
Palestine Journal of Mathematics

Vol 13(4)(2024) , 812–824 © Palestine Polytechnic University-PPU 2024

Existence and approximation of fixed points of generalized
contractions in CAT(0) spaces

Javid Ali and Mohd Jubair

Communicated by Mozibur Rahman Mozumder

MSC 2010 Classifications: 47H09; 47H10; 54H25.

Keywords and phrases: CAT(0) space; generalized contractions of Suzuki type; △-convergence; strong convergence;
iterative schemes; fixed points.

The authors would like to thank the reviewers for their constructive comments and valuable suggestions.

Corresponding Author: Javid Ali

Abstract Let M be a nonempty subset of a metric space B. A mapping T : M → M is said
to be generalized contraction of Suzuki type if there exist β ∈ (0, 1) and a, b, c ∈ [0, 1] where
a+ 2b+ 2c = 1 such that for all x, y ∈M
βd(x, Tx) ≤ d(x, y) implies

d(Tx, Ty) ≤ ad(x, y) + b
(
d(x, Tx) + d(y, Ty)

)
+ c

(
d(x, Ty) + d(y, Tx)

)
.

In this paper, we obtain fixed point and convergence theorems for such mappings in a CAT(0)
space. We also study the convergence behavior of JF-iterative scheme for generalized contrac-
tion of Suzuki type in CAT(0) space. Further, we give a non-trivial numerical example which
shows that JF-iterative scheme converges faster than some leading iterative schemes. The re-
sults of the paper are new and generalize various pertinent results, in particular results of Atailia
et al. [Some fixed point results for generalized contractions of Suzuki type in Banach spaces, J.
Fixed Point Theory Appl. 21:78, (2019)].

1 Introduction

Throughout this paper, we assume that M is a nonempty subset of a CAT(0) space B, T : M →
M a mapping and F (T ) = {t ∈ M : Tt = t} denotes the set of fixed points of the mapping
T while Z+ denotes the set of all nonnegative integers. A mapping T : M → M is called
non-expansive if d(Tx, Ty) ≤ d(x, y), for all x, y ∈ M . It is said to be quasi non-expansive if
F (T ) ̸= ∅ and d(Tx, t) ≤ d(x, t) for all x ∈M and t ∈ F (T ).

The concept of generalized non-expansive mappings was coined by Hardy and Rogers [1]
which is defined as follows:
A mapping T : M →M is called generalized non-expansive if there exist real numbers b1, ..., b5 ≥
0 with b1 + b2 + b3 + b4 + b5 ≤ 1 such that for all x, y ∈M

d(Tx, Ty) ≤ b1d(x, y) + b2d(x, Tx) + b3d(y, Ty) + b4d(x, Ty) + b5d(y, Tx). (1.1)

If a = b1, b = b2+b3
2 and c = b4+b5

2 , then (1.1) is equivalent to the following condition with
a, b, c ≥ 0 and a+ 2b+ 2c ≤ 1,

d(Tx, Ty) ≤ ad(x, y) + b
(
d(x, Tx) + d(y, Ty)

)
+ c

(
d(x, Ty) + d(y, Tx)

)
, (1.2)

for all x, y ∈M .

Further, Suzuki [2] gave the notion of generalized non-expansive mappings (also called con-
dition (C)), and is defined as follows: A mapping T : M → M is said to satisfy condition (C)
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if
1
2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ d(x, y), ∀x, y ∈M. (1.3)

In 2011, Karapinar and Taş [3] introduced the following two generalized non-expansive
mappings. A mapping T : M →M is said to satisfy:

(i) Kannan-Suzuki-(C) condition (in short, (KSC)-condition) if for all x, y ∈M ,

1
2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ 1

2

(
d(x, Tx) + d(y, Ty)

)
. (1.4)

(ii) Chatterjea-Suzuki-(C) condition (in short, (CSC)-condition) if for all x, y ∈M ,

1
2
d(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤ 1

2

(
d(x, Ty) + d(y, Tx)

)
. (1.5)

In the same year, Popescu [4] generalized two classical results given by Bogins [5] and Gregus
[6]. He introduced the generalized contractions and proved the following two results.

Theorem 1.1. [4] LetB be a Banach space and T : B → B be a mapping satisfying, 1
2d

(
x, Tx

)
≤

d(x, y) implies

d(Tx, Ty) ≤ ad(x, y) + b
(
d(x, Tx) + d(y, Ty)

)
+ c

(
d(x, Ty) + d(y, Tx)

)
(1.6)

for all x, y ∈ B, where a ≥ 0, b > 0, c > 0 and a+2b+2c = 1. Then T has a unique fixed point.

Theorem 1.2. [4] LetB be a Banach space and T : B → B be a mapping satisfying, 1
2d

(
x, Tx

)
≤

d(x, y) implies
d(Tx, Ty) ≤ ad(x, y) + b

(
d(x, Tx) + d(y, Ty)

)
(1.7)

for all x, y ∈ B, where a > 0, b > 0 and a+ 2b = 1. Then T has a unique fixed point.

Now, we have the following observation.

Remark 1.3. We observe that the conditions a+ 2b+ 2c = 1 and a+ 2b = 1 are more compli-
cated for the study in comparison of the conditions a+2b+2c ≤ 1 and a+2b ≤ 1, respectively.
Moreover, the mappings satisfying conditions (1.6) and (1.7) are only generalizations of the con-
tractive type mappings but not the generalization of the mappings satisfying Suzuki’s condition
(C) (1.3).

It is well known that non-expansive mappings are continuous but the Suzuki-type generalized
non-expansive mappings need not be continuous. Therefore, these mappings are more important
in theoretical and application point of view. In the sequel, many authors gave the generalizations
of non-expansive mapping and proved existence, and convergence results in linear and non-
linear spaces e.g. see [5, 8, 7, 9, 10, 11].

2 CAT(0) spaces

A metric space (B, d) is a CAT(0) space if it is geodesically connected, and if every geodesic
triangle in B is at least as ‘thin’ as its comparison triangle in Euclidean plane E2. Examples of
CAT(0) spaces include pre-Hilbert spaces, R-trees and Euclidean buildings.

The study of fixed point theory in the setup of CAT(0) spaces was initiated by Kirk [12, 13].
The notion of △-convergence in general metric spaces was introduced by Lim [14] in 1976. Kirk
and Panyanak [15] specialized this concept to CAT(0) spaces and showed that many Banach
space results involving weak convergence have precise analogous in this setting.
Let {τn} be a bounded sequence in a complete CAT(0) space B. For x ∈ B, we set

r(x, {τn}) = lim sup
n→∞

d(x, τn).

The asymptotic radius of r({τn}) of {τn} is given by

r({τn}) = inf{r(x, {τn}) : x ∈ B}.
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The asymptotic center A({τn}) of {τn} is the set

A({τn}) = {x ∈M : r(x, {τn}) = r({τn})}.

It is well known that in a complete CAT(0) space, A({τn}) consists of exactly one point [16]. A
sequence {τn} in B is called △-convergent to x ∈ B, denoted by △ − lim

n→∞
τn = x if x is the

unique asymptotic center of {un}, for every subsequence {un} of {τn}.

Lemma 2.1. (i) If M is a closed convex subset of B and if {τn} is a bounded sequence in M ,
then the asymptotic center of {τn} is in M (see [[17], Proposition 2.1]).
(ii) Every bounded sequence in B has a △-convergent subsequence (see [[15], p. 3690]).

Lemma 2.2. [18] Let B be a CAT(0) space. Then

d((1 − θ)x⊕ θy, ς) ≤ (1 − θ)d(x, ς) + θd(y, ς) (2.1)

for all x, y, ς ∈ B and θ ∈ [0, 1].

Lemma 2.3. [18] Let (B, d) be a CAT(0) space. Then

d((1 − θ)x⊕ θy, ς)2 ≤ (1 − θ)d(x, ς)2 + θd(y, ς)2 − θ(1 − θ)d(x, y)2 (2.2)

for all x, y, ς ∈ B and θ ∈ [0, 1].

Lemma 2.4. [18] Let (B, d) be a CAT(0) space. For x, y ∈ B and θ ∈ [0, 1], there exists a
unique ς ∈ [x, y] such that

d(ς, x) = θd(x, y) and d(ς, y) = (1 − θ)d(x, y).

In above Lemma 2.4, we use the notation (1 − θ)x⊕ θy for the unique point ς .
Notice that for a given {τn} ⊂ B which △-converges to x and for any y ∈ B with y ̸= x

(owing to uniqueness of asymptotic center), we have

lim sup
n→∞

d(τn, x) < lim sup
n→∞

d(τn, y).

Thus, every CAT(0) space satisfies the Opial’s property.

Lemma 2.5. [19] Let B be a complete CAT(0) space and x ∈ B. Suppose {τn}, {σn} are
sequences in B such that lim sup

n→∞
d(τn, x) ≤ a, lim sup

n→∞
d(σn, x) ≤ a and lim

n→∞
d((1 − tn)τn ⊕

tnσn, x) = a for some a ≥ 0, where {tn} is a sequence in [b, c] for some b, c ∈ (0, 1). Then

lim
n→∞

d(τn, σn) = 0.

3 Generalized contraction of Suzuki type in CAT(0) spaces

In this section, we state generalized contraction of Suzuki type in CAT(0) spaces, and prove some
basic properties and results for such mapping.

Definition 3.1. [20] Let M be a nonempty subset of a CAT(0) space B. A mapping T : M →M
is said to be a generalized contraction of Suzuki type if there exist β ∈ (0, 1) and a, b, c ∈ [0, 1]
where a+ 2b+ 2c = 1 such that for all x, y ∈M
βd(x, Tx) ≤ d(x, y) implies

d(Tx, Ty) ≤ ad(x, y) + b
(
d(x, Tx) + d(y, Ty)

)
+ c

(
d(x, Ty) + d(y, Tx)

)
. (3.1)

We now mention some basic properties of generalized contraction of Suzuki type mapping.

Proposition 3.2. (i) If a = 1, β = 1
2 and b = c = 0 in the condition (3.1), then it reduces to

the Suzuki condition (C) (1.3).
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(ii) If a = c = 0 and β = b = 1
2 in the condition (3.1), then it reduces to the (KSC)-condition

(1.4).

(iii) If a = b = 0 and β = c = 1
2 in the condition (3.1), then it reduces to the (CSC)-condition

(1.5).

(iv) If a ≥ 0, b > 0, c > 0 and β = 1
2 in the condition (3.1), then it reduces to the condition

(1.6).

(v) If a > 0, b > 0, c = 0 and β = 1
2 in the condition (3.1), then it reduces to the condition

(1.7).

The following two propositions are very easy to verify.

Proposition 3.3. Let M be a nonempty subset of a CAT(0) space B and T : M → M is a
non-expansive mapping. Then T satisfies condition (3.1).

Proposition 3.4. Let M be a nonempty subset of a CAT(0) space B. Suppose T : M → M is
a generalized contraction of Suzuki type and has a fixed point, then T is quasi non-expansive
mapping.

Lemma 3.5. Let M be a nonempty subset of a CAT(0) space B and let T : M → M be a
generalized contraction of Suzuki type for β ∈ (0, 1). Then, for all x, y ∈ M , the following
holds:
(1) d(Tx, T 2x) ≤ d(x, Tx).
(2) Either βd(x, Tx) ≤ d(x, y) or (1 − β)d(Tx, T 2x) ≤ d(Tx, y).
(3) Furthermore, for β ∈ [ 1

2 , 1) and T is a generalized contraction of Suzuki type for 1 − β, then

d(Tx, Ty) ≤ ad(x, y) + b
(
d(x, Tx) + d(y, Ty)

)
+ c

(
d(x, Ty) + d(y, Tx)

)
,

or
d(T 2x, Ty) ≤ ad(Tx, y) + b

(
d(Tx, T 2x) + d(y, Ty)

)
+ c

(
d(Tx, Ty) + d(y, T 2x)

)
.

Proof. One can prove it by follow the lines of proof of Theorem 2.3 [20].

Lemma 3.6. Let M be a nonempty subset of a CAT(0) space B and let β ∈ [ 1
2 , 1). Assume that

T : M →M is a generalized contraction of Suzuki type for β and (1−β). Then for all x, y ∈M ,
the following holds:

d(x, Ty) ≤ µd(x, Tx) + d(x, y),

where µ = 2+a+b+3c
1−b−c .

Proof. One can prove it by follow the lines of proof of Theorem 2.5 [20].

Remark 3.7. We have the following facts:

(i) If T satisfies Suzuki condition (C) (b = c = 0, a = 1 and β = 1
2 ), then we obtain µ = 3.

(ii) If T satisfies (KSC)-condition (a = c = 0 and β = b = 1
2 ), then µ = 5.

(iii) If T satisfies (CSC)-condition (a = b = 0 and β = c = 1
2 ), then µ = 7.

Now, we prove demiclosedness principle for generalized contraction of Suzuki type which is
used to prove convergence results.

Lemma 3.8. Let M be a nonempty closed convex subset of a complete CAT(0) space B and
suppose T : M → M generalized contraction of Suzuki type. If {τn} is a sequence in M such
that d(Tτn, τn) → 0 and △-limn{τn} = t for some t ∈ B. Then Tt = t.

Proof. Since B is a complete CAT(0) space, then A({τn}) consists only one element. Let t ∈
A({τn}), by Lemma 3.6, we have

r(Tt, {τn}) = lim sup
n→∞

d(τn, T t) ≤ lim sup
n→∞

(
d(τn, t) + µd(Tτn, τn)

)
= lim sup

n→∞
d(τn, t)

= r(t, {τn}) = r({τn}).

By uniqueness of asymptotic center, we have Tt = t.
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4 Existence theorem

In this section, we prove existence result for generalized contraction of Suzuki type in CAT(0)
space by employing a weaker condition.

Theorem 4.1. LetM be a nonempty closed and convex subset of a complete CAT(0) spaceB. Let
T : M →M be a generalized contraction of Suzuki type (3.1) for β and (1−β) where β ∈ [ 1

2 , 1).
Assume that {Tnτ} is a bounded sequence for some τ ∈ M and inf{d(τn, T τn) : n ∈ Z+} = 0.
Then T has a fixed point in M . Moreover, if a, b, c ∈ [0, 1] with a + 2b + 2c < 1, then T has a
unique fixed point.

Proof. Define {τn} = {Tnτ} for some τ ∈M and for all n ∈ Z+. Since, B is complete CAT(0)
space, A({τn}) consists only one element. Now, our claim is that d(τn, T τn) a non-increasing
sequence. Since, βd(τn, T τn) = βd(τn, τn+1) ≤ d(τn, τn+1), by (3.1), we get

d(Tτn, T τn+1) ≤ ad(τn, τn+1) + b
(
d(τn, T τn) + d(τn+1, T τn+1)

)
+c

(
d(τn, T τn+1) + d(τn+1, T τn)

)
≤ ad(τn, T τn) + b

(
d(τn, T τn) + d(Tτn, T τn+1)

)
+c

(
d(τn, T τn) + d(Tτn, T τn+1)

)
(1 − b− c)d(Tτn, T τn+1) ≤ (a+ b+ c)d(τn, T τn)

d(Tτn, T τn+1) ≤ a+ b+ c

1 − b− c
d(τn, T τn)

≤ d(τn, T τn).

Thus the sequence {d(τn, T τn)} is non-increasing and bounded below. Hence

lim
n→∞

d(τn, T τn) = 0.

Now, let z ∈ A({τn}), then by Lemma 3.6, we obtain

lim sup
n→∞

d(τn, T z) ≤ lim sup
n→∞

(
d(τn, z) + µd(τn, T τn)

)
≤ lim sup

n→∞
d(τn, z).

Consequently, Tz ∈ A({τn}), ensuring that Tz = z.

Next, if a + 2b + 2c < 1, then we prove uniqueness of the fixed point. Presume that w is
another fixed point of T such that w ̸= z. Then, βd(w, Tw) = 0 ≤ d(w, z) and we have

d(w, z) = d(Tw, Tz)

≤ ad(w, z) + b
(
d(w, Tw) + d(z, Tz)

)
+ c

(
d(w, Tz) + d(z, Tw)

)
= ad(w, z) + c

(
d(w, z) + d(z, w)

)
= (a+ 2c)d(w, z)

< d(w, z),

which is a contradiction. Hence w = z.

Remark 4.2. One can also prove Theorem 4.1 via JF iteration process by using Lemma 3.6.

By using this result along with Proposition 3.4 and ([21], Theorem 1.3), we can obtain the
following corollary.

Corollary 4.3. Let M be a nonempty closed convex subset of a CAT(0) space B. Suppose T :
M → M be a generalized contraction of Suzuki type whose fixed point set is nonempty. Then
F (T ) is closed and convex.
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5 Convergence theorems

For approximation of fixed point, the well known Banach contraction theorem uses the Picard
iterative scheme. Many iterative schemes have been developed to approximate fixed points of
different non-linear mappings. Some of the well-known iterative schemes are those of Ishikawa
[22], Thakur et al. (Thakur-New) [23], Agrawal et al. (S) [24], Sahu et al. [25], Thakur et al.
[26], JF [27] and so on. In [29] Okeke proved convergence results forG-nonexpansive mappings
in convex metric spaces with a directed graph while Bera et al. [30] proved convergence results
for a general class of non-expansive mappings in hyperbolic metric spaces. In this section, we
prove some strong and △-convergence theorems of a sequence generated by JF iterative scheme
for generalized contraction of Suzuki type in the setting of CAT(0) spaces. The JF iterative
scheme in CAT(0) spaces is given by

τ0 ∈M,

ξn = T ((1 − ηn)τn ⊕ ηnTτn),

σn = Tξn,

τn+1 = T ((1 − µn)σn ⊕ µnTσn), n ∈ Z+,

(5.1)

where {µn} and {ηn} are sequences in (0, 1) satisfying appropriate conditions and T is a self
mapping on M .
Throughout this section, we presume that T : M → M is a generalized contraction of Suzuki
type and M is a nonempty bounded convex and closed subset of a complete CAT(0) space B.
Following useful lemmas will be used in proving the main results.

Lemma 5.1. Let {τn} be a sequence developed by the iteration process (5.1), then lim
n→∞

d(τn, t)

exists for all t ∈ F (T ).

Proof. As T is a generalized contraction of Suzuki type, so for all t ∈ F (T ) and {τn} ∈ M , we
can easily obtain that

d(Tτn, t) ≤ d(τn, t).

By JF iterative scheme (5.1), we have

d(ξn, t) = d(T ((1 − ηn)τn ⊕ ηnTτn), t)

≤ d((1 − ηn)τn ⊕ ηnTτn, t)

≤ (1 − ηn)d(τn, t) + ηnd(τn, t)

= d(τn, t). (5.2)

Using equation (5.2), we have

d(σn, t) = d(Tξn, t)

≤ d(ξn, t)

≤ d(τn, t). (5.3)

Using equation (5.3), we have

d(τn+1, t) = d(T ((1 − µn)σn ⊕ µnTσn), t)

≤ (1 − µn)d(σn, t) + µnd(Tσn, t)

≤ (1 − µn)d(τn, t) + µnd(τn, t)

= d(τn, t). (5.4)

Thus the sequence {d(τn, t)} is non-increasing and bounded below, for all t ∈ F (T ). Hence the
result.

Lemma 5.2. Let {τn} be defined by (5.1). Then, {τn} is bounded and lim
n→∞

d(τn, T τn) = 0 if

and only if F (T ) ̸= ∅.
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Proof. Suppose F (T ) ̸= ∅ and t ∈ F (T ). Then by Lemma 5.1, it follows that lim
n→∞

d(τn, t)

exists. So one can presume that lim
n→∞

d(τn, t) = c.

By inequalities (5.2) and (5.3), we get

lim sup
n→∞

d(ξn, t) ≤ c (5.5)

and
lim sup
n→∞

d(σn, t) ≤ c, (5.6)

respectively. Since, T satisfies condition (3.1), we have

d(Tτn, t) ≤ d(τn, t), d(Tσn, t) ≤ d(σn, t) and d(Tξn, t) ≤ d(ξn, t).

lim sup
n→∞

d(Tτn, t) ≤ c, (5.7)

lim sup
n→∞

d(Tσn, t) ≤ c (5.8)

and
lim sup
n→∞

d(Tξn, t) ≤ c. (5.9)

Since

d(τn+1, t) = d(T ((1 − µn)σn ⊕ µnTσn), t)

≤ d((1 − µn)σn ⊕ µnTσn, t)

≤ (1 − µn)d(σn, t) + µnd(σn, t)

= d(σn, t).

Taking the lim inf on both sides, we obtain

c = lim inf
n→∞

d(τn+1, t) ≤ lim inf
n→∞

d(σn, t). (5.10)

So that (5.6) and (5.10) give,
lim

n→∞
d(σn, t) = c.

And

c = lim inf
n→∞

d(σn, t) = lim inf
n→∞

d(Tξn, t)

≤ lim inf
n→∞

d(ξn, t). (5.11)

By (5.5) and (5.11), we have
lim

n→∞
d(ξn, t) = c.

So,

c = lim
n→∞

d(ξn, t)

= lim
n→∞

d(T ((1 − ηn)τn ⊕ ηnTτn), t)

≤ lim
n→∞

d((1 − ηn)τn ⊕ ηnTτn, t)

≤ lim
n→∞

(1 − ηn)d(τn, t) + ηnd(Tτn, t)

≤ lim
n→∞

(1 − ηn)d(τn, t) + ηnd(τn, t)

≤ lim
n→∞

d(τn, t) = c.

This implies that
lim

n→∞
d((1 − ηn)τn ⊕ ηnTτn, t) = c. (5.12)
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By (5.12) and Lemma 2.5, we have

lim
n→∞

d(τn, T τn) = 0.

Conversely, presume that {τn} is bounded and lim
n→∞

d(τn, T τn) = 0. Suppose η ∈ A({τn}) so
by Lemma 3.6, we have

r(Tη, {τn}) = lim sup
n→∞

d(τn, Tη)

≤ lim sup
n→∞

(d(τn, η) + µd(Tτn, τn))

= lim sup
n→∞

d(τn, η)

= r(η, {τn}).

This implies that Tη ∈ A({τn}). Since B is a CAT(0) space which implies A({τn}) consists
only one element, hence we have Tη = η which shows F (T ) ̸= ∅.

Theorem 5.3. Presume that M is a compact subset of B. Then the sequence {τn} defined by
(5.1) converges strongly to an element of F (T ).

Proof. Let F (T ) ̸= ∅, then by Lemma 5.2, lim
n→∞

d(Tτn, τn) = 0. Since M is compact, there is
a subsequence {τnj

} of {τn} such that τnj
→ t strongly for some t ∈ M . Now, it is enough to

show that ′t′ is a fixed point of the mapping T . By using Lemma 3.6, we get

d(τnj
, T t) ≤ µd(τnj

, T τnj
) + d(τnj

, t), ∀j ≥ 1.

This implies that τnj
→ Tt as j → ∞. Thus, Tt = t.

Theorem 5.4. Let {τn} be the sequence developed by equation (5.1). Then lim inf
n→∞

d(τn, F (T )) =

0 if and only if {τn} converges strongly to a fixed point of T , where d(τn, F (T )) = inf{d(τn, t) :
t ∈ F (T )}.

Proof. If the sequence {τn} converges to a point ℓ ∈ F (T ), then lim inf
n→∞

d(τn, F (T )) = 0. Now,

we prove the direct part. Presume that lim inf
n→∞

d(τn, F (T )) = 0. From Lemma 5.1, lim
n→∞

d(τn, t)

exists ∀t ∈ F (T ), therefore lim
n→∞

d(τn, F (T )) = 0 by assumption.

Now our assertion is that {τn} a Cauchy sequence in M . Since lim
n→∞

d(τn, F (T )) = 0, for a
given α > 0, there exists w0 ∈ N such that for all n ≥ w0,

d(τn, F (T )) <
α

2

implies that
inf{d(τn, t) : t ∈ F (T )} < α

2
.

Precisely, inf{d(τw0 , t) : t ∈ F (T )} < α
2 . So, there exists t ∈ F (T ) such that

d(τw0 , t) <
α

2
.

Now, for ι, η ≥ w0,

d(τη+ι, τη) ≤ d(τη+ι, t) + d(τη, t)

≤ d(τw0 , t) + d(τw0 , t)

= 2d(τw0 , t) < α.

Thus, {τn} is a Cauchy sequence in M . Since M is closed, therefore lim
n→∞

τn = ℓ for some

ℓ ∈M . Now, lim
n→∞

d(τn, F (T )) = 0 implies d(ℓ, F (T )) = 0, hence we get ℓ ∈ F (T ).
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Definition 5.5. [28] A mapping T : M →M is said to enjoy property (I), if for a nondecreasing
function ψ : [0,∞) → [0,∞) with ψ(0) = 0 and ψ(z) > 0, ∀z > 0 satisfy d(x, T (x)) ≥
ψ(d(x, F (T ))), ∀x ∈M .

Theorem 5.6. Presume that the mapping T satisfies condition (I). Then {τn} defined by (5.1)
converges strongly to a fixed point of T .

Proof. We proved in Lemma 5.2, that

lim
n→∞

d(τn, T τn) = 0. (5.13)

By (5.13) and applying condition (I), we get

0 = lim
n→∞

d(τn, T τn) ≥ lim
n→∞

ψ(d(τn, F (T ))) ≥ 0

hence
lim

n→∞
ψ(d(τn, F (T ))) = 0.

Therefore,
lim

n→∞
d(τn, F (T )) = 0.

We obtain the desired result by Theorem 5.4.

Now, we prove △-convergence theorem for JF-iterative scheme (5.1) in CAT(0) space.

Theorem 5.7. Let {τn} be a sequence defined by (5.1). Then the sequence {τn} △-converges to
a fixed point of T .

Proof. From Lemma 5.2, we have lim
n→∞

d(τn, T τn) = 0. Also, lim
n→∞

d(τn, t) exists for all t ∈
F (T ). Thus {τn} is bounded. Let W△({τn}) := ∪A({un}), where union is taken over all
subsequence {un} of {τn}. In order to prove that △-convergence of {τn} to a fixed point of T ,
firstly we will prove W△({τn}) ⊂ F (T ) and thereafter argue that W△({τn}) is singleton set. To
show W△({τn}) ⊂ F (T ), let ρ ∈ W△({τn}). Then, there exists a subsequence {un} of {τn}
such that A({un}) = {ρ}. By Lemma 2.1(i) and (ii) there exists a subsequence {vn} of {un}
such that △- lim

n→∞
vn = ϱ ∈ M . Since lim

n→∞
d(vn, T vn) = 0, then ϱ ∈ F (T ) by Lemma 3.8

and d(τn, ϱ) exists by Lemma 5.1. We claim that ρ = ϱ. Suppose not, by the uniqueness of
asymptotic centers,

lim sup
n→∞

d(vn, ϱ) < lim sup
n→∞

d(vn, ρ) ≤ lim sup
n→∞

d(un, ρ) < lim sup
n→∞

d(vn, ϱ)

= lim sup
n→∞

d(τn, ϱ)

= lim sup
n→∞

d(vn, ϱ)

a contradiction, and hence ρ = ϱ ∈ F (T ). To show that {τn}△-converges to a fixed point of T , it
suffices to show thatW△({τn}) consists of exactly one point. Let {un} be a subsequence of {τn}.
By Lemma 2.1(i) and (ii) there exists a subsequence {vn} of {un} such that △- lim

n→∞
vn = ϱ ∈M .

Let A{un} = {ρ} and A{τn} = {x}. We have seen that ρ = ϱ and ϱ ∈ F (T ). We can complete
the proof by showing that x = ϱ. Suppose not, since {d(τn, ϱ)} is convergent, then by uniqueness
of asymptotic centers,

lim sup
n→∞

d(vn, ϱ) < lim
n→∞

d(vn, x) ≤ lim sup
n→∞

d(τn, x) < lim sup
n→∞

d(τn, ϱ)

= lim sup
n→∞

d(vn, ϱ)

a contradiction, and hence the conclusion follows.

Now, we furnish a numerical example in the support of our result.
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Example 5.8. Let M = [−1, 1] ⊂ R endowed with d(x, y) = |x− y|. Define T : M →M by

T (x) =


−x, if x ∈ [0, 3

4)
⋃
( 3

4 , 1] = U,
1
2 sinx, if x ∈ [−1, 0) = V,

0, if x = 3
4 .

We shall prove that T is a generalized contraction of Suzuki type with a = 1
2 , b = c = 1

8 and
β ∈ (0, 1), i.e.,

βd(x, Tx) ≤ d(x, y) =⇒ d(Tx, Ty) ≤M(x, y),

where M(x, y) = 1
2d(x, y) +

1
8

(
d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)

)
.

Verification. Consider the following cases:
(i) For x, y ∈ U , M(x, y) = 1

2

∣∣y − x
∣∣+ 1

8

(
2x+ 2y + x+ y + x+ y

)
= 1

2

∣∣y − x
∣∣+ 1

2

(
x+ y

)
≥

|y − x| = d(Tx, Ty).

(ii) If x, y ∈ V , then d(Tx, Ty) =
∣∣ 1

2 sinx− 1
2 sin y

∣∣ ≤ 1
2

∣∣x− y
∣∣.

And
M(x, y) = 1

2 |x− y|+
1
8

(
|x− 1

2 sinx|+ |y− 1
2 sin y|+ |x− 1

2 sin y|+ |y− 1
2 sinx|

)
≥ 1

2

∣∣x− y∣∣ =
d(Tx, Ty).

(iii) If x ∈ U and y ∈ V , then
d(Tx, Ty) = | − x− 1

2 sin y| = |x+ 1
2 sin y| ≤ x+ |y|

2 = x− y
2 .

And

M(x, y) =
1
2
|x− y|+ 1

8

(
2x+

∣∣y − 1
2

sin y
∣∣+ ∣∣x− 1

2
sin y

∣∣+ |y + x|
)

=
1
2

(
x− y

)
+

1
8

(
2x+

1
2

sin y − y + x− 1
2

sin y + |y + x|
)

=
7x
8

− 5y
8

+
1
8
|y + x|

≥ 7x
8

− 5y
8

+
x+ y

8

= x− 4y
8

≥ x− y

2
= d(Tx, Ty).

(iv) If x ∈ V, y ∈ U , then M(x, y) ≥ d(Tx, Ty) like in (iii).

(v) If x ∈ U and y = 3
4 , then

M(x, y) =
1
2

∣∣∣x− 3
4

∣∣∣+ 1
8

(
2x+

3
4
+ x+

3
4
+ x

)
=

1
2

∣∣∣x− 3
4

∣∣∣+ 1
2
x+

3
16
.

And d(Tx, Ty) = x. Since 1
2d(Tx, Ty) ≤ d(x, y) we have x ≤ |x − 3

4 |, so x ≤ 3
8 . Therefore,

M(x, y) = 3
8 + 3

16 = 9
16 ≥ x = d(Tx, Ty).

(vi) x ∈ V and y = 3
4 . Then d(Tx, Ty) = | 1

2 sinx− 0| ≤ 1
2 |x| = −x

2 .
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And

M(x, y) =
1
2

(3
4
− x

)
+

1
8

(
− x+

1
2

sinx+
3
4
− x+

3
4
− 1

2
sinx

)
=

3
8
− 1

2
x− x

4
+

3
4

=
−2x− x

4
+

15
8

=
−3x

4
+

15
8

≥ −x
2

= d(Tx, Ty).

(vii) If x = 3
4 and y ∈ U . Then

M(x, y) =
1
2

∣∣∣3
4
− y

∣∣∣+ 1
8

(3
4
+ 2y + y +

3
4
+ y

)
=

1
2

∣∣∣3
4
− y

∣∣∣+ y

2
+

3
16

and d(Tx, Ty) = y. By 1
2d(x, Ty) ≤ d(x, y), we have 3

8 ≤ | 3
4 − y|, so y ≤ 3

8 . Therefore,
M(x, y) = 9

16 ≥ y = d(Tx, Ty).

(viii) If x = 3
4 and y ∈ V , then

M(x, y) =
1
2

(3
4
− y

)
+

1
8

(3
4
− y +

1
2

sin y +
3
4
− 1

2
sin y − y

)
=

3
8
− y

2
+

3
16

− y

4

=
9

16
− 3y

4
≥ 9

16
,

and d(Tx, Ty) = |0 − 1
2 sin y| = 1

2 sin y ≤ 1
2y ≤ 9

16 ≤M(x, y).

(ix) If x = y, then verification is obvious.

It can be easily seen in Figure 1 and Table 1 that JF iterative scheme converges faster than
leading iterative schemes to the fixed point t = 0 with control sequences µn = 0.55, θn = 0.65,
ηn = 0.22 and initial guess τ0 = 0.5, n ∈ Z+.

(Number of iterations)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

(
V

a
lu

e
 o

f 
τ

n
)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Ishikawa

S

Thakur-New

Sahu,Thakur

JF

Figure 1. Graphical representation of iterative schemes.



Existence and approximation of fixed points 823

Iter. Ishikawa S Thakur-New Sahu, Thakur JF
1 0.500000 0.500000 0.500000 0.500000 0.500000
2 0.307500 -0.142500 0.357000 -0.079800 0.050000
...

...
...

...
...

...
7 0.027053 0.000268 0.066246 0.000008 0.000001
8 0.016638 0.000076 0.047300 0.000001 0.000000
9 0.010232 0.000022 0.033772 0.000000 0.000000
...

...
...

...
...

...
12 0.002380 0.000001 0.012293 0.000000 0.000000
13 0.001464 0.000000 0.008777 0.000000 0.000000
...

...
...

...
...

...
29 0.000001 0.000000 0.000040 0.000000 0.000000
30 0.000000 0.000000 0.000029 0.000000 0.000000
...

...
...

...
...

...
42 0.000000 0.000000 0.000001 0.000000 0.000000
43 0.000000 0.000000 0.000000 0.000000 0.000000

Table 1. Computational table of the rate of convergence.
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