xn, xn+1) = p(xn, yn+1) = p(yn, yn+1).

Since {xn} ∈ K for all n ∈ N, we shows that xn, xn−1 ∈ ∂K.
Using Lemma 2.14, we have

p(xn, xn+1) ≤ hHp(Txn−1, Txn).

Consequently, we have

p(xn, xn+1) ≤ hHp(Txn−1, Txn) < Hp(Txn−1, Txn) + τ.

Apply x = xn−1, y = xn in (3.2), we get

2τ + F
(
p(xn, xn+1)

)
≤ 2τ + F

(
Hp(Txn−1, Txn)

)
+ τ,

≤ F
(
kp(xn−1, xn)

)
+ τ. (3.8)

The expression (3.8) implies

2τ + F
(
p(xn, xn+1)

)
≤ F

(
kp(xn−1, xn)

)
+ τ,

τ + F
(
p(xn, xn+1)

)
≤ F

(
kp(xn−1, xn)

)
.

As τ ∈ R+ and F is strictly increasing, by (F1) we have

p(xn, xn+1) < kp(xn−1, xn).

As k < 1, we deduce that

p(xn, xn+1) ≤ p(xn−1, xn).

Implies that

F (p(xn, xn+1)) ≤ F (p(xn−1, xn))− τ. (3.9)

we obtain the similar result as in case I.
Case III

If xn ∈ Q, xn+1 ∈ P . In this case, we have yn ̸= xn, xn−1 ∈ P , xn+1 ∈ P , xn−1 = yn−1,
xn+1 = yn+1, yn ∈ Txn−1.

Assume that
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xn+1 = Txn, xn ̸= yn = Txn−1.

Since xn ∈ Q, by Lemma 2.14, we have

p(yn, yn+1)) ≤ hHp(Txn−1, Txn),

≤ Hp(Txn−1, Txn) + τ. (3.10)

Using (3.10) in (3.2), we get

2τ + F
(
p(yn, yn+1)

)
≤ 2τ + F

(
Hp(Txn−1, Txn)

)
+ τ,

≤ F
(
kp(xn−1, xn)

)
+ τ,

F
(
p(yn, yn+1)

)
≤ F

(
kp(xn−1, xn)

)
− τ,

then, taking k < 1 we have

p(yn, yn+1) < p(xn−1, xn). (3.11)

Similarly for

p(yn−1, yn) ≤ hHp(Txn−2, Txn−1),

≤ Hp(Txn−2, Txn−1) + τ. (3.12)

Using (3.12) in (3.2), taking k < 1, we get

2τ + F
(
p(yn−1, yn)

)
≤ 2τ + F

(
Hp(Txn−2, Txn−1)

)
+ τ,

≤ F
(
p(xn−2, xn−1)

)
+ τ,

F
(
p(yn−1, yn)

)
≤ F

(
p(xn−2, xn−1)

)
− τ. (3.13)

F
(
p(xn, xn+1)

)
≤ F

(
p(xn, yn) + p(yn, xn+1)

)
,

≤ F
(
p(xn, yn) + p(yn, yn+1)

)
,

≤ F
(
p(xn, yn) + p(xn−1, xn)

)
,

≤ F
(
p(xn−1, yn)

)
,

≤ F
(
p(yn−1, yn)

)
. (3.14)

Again, using (3.13) in (3.14) we obtain

F
(
p(xn, xn+1)

)
≤ F

(
p(xn−2, xn−1)

)
− τ.

As F is increasing, by (F1) we have

p(xn, xn+1) < p(xn−2, xn−1).

Equivalent to

F (p(xn, xn+1)) ≤ F (p(xn−2, xn−1))− τ.

The only other possibility, xn ∈ Q, xn+1 ∈ Q not occur. Thus, combining cases I, II and III, for
n ≥ 2, we have the following possible cases;

F (p(xn, xn+1)) ≤ F (p(xn−1, xn))− τ,

and

F (p(xn, xn+1)) ≤ F (p(xn−2, xn−1))− τ.
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Now, we claim that

F (p(xn, xn+1)) ≤ F (max{p(xn−2, xn−1), p(xn−1, xn)})−
(n

2

)
τ, (3.15)

for all n ≥ 2.
Denotes

αn = p(xn, xn+1),

βn = max{αn−2, αn−1}.

Equation (3.15) is equivalent to

F (αn) ≤ F (βn)− (
n

2
)τ. (3.16)

Following the method by Assad and Kirk [7], Inductively, for all these cases, there exists a
sequence xn ∈ K such that xn+1 ∈ Txn, for n ≥ 2. Define

β2 = max{α0, α1}.

We have

F (α2) ≤ F (max{α0, α1})− τ,

≤ F (β2)− τ.

For n = 3, we have

F (α3)) ≤ F (max{α1, α2})−
3
2
τ,

≤ F (β3)−
3
2
τ.

For n = 4, we have

F (α4) ≤ F (max{α2, α3})− 2τ,

≤ F (β4)− 2τ.

Using condition (F1), we obtain

F (αn) ≤ F (β2)− τ ≤ · · · ≤ F (βn)−
(n

2

)
τ. (3.17)

Hence,
lim

n→∞
F (αn) = −∞,

by property (F2), we obtain
lim

n→∞
(αn) = 0.

From (F3), there exist k ∈ (0, 1) such that

lim
n→∞

αk
nF (αn) = 0.

Multiplying αk
n in (3.17) for all n ∈ N, we get

αk
nF (αn) ≤ αk

nF (β2)− αk
nτ ≤ · · · ≤ αk

nF (βn)− (αn)
k
(n

2

)
τ.

αk
n(F (αn)− αk

nF (βn) ≤ −αk
n

(n
2

)
τ ≤ 0.

αk
n

[
F (αn)− F (βn)

]
≤ −(αn)

k
(n

2

)
τ ≤ 0. (3.18)
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Taking n → ∞ in (3.18), we get

lim
n→∞

(n
2

)
τ(αn)

k = 0. (3.19)

Since (3.19) is true, therefore there exist n1 ∈ N such that nαk
n ≤ 1, for all n ≥ n1

αn ≤
(
n
)− 1

k ,∀n ≥ n1. (3.20)

Now, we can show that {xn} is a Cauchy sequence. Consider n,m ∈ N such that m, n ≥ N1,
using (P3) of Definition 2.9 and from (3.20), we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + p(xn+2, xn+3) + ...

+ p(xm−1, xm)−
m−1∑
j=n+1

p(xj , xj),

≤ p(xn, xn+1) + p(xn+1, xn+2) + p(xn+2, xn+3) + ...+ p(xm−1, xm),

≤ αn + αn+1 + αn+2 + ...+ αm−1,

=
m−1∑
i=n

αi,

≤
∞∑
i=n

αi,

≤
m−1∑
i=n

i−
1
k . (3.21)

The results (3.21) ensures that the series
∑m−1

i=n i−
1
k is convergent. Hence a Cauchy sequence.

Which implies that
lim

n→∞
p(xn, xm) = 0.

For that case if n,m ∈ N , we obtain

ps(xn, xm) ≤ 2p(xn, xm) → 0 as n → ∞,

which shows that {xn},∀n ∈ N is a Cauchy sequence. Since (X, p) is complete partial metric
space, also (X, ps) is complete. Let a point z ∈ X such that

p(z, z) = lim
n→∞

p(xn, z) = 0,

= lim
n,m→∞

p(xn, xm) = 0,

p(z, z) = 0. (3.22)

Hence, z is a fixed point of T in K.

We give an example for illustrating our results. The example is a simple application of
Theorem 3.4.

Example 3.5. Consider X = [0, 1] endowed with the partial metric defined by p(x, y) = |x−y|.
Distinctly, (X, p) is completely metrically convex partial metric space and K is closed subset of
X . Also define a multivalued mapping T : K → CBp(X) by

Tx =


x
2 , 0 ≤ x ≤ 2

3 ,

−x
2 + 1, 2

3 ≤ x ≤ 1.

Define T : K → 2[0,1] and K =
[
0, 2

3

]
∪
[

2
3 , 1
]
.
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Proof. Since ∂K (boundary of K), ∂K =
{

0, 2
3 , 1
}

. Which shows that the fixed point of T are

0 and 2
3 .

By (i) we have
0 ∈ ∂K ⇒ T0 = 0,
2
3
∈ ∂K ⇒ T

2
3
=

1
3
.

Also,

1 ∈ ∂C ⇒ T1 =
1
2
,

2
3
∈ ∂C ⇒ T

2
3
=

2
3
.

We note that {0} and {0, 2
3} are bounded sets in (X, p). By Lemma 2.12, if z ∈ {0, 1}, then

z ∈ {0} ⇔ p(z, {0}) = ps(z, z),

⇔ p(z, 0) = |z − 0|,
⇔ z = 0 ⇔ z ∈ {0}.

Next,

z ∈

{
0,

2
3

}
⇔ p

(
z,
{

0,
2
3

})
= p(z, z),

⇔ min

{
p(z, 0), p

(
z,

2
3

)}
,

⇔ min

{
|z − 0|, |z − 2

3
|

}
,

⇔
∣∣∣z − 2

3

∣∣∣,
⇔ z ∈

{
0,

2
3

}
.

Hence,
{

0, 2
3

}
is also closed with respect to metrically convex partial metric p.

Since ∂K (boundary of K), ∂K =
{

0, 2
3 , 1
}

. For each x ∈ ∂K, Tx ⊂ K and ∂K ⊂ TK.
Now we show that the contractive condition (3.2) of Theorem 3.4 is satisfied for F -contractive

condition through taking F (α) = lnα+ α and τ =
1
2

for k < 1 in (3.2) turns to,

Hp(Tx, Ty)

p(x, y)
eHp(Tx,Ty)−p(x,y) ≤ e−2τ , (3.23)

for all x, y ∈ K.
By (3.23) we have three cases to investigate:
Case 1
Let x, y ∈

[
0, 2

3

]
, for x < y. We define

Hp(Tx, Ty) = max
{
δp(Tx, Ty), δp(Ty, Tx)

}
,

δp(Tx, Ty) = max

{
sup
x∈Tx

(x, Ty), sup
y∈Ty

(Ty, Tx)

}
,

and

sup
x∈Tx

(x, Ty) = inf
{
p(x, y), p(x, y)

}
.
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Now, we have

Hp

([x
2
,
x

2

]
,
[y

2
,
y

2

])
= max

{
δp

([x
2
,
x

2

]
,
[y

2
,
y

2

])
, δp

([y
2
,
y

2

]
,
[x

2
,
x

2

])}
,

δp

([x
2
,
x

2

]
,
[y

2
,
y

2

])
= sup

x∈Tx

{
p
(x

2
,
[y

2
,
y

2

])
, p
(x

2
,
[y

2
,
y

2

])}
. (3.24)

It follows that

p
(x

2
,
[y

2
,
y

2

])
= inf

{
p
(x

2
,
y

2

)
, p
(x

2
,
y

2

)}
,

= inf
{∣∣∣x− y

2

∣∣∣, ∣∣∣x− y

2

∣∣∣} =
∣∣∣x− y

2

∣∣∣, (3.25)

and

p
(x

2
,
[y

2
,
y

2

])
= inf

{
p
(x

2
,
y

2

)
, p
(x

2
,
y

2

)}
,

= inf

{∣∣∣x− y

2

∣∣∣, ∣∣∣x− y

2

∣∣∣} =
∣∣∣x− y

2

∣∣∣. (3.26)

Using (3.25) and (3.26) in (3.24) we obtain

δp

([x
2
,
x

2

]
,
[y

2
,
y

2

])
= sup

x∈Tx

{∣∣∣x− y

2

∣∣∣, ∣∣∣x− y

2

∣∣∣} =
∣∣∣x− y

2

∣∣∣. (3.27)

Similarly, we calculate

δp

([y
2
,
y

2

]
,
[x

2
,
x

2

])
= sup

y∈Ty

{∣∣∣y − x

2

∣∣∣, ∣∣∣y − x

2

∣∣∣} =
∣∣∣y − x

2

∣∣∣. (3.28)

Applying (3.27) and (3.28) in (3.24) we get

Hp

([x
2
,
x

2

]
,
[y

2
,
y

2

])
= max

{∣∣∣x− y

2

∣∣∣, ∣∣∣y − x

2

∣∣∣} =
∣∣∣x− y

2

∣∣∣. (3.29)

Also, we calculate

p(x, y) = |x− y|. (3.30)

As a results we have

|x−y
2 |

|x− y|
e|

x−y
2 |−|x−y| ≤ e−2τ ,

|x− y|
2|x− y|

e
|x−y|−2|x−y|

2 ≤ e−2τ ,

1
2
e−| x−y

2 | ≤ e−2τ .

Case 2
Let x ∈

[
0, 2

3

]
and y ∈

[
2
3 , 1
]
, for x < y. We now calculate Hp(Tx.Ty) > 0.

Hp

([x
2
,
x

2

]
,
[2 − y

2
,

2 − y

2

])
= max

{
δp

([x
2
,
x

2

]
,
[2 − y

2
,

2 − y

2

])
,

δp

([2 − y

2
,

2 − y

2

]
,
[x

2
,
x

2

])}
. (3.31)
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In a similar way we calculate δp(Tx, Ty) > 0.

δp

([x
2
,
x

2

]
,
[2 − y

2
,

2 − y

2

])
= sup

x∈Tx

{
p
(x

2
,
[2 − y

2
,

2 − y

2

])
,

p
(x

2
,
[2 − y

2
,

2 − y

2

])}
. (3.32)

It follows that

p
(x

2
,
[2 − y

2
,

2 − y

2

])
= inf

{
p
(x

2
,

2 − y

2

)
, p
(x

2
,

2 − y

2

)}
,

= inf

{∣∣∣x+ y − 2
2

∣∣∣, ∣∣∣x+ y − 2
2

∣∣∣},
=

∣∣∣x+ y − 2
2

∣∣∣. (3.33)

and

p
(x

2
,
[2 − y

2
,

2 − y

2

])
= inf

{
p
(x

2
,

2 − y

2

)
, p
(x

2
,

2 − y

2

)}
,

=
∣∣∣x+ y − 2

2

∣∣∣. (3.34)

Using (3.33) and (3.34) in (3.32) we obtain

δp

([x
2
,
x

2

]
,
[2 − y

2
,

2 − y

2

])
= sup

x∈Tx

{∣∣∣x+ y − 2
2

∣∣∣, ∣∣∣x+ y − 2
2

∣∣∣},
=

∣∣∣x+ y − 2
2

∣∣∣. (3.35)

Similarly, we calculate δp(Ty, Tx) > 0.

δp

([2 − y

2
,

2 − y

2

]
,
[x

2
,
x

2

])
=

∣∣∣−x− y + 2
2

∣∣∣. (3.36)

Applying (3.35) and (3.36) in (3.31) we get

Hp

([x
2
,
x

2

]
,
[2 − y

2
,

2 − y

2

])
= max

{∣∣∣x+ y − 2
2

∣∣∣, ∣∣∣−x− y − 2
2

∣∣∣},
=

∣∣∣x+ y − 2
2

∣∣∣. (3.37)

Likewise, we calculate

p(x, y) = |x− y|. (3.38)

From (3.23), we obtain

|x+y−2
2 |

|x− y|
e|

x+y−2
2 |−|x−y| ≤ e−2τ ,

|x+ y − 2|
2|x− y|

e|
x+y−2

2 |−|x−y| ≤ e−2τ .
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Case 3
For x, y ∈

[
2
3 , 1
]
, we now calculate Hp(Tx.Ty) > 0.

Hp

([2 − x

2
,

2 − x

2

]
,
[2 − y

2
,

2 − y

2

])
= max

{
δp

([2 − x

2
,

2 − x

2

]
,[2 − y

2
,

2 − y

2

])
, δp

([2 − y

2
,

2 − y

2

]
,[2 − x

2
,

2 − x

2

])}
. (3.39)

It follows that

δp

([2 − x

2
,

2 − x

2

]
,
[2 − y

2
,

2 − y

2

])
=

∣∣∣y − x

2

∣∣∣, (3.40)

and

δp

([2 − y

2
,

2 − y

2

]
,
[2 − x

2
,

2 − x

2

])
=

∣∣∣x− y

2

∣∣∣. (3.41)

Applying (3.40) and (3.41) in (3.39) we get

Hp

([2 − x

2
,

2 − x

2

]
,
[2 − y

2
,

2 − y

2

])
= max

{∣∣∣x− y

2

∣∣∣, ∣∣∣y − x

2

∣∣∣},
=

∣∣∣x− y

2

∣∣∣. (3.42)

Also, we calculate

p(x, y) = |x− y|. (3.43)

As a results we have

|x−y
2 |

|x− y|
e|

x−y
2 |−|x−y| ≤ e−2τ ,

|x− y|
2|x− y|

e
|x−y|−2|x−y|

2 ≤ e−2τ ,

1
2
e−| x−y

2 | ≤ e−2τ .

From case1, case 2 and case 3. T is a multivalued no-self F -contraction mapping with F (α) =
lnα + α and τ = 1

2 . We conclude that Theorem 3.4 holds true. The mapping T has the fixed
points at x = 0 and x = 2

3 .

4 Conclusion remarks

This paper aims is to obtain new generalized concepts from Altun et al. [5], Assad and Kirk
[7], Sgroi and Vetro [23] and Paesano and Vetro [21] to metrically convex partial metric spaces.
Therefore, the results of this work are variant, significant and so it is interesting and capable to
develop its study in the future.
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