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Abstract Convex separable programming is a nonlinear optimization method that yields the
global optimum efficiently. In contrast to that, its nonconvex counterpart is challenging and re-
quires further computational techniques to reach the global optimum. We compare two such
nonconvex separable programming techniques: the restricted basis entry rule and the mixed in-
teger programming reformulation, by implementing them and running on several test problems.
Our experimentation indicates that the restricted basis entry rule is much more powerful when
the problem deviates significantly from convexity.

1 Introduction

The method of separable programming is of particular importance as a technique used in non-
linear programming. It plays a key role in solving industry–level optimization problems, as it
allows the approximation of nonlinear functions by piecewise linear functions, thus converting
the nonlinear problem into a format close to a linear program. Several nonlinear real prob-
lems including agricultural planning [1], linear complementarity problem [2], Newsboy problem
[3, 4] and demand allocation [5] have been addressed effectively, with the aid of this solution
technique.

Separable programming was first introduced by Charnes and Lemke in [6] as a technique that
particularly aimed at solving constrained optimization of nonlinear convex functions, whenever
these functions are separable; that is, if they are expressible as sums of functions of a single
variable. The major reason had been the observation that whenever the objective function and
the constraints satisfy certain convexity conditions, the problem can be readily transformed into
a linear program, guaranteeing its efficient solvability. In contrast to this, nonconvex optimiza-
tion problems cannot be restated as linear programs straightaway, as the imposition of an extra
nonlinear condition becomes inevitable. Despite this barrier, several researchers have attempted
to extend the technique of separable programming beyond the realm of convex optimization
[7, 8]. Consequently, several methods were introduced to overcome the challenges and solve
separable programs effectively [8, 9]. From these methods, restricted basis entry rule (RBER)
and mixed integer programming reformulation (MIPR) have long served as the two standard
methods, and they have been used frequently for solving nonconvex separable problems in liter-
ature. Considering the real–world applications, the RBER has been helpful for circuit analysis
[10], transportation problems [11], structural engineering [12, 13] and petroleum engineering
[14]. On the other hand, MIPR has been used in solving real–world problems such as resource
allocation and scheduling [15, 16, 17, 18, 19].

In this context, it is important to explore the computational capacities of these separable
programming techniques. Recall that these techniques are required due to the nonconvexity
of the original nonlinear optimization problem. It is particularly important to explore how the
two techniques converge to the optimum when the problem deviates from convexity. This is the
major problem we investigate in this work. Accordingly, we describe the separable programming
method and the two techniques by providing examples in section 2. In order to measure the
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convexity of a separable problem, we use an existing convexity index and modify it to fit into
our scope in section 3. We run the algorithms on several test problems and present a comparison
of the results in section 4. Our concluding remarks can be found in section 5.

2 Preliminaries

2.1 Separable programming

A function f : X → R, X ⊂ Rn is said to be separable if it can be expressed as a sum of
single–variables functions as follows.

f(x) =
n∑

j=1

fj(xj) (2.1)

If the objective function and the constraints of a nonlinear optimization problem are separable,
the program is called a separable nonlinear program [20], and it can be stated as follows.

Maximize/Minimize f(x) =
n∑

j=1

fj(xj) (2.2)

subject to,
n∑

j=1

gij(xj) ≤ bi, i = 1, 2, . . . ,m (2.3a)

lj ≤ xj ≤ uj , j = 1, 2, ..., n (2.3b)

where all fj’s and gij’s are separable.
Due to separability, the optimization problem can be restated as a problem format close to

a linear program by replacing each nonlinear function with piecewise linear approximations.
The idea of piecewise approximation of a function is graphically represented in Figure 1. In
order to do this, consider the continuous single variabled function f(x) on the interval [a, b]. We
subdivide the interval using grid points such that,

a = x1 ≤ x2 ≤ ... ≤ xk = b. (2.4)

Let x be the convex combination of xt and xt+1. Then there exists λ ∈ [0, 1] such that

x = λxt + (1 − λ)xt+1. (2.5)

Accordingly,
f̂(x) = λf(xt) + (1 − λ)f(xt+1) (2.6)

The approximation of the function f can be done over the interval [a, b] using grid points
x1, x2, . . . , xk by considering the following piecewise linear function f̂ .

f̂(x) =
k∑

t=1

λtf(xt) (2.7)

where,
k∑

t=1

λt = 1. (2.8)

The non–negativity of λt must be specified by,

λt ≥ 0 t = 1, 2, ..., k (2.9)

Hence,

x =
k∑

t=1

λtxt (2.10)

where at most two λt’s are positive and they must be adjacent.
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Figure 1. Piecewise linear approximation of a function

2.2 The approximating problem

Consider the nonlinear program given by Equations (2.2, 2.3a–2.3b) and suppose all the fj and
gij are continuous in the interval [aj , bj ]. There exist j ∈ R such that fj and all gij where
i = 1, 2, ...,m are linear. Then we define the set,

L={j : fj and gij , i = 1, 2, ...,m are linear}.

For j /∈ L, consider the functions on the interval [aj , bj ], where aj , bj ≥ 0. The grid points xtj ,
where t = 1, ..., kj , of the jth variable xj can be defined as,

aj = x1j ≤ x2j ≤ ... ≤ xkj = bj

The grid points may or may not be equidistant. When the number of grid points increases, the
accuracy of the approximation improves [20]. For each j /∈ L, the functions fj and gij where
i = 1, 2, ...,m can be approximated as follows.

f̂j(xj) =

kj∑
t=1

λtjfj(xtj) (2.11)

ĝij(xj) =

kj∑
t=1

λtjgij(xtj), i = 1, 2, ...,m (2.12)

kj∑
t=1

λtj = 1 (2.13)

Finally, the non–negativity of λij must be specified by,

λtj ≥ 0, t = 1, 2, ..., kj . (2.14)

Here, λtj’s are the grid variables of the jth variable xj . Then the approximating problem for the
separable problem given by Equations (2.2, 2.3a-2.3b) is,

Minimize f̂(x) =
∑
j∈L

fj(xj) +
∑
j /∈L

kj∑
t=1

λtjfj(xtj) (2.15)
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subject to,

ĝi(x) =
∑
j∈L

gij(xj) +
∑
j /∈L

kj∑
t=1

λtjgij(xtj) ≤ bi, i = 1, 2, . . . ,m (2.16a)

kj∑
t=1

λtj = 1, j /∈ L (2.16b)

λtj ≥ 0, t = 1, 2, ..., kj , j /∈ L (2.16c)

xj ≥ 0, j ∈ L (2.16d)

For each j /∈ L at most two λtj values are positive and they must be adjacent. This additional
restriction is called as the adjacency criterion.

When considering the separable programming problem, in the minimization case, the follow-
ing theorem [21] is of particular importance.

Theorem 2.1. Suppose that for each j /∈ L, fj(xj) are strictly convex and gij(xj) are convex for
i = 1, 2, ...m. Further, suppose that x0

j (j /∈ L) and λtj (t = 1, 2, ..., kj;j /∈ L) solve the ap-
proximating program given by Equations (2.15, 2.16a–2.16d) without the additional restriction.
Then

(i) The vector x̂, whose components are given by

• x̂j=x0
j , for j ∈ L

• x̂j =
∑kj

t=1 λ
0
tjxtj , for j /∈ L, is feasible to the original problem.

(ii) For each j /∈ L, at most two λ0
tj’s are positive and they must be adjacent.

According to this theorem, under the convexity conditions mentioned in the theorem, the
adjacency criterion is automatically satisfied. Therefore the simplex algorithm can be used to
solve the nonlinear problem without modifications [22]. On the other hand, when it does not
satisfy the convexity conditions, that is, when the objective function and the constraints deviate
from convexity, techniques such as RBER and MIPR must be used.

2.3 Simplex method with restricted basic entry rule
The simplex method can be applied to solve the approximated problem given by Equations (2.15,
2.16a–2.16d) with RBER if the introduction into the basis of non–basis variable improves the
value of the objective function and if the new basis satisfies the additional restriction of no
more than two λtj’s can be positive only if they are adjacent. This process is repeated until the
optimality criterion is satisfied or until it is impossible to introduce a new λtj without violating
the restricted basis entry rule. The last simplex tableau gives the approximate optimal solution
to the problem given by Equations (2.2, 2.3a–2.3b).

Numerical example:

Consider the following nonconvex nonlinear separable programming problem,

Minimize x2
1 − 6x1 + 2x2

2 − 8x2 +
1
2
x3 (2.17)

subject to,

x1 + x2 + x3 ≤ 5 (2.18a)

x3
1 − x2 ≤ 3 (2.18b)

xj ≥ 0, j = 1, 2, 3 (2.18c)

Since the variable x3 is linear in the whole problem, then L = {3}. Therefore, the is no need
to transform to a piecewise linear approximation. Considering these two constraints, clearly both
x1 and x2 lie in the interval [0,5]. Here, we use the grid points [0,2,4,5] for variable x1 and x2.
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x11 = 0, x21 = 2, x31 = 4, x41 = 5
x12 = 0, x22 = 2, x32 = 4, x42 = 5

Original variables in terms of grid variables and grid points,

x1 = 0λ11 + 2λ21 + 4λ31 + 5λ41 (2.19)

x2 = 0λ12 + 2λ22 + 4λ32 + 5λ42 (2.20)

Then the approximation problem,

Minimize 0λ11 − 8λ21 − 8λ31 − 5λ41 + 0λ12 − 8λ22 − 0λ32 + 10λ42 +
1
2
x3

subject to, 0λ11 + 2λ21 + 4λ31 + 5λ41 + 0λ12 + 2λ22 + 4λ32 + 5λ42 + x3 + s1 = 5

0λ11 + 8λ21 + 64λ31 + 125λ41 + 0λ12 − 2λ22 − 4λ32 − 5λ42 + s2 = 3

λ11 + λ21 + λ31 + λ41 = 1

λ12 + λ22 + λ32 + λ42 = 1

λtj ≥ 0, t = 1, 2, 3, 4 and j = 1, 2

x3 ≥ 0

At most two λ1j , λ2j , λ3j and λ4j are positive and they must be adjacent for each j = 1, 2.

Then we solve the linear problem by the simplex method with restricted basic entry rule.
Initial tableau:

λ11 λ21 λ31 λ41 λ12 λ22 λ32 λ42 x3 s1 s2 RHS

0 2 4 5 0 2 4 5 1 1 0 5

0 8 64 125 0 -2 -4 -5 0 0 1 3

1 1 1 1 0 0 0 0 0 0 0 1

0 0 0 0 1 1 1 1 0 0 0 1

0 -8 -8 -5 0 -8 0 10 1
2 0 0 0

Pivot step 1(second tableau):

λ11 λ21 λ31 λ41 λ12 λ22 λ32 λ42 x3 s1 s2 RHS

0 0 -12 - 105
4 0 5

2 5 25
4 1 1 - 1

4
17
4

0 1 8 125
8 0 - 1

4 - 1
2 - 5

8 0 0 1
8

3
8

1 0 -7 - 117
8 0 1

4
1
2

5
8 0 0 1

8
5
8

0 0 0 0 1 1 1 1 0 0 0 1

0 0 56 120 0 -10 -4 5 − 1
2 0 0 3

Pivot step 2(Final tableau):
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λ11 λ21 λ31 λ41 λ12 λ22 λ32 λ42 x3 s1 s2 RHS

0 0 -12 - 105
4 - 5

2 0 5
2

15
4 1 1 - 1

4
7
4

0 1 8 125
8

1
4 0 - 1

4 - 3
8 0 0 1

8
5
8

1 0 -7 - 117
8 - 1

4 0 1
4

3
8 0 0 - 1

8
3
8

0 0 0 0 1 1 1 1 0 0 0 1

0 0 56 120 10 0 6 15 1
2 0 1 13

In the initial tableau, one of λ21 or λ22 variables could be introduced into the basis as they
satisfy the restricted basic entry rule. Hence arbitrary we choose λ21 as the basis. Note that λ31
should be neglected as it violated the rule.

In the second tableau, since λ22 satisfies the restricted basic entry rule, it could be introduced
into the basis of the next step.

In the final tableau the optimal solution is obtained.

(λ∗
11, λ

∗
21, λ

∗
31, λ

∗
41, λ

∗
12, λ

∗
22, λ

∗
32, λ

∗
42, x

∗
3) = ( 3

8 ,
5
8 , 0, 0, 0, 1, 0, 0, 0)

Therefore the optimal solution to the approximation problem could be defined as follows.

x∗ = (x∗
1 , x

∗
2 , x

∗
3) = ( 5

4 , 2, 0)

In the above approximated problem, corresponding value of the objective function is,

f̂min = f̂(x∗) = −13

However, when considering the original separable problem given by Equations (2.17, 2.18a–
2.18c) at this point x∗, the value of the objective function shows a different figure of,

fmin = f(x∗) = −13.9375

Therefore to reduce the gap between these two different objective values, we can increase the
number of grid points with a sufficiently decreased grid length. This will increase the accuracy
of the approximation [23].

2.4 Mixed integer programming reformulation

In MIPR, the adjacency criterion is replaced by a set of constraints with Boolean variables [16].
The approximated problem is defined as follows.

Minimize f̂(x) =
∑
j∈L

fj(xj) +
∑
j /∈L

kj∑
t=1

λtjfj(xtj) (2.21)
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subject to,

ĝi(x) =
∑
j∈L

gij(xj) +
∑
j /∈L

kj∑
t=1

λtjgij(xtj) ≤ bi, i = 1, 2, . . . ,m (2.22a)

0 ≤ λ1j ≤ δ1j , j /∈ L (2.22b)

0 ≤ λtj ≤ δt−1,j + δtj , t = 1, 2, ..., kj − 1; j /∈ L (2.22c)

0 ≤ λkj ,j ≤ δkj−1,j , j /∈ L (2.22d)
kj−1∑
t=1

δt = 1, j /∈ L (2.22e)

kj∑
t=1

λt = 1, j /∈ L (2.22f)

δtj = 0 or 1, t = 1, 2, ..., kj − 1, j /∈ L (2.22g)

λtj ≥ 0, t = 1, 2, ..., kj , j /∈ L (2.22h)

xj ≥ 0, j ∈ L (2.22i)

Numerical example:

Consider the nonconvex separable programming problem given by Equations (2.17, 2.18a–
2.18c). The approximated problem given by Equations (2.21, 2.22a -2.22i) can be defined as
follows.

Minimize 0λ11 − 8λ21 − 8λ31 − 5λ41 + 0λ12 − 8λ22 − 0λ32 + 10λ42 +
1
2
x3

subject to,

0λ11 + 2λ21 + 4λ31 + 5λ41 + 0λ12 + 2λ22 + 4λ32 + 5λ42 + x3 + s1 = 5

0λ11 + 8λ21 + 64λ31 + 125λ41 + 0λ12 − 2λ22 − 4λ32 − 5λ42 + s2 = 3

λ11 + λ21 + λ31 + λ41 = 1

λ12 + λ22 + λ32 + λ42 = 1

0 ≤ λ11 ≤ δ11

0 ≤ λ21 ≤ δ11 + δ21

0 ≤ λ31 ≤ δ21 + δ31

0 ≤ λ41 ≤ δ31

0 ≤ λ12 ≤ δ12

0 ≤ λ22 ≤ δ12 + δ22

0 ≤ λ32 ≤ δ22 + δ32

0 ≤ λ42 ≤ δ32

δ11 + δ21 + δ31 = 1

δ12 + δ22 + δ32 = 1

δtj = 0 or 1, t = 1, 2, 3 and j = 1, 2

λtj ≥ 0, t = 1, 2, 3 and j = 1, 2

x3 ≥ 0

Then the optimal solution of this approximated problem is,

(λ∗
11, λ

∗
21, λ

∗
31, λ

∗
41, λ

∗
12, λ

∗
22, λ

∗
32, λ

∗
42, x

∗
3 , δ11, δ21, δ31, δ12, δ22, δ32) =

( 3
8 ,

5
8 , 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0)
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Therefore the optimal solution to the approximation problem could be defined as follows.

x∗ = (x∗
1 , x

∗
2 , x

∗
3) = ( 5

4 , 2, 0)

Then the objective value for approximated problem is f̂min = f̂(x∗) = −13. However, when
considering the original separable problem given by Equations (2.17, 2.18a–2.18c) at this point
x∗, the value of the objective function shows a different figure of,

fmin = f(x∗) = −13.9375

Here too, in order to increase the accuracy of the approximation, we can increase the number
of grid points with sufficiently decreased grid length [23]. As a result, the number of constraints
and the number of binary variables will increase.

3 Measuring nonconvexity

Convexity is commonly required by continuous optimization algorithms, and it has been dis-
cussed in detail by several researchers [25, 26, 27, 28]. Recall that the linearly approximated
program provides the global solution to the optimization problem when the convexity condi-
tions are satisfied. The capacity of nonconvex separable programming can be fairly assessed by
considering its convergence rate and accuracy when the problem deviates from convexity. In par-
ticular, a comparison of two nonconvex separable programming techniques must consider their
relative performance when the problem deviates more from convexity. For this to be a feasible
task, it is important to quantify the convexity of the problem in an appropriate way.

In this regard we use the convexity measure introduced by Davydov et al in [24]. The defi-
nition is as follows: If h(x) be a real–valued and twice continuously differentiable function on
[a, b], then the global convexity index of h(x) is given by

C(h, (a, b)) =

∫ b

a
λ+(x) dx∫ b

a
|λ(x)| dx

, (3.1)

where, λ+(x) = max{h′′(x), 0}, λ−(x) = max{−h′′(x), 0} and |λ(x)| = λ+(x) + λ−(x). It is
clear that this convexity index should always be in [0, 1]. That is, if the function h is not convex
at any point x ∈ (a, b) then C = 0; and, if h is convex at any point x ∈ (a, b) then C = 1. Thus,
the index naturally leads towards a measure of nonconvexity, or, the deviation from convexity.
We call this the nonconvexity index, and it is readily derived from Equation (3.1) as follows.

D(h, (a, b)) = 1 − C(h, (a, b)). (3.2)

Considering our scope, where the convexity of the individual functions in the objective function
and the constraints set plays a key role, the total deviation from convexity of

∑
j fj is given by∑

j |D(fj , (a, b))|. A similar definition applies to gij as well.

3.1 Example

Consider the function h(x, y) = −cos(2x) − 3sin(y) on the square S0,0(4). This is separable,
and expressible as the summation of two functions h1(x) = −cos(2x) and h2(y) = −3sin(y).
For h1(x),

λ+(x) = max{h
′′

1 (x), 0} = max{4cos(2x), 0}

λ−(x) = max{−h
′′

1 (x), 0} = max{−4cos(2x), 0}

|λ(x)| = λ+(x) + λ−(x)

For h2(y),

λ+(y) = max{h
′′

2 (y), 0} = max{3sin(y), 0}

λ−(y) = max{−h
′′

2 (y), 0} = max{−3sin(y), 0}

|λ(y)| = λ+(y) + λ−(y)
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Then the value of global convexity index of h1 and h2 is given by C(h1, (−4, 4)) = 0.598723 and
C(h2, (−4, 4)) = 0.500000. Hence, the total deviation from convexity of the function h(x, y) on
[−4, 4] can be calculated as follows.

D = |D1|+ |D2|
= (1 − C(h1)) + (1 − C(h2))

= 0.901277

4 Experimental Results

We developed Python codes for both the RBER and the MIPR and implemented them for several
test problems. The computer on which this experiment was run was equipped with an Intel i5
10th generation processor, 4GB of RAM, and the Windows 10 operating system. The perfor-
mance metrics were chosen as the execution time to reach an accurate solution, the size of the
file that contains the problem, and the number of variables in the problem. The comparison took
place in two phases. In the first phase, we made a comparison on the same optimization prob-
lem using RBER and MIPR algorithms. In the second phase, we considered a collection of test
problems and measured their deviation from convexity (3.2). Then we executed the algorithms
and compared the values obtained for performance metrics against the deviation from convexity.

4.1 Comparison-Phase I

We demonstrate this phase of our experimentation using the example problem given by Equa-
tions (2.17, 2.18a–2.18c). A comparison of the performance metrics are given in Table 1. The
other test problems, too, showed somewhat similar results in this regard. The RBER required
less computational time, approximately one–tenth of the time for MIPR for problems of similar
size. However, it required a significantly large space. Further, the number of variables is rela-
tively low in RBER, as the MIPR requires several artificial variables in its formulation.

Table 1. Performance metrics
Method Computation time(sec) File size on Disk(KB) Number of variables

RBER 0.010793447494506836 11.7 9

MIPR 0.1007375717163086 1.86 15

4.2 Comparison-Phase II

This experimentation phase was carried out to calculate the deviation from convexity and make
a comparison of performance metrics in both approaches, MIPR and RBER. To carry out this
experimentation, we considered the following collection of example problems (P1–P12) which
were obtained by changing the objective function. Here the grid points for variables x1 and x2
be [−4,−2, 0, 2, 4].
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(P1) (P2)
Minimize x3

1 + x2
2 Minimize x4

1 + x3
1 + x2

2

subject to x1 + x2 ≤ 6 subject to x1 + x2 ≤ 6
−4 ≤ x1, x2 ≤ 4 −4 ≤ x1, x2 ≤ 4

(P3) (P4)
Minimize x5

1 + x4
1 + x3

1 + x2
2 Minimize 6x5

1 + x4
1 + 2x3

1 + x2
2

subject to x1 + x2 ≤ 6 subject to x1 + x2 ≤ 6
−4 ≤ x1, x2 ≤ 4 −4 ≤ x1, x2 ≤ 4

(P5) (P6)
Minimize 3x5

1 + x4
1 + 2x3

1 + x2
2 Minimize 3x5

1 + 2x4
1 + 2x3

1 + x2
2

subject to x1 + x2 ≤ 6 subject to x1 + x2 ≤ 6
−4 ≤ x1, x2 ≤ 4 −4 ≤ x1, x2 ≤ 4

(P7) (P8)
Minimize 5x5

1 + 2x4
1 + 2x3

1 + x2
2 Minimize 6x5

1 + 2x4
1 + 2x3

1 + x2
2

subject to x1 + x2 ≤ 6 subject to x1 + x2 ≤ 6
−4 ≤ x1, x2 ≤ 4 −4 ≤ x1, x2 ≤ 4

(P9) (P10)
Minimize 7x5

1 + 2x4
1 + 2x3

1 + x2
2 Minimize 8x5

1 + 2x4
1 + 2x3

1 + x2
2

subject to x1 + x2 ≤ 6 subject to x1 + x2 ≤ 6
−4 ≤ x1, x2 ≤ 4 −4 ≤ x1, x2 ≤ 4

(P11) (P12)
Minimize 10x5

1 + 2x4
1 + 2x3

1 + x3
2 + x2

2 Minimize 10x5
1 + 2x4

1 + 2x3
1 + 2x3

2 + x2
2

subject to x1 + x2 ≤ 6 subject to x1 + x2 ≤ 6
−4 ≤ x1, x2 ≤ 4 −4 ≤ x1, x2 ≤ 4

First, we calculated the total deviation from convexity for each problem separately, as given in
Table 2. After that, performance metrics for each problem were measured using both approaches.
Following that, performance metrics were illustrated separately against the increments of total
deviation as shown in Figures 2,3 and 4.
According to Figure 2, until the nonconvexity index of the P4 problem, the deviation shows
small increments, and the required computational time for those was not much differ from each
other. However, in both approaches after P4, a high increment in computation time for P11 was
highlighted in Figure 2 due to the high deviation of 0.89739 in P11 problem. As in phase I,
the RBER required less computational time than MILP for each problem. Furthermore, both re-
quired relatively high computational time for the problems that deviated largely from convexity.

As obtained in phase I, MIPR required less computation space than RBER. Furthermore, for
each nonconvexity index, MIPR required almost the same size of space. However, as shown in
Figure 3, even though the RBER required almost the same space until the deviation in P4, the
required space was increased in a relatively higher manner as in P11 when the deviation was
much further from the convexity.

For each problem, MIPR required more variables than RBER. Furthermore, as shown in
Figure 4, the required number of variables remained consistent for every nonconvexity index in
both approaches, as we used an equal number of variables and grid points for each problem.
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Table 2. Total deviations from convexity
Problem No Total deviation from convexity

1 0.033841133
2 0.000488
3 0.403615
4 0.483539
5 0.46748
6 0.434959
7 0.460591
8 0.467078
9 0.471732
10 0.475232
11 0.89739
12 0.938555

Figure 2. Computational time vs non–convexity index
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Figure 3. File size vs non–convexity index

Figure 4. Number of variables vs non–convexity index

5 Concluding Remarks

We implemented the two nonconvex separable programming techniques, namely, RBER and
MIPR, on several test problems. Our experimentation shows that RBER outperforms MIPR in
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particular on computational time when the problem deviates from convexity. Further, it was seen
that the RBER requires more space on a computer, though MIPR generates a large number of
artificial variables. It would be an interesting future task to find exact theoretical bounds for the
two techniques and also to explore new techniques to solve nonconvex separable programs.

6 Declaration

The data used to support the findings of this study are included within the article.

References
[1] W. Thomas, L. Blakeslee, L. Rogers and N. Whittlesey, Separable programming for considering risk in

farm planning, Am. J. Agric. Econ., 54 (2) , 260–266, (1972).

[2] J. F. Bard and J. E. Falk, A separable programming approach to the linear complementarity problem,
Comput. Oper. Res., 9 (2), 153–159,(1982).

[3] L. L. Abdel-Malek and M. Otegbeye, Separable programming/duality approach to solving the multi-
product newsboy/gardener problem with linear constraints. Appl. Math. Model., 37 (6), 4497–4508,
(2013).

[4] J. A. Niederhoff, Using separable programming to solve the multiproduct multiple ex-ante constraint
newsvendor problem and extensions, Eur. J. Oper. Res., 176 (2), 941–955–196, (2007).

[5] A. Hassan and K. Abdelghany, Dynamic origin-destination demand estimation using separable program-
ming approach, Adv. Transp., 43 ,(2017).

[6] A. Charnes and C. E. Lemke, Minimization of non–linear separable convex functionals, Nav. Res. Logist.
Q., 1 (4), 301–312,(1954).

[7] J. H. Grotte, J. E. Falk and P. F. McCoy, A computer program for solving separable nonconvex optimization
problems, Tech. rep., Institute for Defense Analyses Alexandria VA Program Analysis DIV, (1978).

[8] H.L. Li and C.S. Yu, A global optimization method for nonconvex separable programming problems, Eur.
J. Oper. Res., 117 (2), 275–292, (1999).

[9] J. E. Falk and R. M. Soland, An algorithm for separable nonconvex programming problems, Manag. Sci.,
15 (9), 550–569, (1969).

[10] H. Kato and K. Yamamura, Dc analysis of piecewise-linear circuits using separable programming, IEICE
Proceedings Series, 45, A4L–D2, (2011).

[11] F. J. Nourie and F. Güder, A restricted-entry method for a transportation problem with piecewise-linear
concave costs, Comput. Oper. Res., 21 (7) , 723–733,(1994).

[12] G. Maier, S. Giacomini and F. Paterlini, Combined elastoplastic and limit analysis via restricted basis
linear programming, Comput. Methods Appl. Mech. Eng., 19 (1), 21–48, (1979).

[13] M.R. Mahini, H. Moharrami and G. Cocchetti, Elastoplastic analysis of frames composed of softening
materials by restricted basis linear programming, Comput. Struct., 131, 98–108 (2014).

[14] V. D. Kosmidis, J. D. Perkins and E. N. Pistikopoulos, Optimization of well oil rate allocations in
petroleum fields, Ind. Eng. Chem. Res., 43 (14), 3513–3527, (2004).

[15] A. C. Mahasinghe, S. S. N. Perera and K. K. W. H. Erandi, Optimal resource allocation in controlling
infectious diseases, Mathematical Methods in Interdisciplinary Sciences, 369–389, (2020).

[16] M. A. Bolender and D. B. Doman, Nonlinear control allocation using piece-wise linear functions: A
linear programming approach, J. Guid. Control Dyn.,28 (3), 558–562, (2005).

[17] A. C. Mahasinghe, K. K. W. H. Erandi and S. S. N. Perera, Optimizing Wiener and Randić indices of
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