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Abstract In this paper, we introduce generalized L∗-contraction mappings for a pair of self-
mappings, establish common fixed point theorems and prove the existence and uniqueness of
common fixed points for the mappings introduced in the setting of b-rectangular metric spaces.
Our results extend and generalize several related fixed point results in the existing literature,
particularly that of Saleh et al. [23] from rectangular metric space of single mappings to b-
rectangular metric space of a pair of mappings. Also, we provide an example in support of our
main finding.

1 Introduction and Preliminaries

Fixed point theory is an important tool in the study of nonlinear analysis. It is considered to be
the key connection between pure and applied mathematics. It is also widely applied in differ-
ent fields of study such as Economics, Chemistry, Physics and almost all engineering fields. In
1922, the Polish mathematician Banach [5] established a remarkable fixed point theorem known
as the Banach contraction principle (BCP) which is one of the most important results of non-
linear analysis and considered as the main source of metric fixed point theory. It confirms the
existence and uniqueness of fixed point of self-maps of metric spaces and provides a constructive
method to find fixed points. Banach contraction principle has been extended and generalized in
different directions by many researchers (e.g., see [9], [10], [17], [18]). Bakhtin [4] and Czerwik
[11] introduced the concept of b-metric space as a generalization of the nation of metric space
and proved some fixed point theorems for some contraction mappings in b-metric spaces which
generalized Banach contraction principle in metric spaces.
In 2000, Branciari [7] initiated the concept of a generalized metric by replacing the natural tri-
angle inequality of a metric with a relatively more general inequality termed as rectangular (or
quadrilateral) inequality which involves four points instead of three and proved some fixed point
results in rectangular metric space. Many authors extended and generalized the works of Bran-
ciari for different mappings and contractions (e.g., see [3, 6, 8, 13, 14, 15, 19, 23] and references
therein.
In 2015, George et al. [12] announced the notion of b-rectangular metric space as a generaliza-
tion of metric, b-metric space and rectangular metric space. On the other hand, in 2020, Öztürk
[26] introduced the existence of common fixed point theorem in b-rectangular metric space.
Also, in 2020, Saleh et al. [23] introduced the notions of generalized L∗-contractions mappings
and studied existence and uniqueness of fixed point results in the setting of rectangular metric
space.
Inspired and motivated by the work of Saleh et al. [23] and related works aforementioned above
the main purpose of this paper is to introduce generalized L∗-contraction for a pair of mappings,
establish common fixed point theorem and prove the existence and uniqueness of common fixed
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points for the mappings introduced in the setting of b-rectangular metric spaces.
In what follows we recall basic definitions and results on the topics which we use in the

sequel.
In this work we denote, R+, R and N by the set of non-negative real numbers, the set of real
numbers and the set of all natural numbers respectively.

Definition 1.1. [11] Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X ×X → R+ is a b-metric if for all x, y, z ∈ X , the following conditions are satisfied:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].
The pair (X, d) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that of metric
spaces, since a metric is a b-metric with s = 1.

Definition 1.2. [7] Let X be a nonempty set and d : X ×X → R+ be a function satisfying the
following conditions:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and all distinct point u, v ∈ X\{x, y}.
Then d is called a rectangular metric on X and the pair (X, d) is called a rectangular metric
space.

Definition 1.3. [12] Let X be a nonempty set s ≥ 1 be a given real number and d : X×X → R+

be a function satisfying the following conditions:
(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ s[d(x, u)+d(u, v)+d(v, y)] for all x, y ∈ X and all distinct point u, v ∈ X\{x, y}.
Then d is called a b-rectangular metric on X and the pair (X, d) is called a rectangular b-metric
space.
Note: Every metric space is a rectangular metric space and every rectangular metric space is a
b-rectangular metric space with coefficient s = 1, but the converse is not true in general.

Definition 1.4. [12] Let (X, d) be a b-rectangular metric space, {xn} be sequence in X and
x ∈ X .
We say that:

(i) {xn} is convergent to x if d(xn, x) → 0 as n→ ∞, and we denote this by xn → x.

(ii) {xn} is a b-rectangular Cauchy sequence if for each ε > 0, there exists a natural number N
such that d(xn, xm) < ε for all m,n > N .

(iii) X is a b-rectangular complete if every b-rectangular Cauchy sequence in X is convergent
in X .

The following is an example to show that not every b-rectangular metric space is a rectangular
metric space.

Example 1.5. [12] Let X = A ∪ B, where A = { 1
n : n ∈ N} and B is the set of all positive

integers. Define d = X ×X → R+ such that d(x, y) = d(y, x) for all x, y ∈ X and

d(x, y) =


0, if x = y;
2α, if x, y ∈ A
α
2n , if x ∈ A and y ∈ {2, 3};
α, otherwise,

where α > 0 is a constant. Then (X, d) is a b-rectangular metric space with coefficient s = 2 > 1.
However we have the following:



850 A.N. Sakelo, K.K. Tola, M.A. Mamud and M.T. A/mecha

(i) (X, d) is not a rectangular metric space, as

d( 1
2 ,

1
3) = 2α > 17α

12 = d( 1
2 , 2) + d(2, 3) + d(3, 1

3).

(ii) The sequence { 1
n} converges to 2 and 3 in b-rectangular metric space and so limit of a

convergent sequence is not unique. Also d( 1
n ,

1
n+p) = 2α ↛ 0 as n → ∞. Therefore, { 1

n}
is not a b-rectangular Cauchy sequence in b-rectangular metric space.

Lemma 1.6. [22] Let X be a b-rectangular metric space and {xn} be a sequence in X . If {xn}
is not a b-rectangular Cauchy sequence, then there exists ε > 0 and two subsequences {xnk

} and
{xmk

} of {xn}, such that d(xmk
, xnk

) ≥ ε and with nk is the smallest index with nk > mk > k
for which d(xmk

, xnk−1) < ε. Then the following hold:

(i) ε ≤ lim inf
k→∞

d(xmk
, xnk

) ≤ lim sup
k→∞

d(xmk
, xnk

) ≤ sε.

(ii) ε ≤ lim inf
k→∞

d(xmk+1 , xnk
) ≤ lim sup

k→∞
d(xmk+1 , xnk

) ≤ sε.

(iii) ε ≤ lim inf
k→∞

d(xmk
, xnk+1) ≤ lim sup

k→∞
d(xmk

, xnk+1) ≤ sε.

(iv) ε ≤ lim inf
k→∞

d(xmk+1 , xnk+1) ≤ lim sup
k→∞

d(xmk+1 , xnk+1) ≤ s2ε.

Lemma 1.7. [25] Let (X, d) be a b-rectangular metric spaces with s ≥ 1 and {xn} be a Cauchy
sequence in X such that xn ̸= xm whenever n ̸= m. Then {xn} can converge to at most one
point.

Lemma 1.8. [25] Let (X, d) be a b-rectangular metric spaces with s ≥ 1.
(a) Suppose that sequences {xn} and {yn} in X are such that xn → x and yn → y as n → ∞,
with x ̸= y and xn ̸= x ,yn ̸= y for n ∈ N. Then we have,

1
s
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ sd(x, y).

(b) If y ∈ X and {xn} is a b-rectangular Cauchy sequence in X with xn ̸= xm, for infinitely
many m,n ∈ N, n ̸= m, converging to x ̸= y, then

1
s
d(x, y) ≤ lim inf

n→∞
d(xn, y) ≤ lim sup

n→∞
d(xn, y) ≤ sd(x, y), for all x ∈ X.

Definition 1.9. [1] Let T and S be self-mappings of a set X . If y = Tx = Sx for some x in X ,
then x is called a coincidence point of T and S and y is called a point of coincidence of T and
S.

Definition 1.10. [24] Let (X, d) be a metric space. The mappings T, S : X → X are said to be
Compatible if

lim
n→∞

d(TSxn, STxn) = 0

whenever {xn} is sequence in X such that

lim
n→∞

Txn = lim
n→∞

Sxn = t

for some t ∈ X .

Definition 1.11. [20] Let (X, d) be a metric space. The mappings T, S : X → X are said to be
weakly compatible if the mappings commute at their coincidence points, that is Tx = Sx, for
some x ∈ X implies T (Sx) = S(Tx).

Lemma 1.12. [21] Let f and g be weakly compatible self-mappings of a set X . If f and g have
a unique point of coincidence say ω, then ω is the unique common fixed point of f and g, that is,
ω = fx = gx, then ω is the unique common fixed point of f and g.
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In 2014, Jleli and Samet, [19] defined a Θ-contraction mappings and studied fixed point
results for rthe mappings defined in the setting of rectangular metric spaces.

Definition 1.13. [19] Let (X, d) be a rectangular metric space. A mapping T : X → X is said to
be a Θ-contraction if there exist Θ ∈ Ω1,2,3 and k ∈ (0, 1) such that (for all x, y ∈ X )

d(Tx, Ty) > 0 ⇒ Θ(d(Tx, Ty)) ≤ [Θ(d(x, y))]k,

where Ω1,2,3 is the family of all functions: Θ : (0,∞) → (1,∞) which satisfies the following
conditions:
(Θ1) Θ is nondecreasing;
(Θ2) For each sequence {αn} ⊂ (0,∞), lim

n→∞
Θ(αn) = 1 ⇔ lim

n→∞
αn = 0+;

(Θ3) There exists r ∈ (0, 1) and l ∈ (0,∞) such that lim
n→∞

Θ(αn)
αr = l.

Theorem 1.14. [19] Let (X, d) be a complete rectangular metric space and T : X → X a
Θ-contraction mapping. Then T has a unique fixed point.

Imdad et al. [16] observed that this theorem can be proved without the condition (Θ1). Also,
Ahmad et al. [2] replaced the condition (Θ3) by the following one:
(Θ4) is continuous.

Remark 1.15. It is known that every Θ-contraction mapping is continuous. In the sequel, we
adopt the following notations:

(i) Ω1,2,3 is the class of all functions Θ which satisfy (Θ1)− (Θ3);

(ii) Ω1,2,4 is the class of all functions Θ which satisfy (Θ1), (Θ2), and (Θ4);

(iii) Ω1,2,3,4 is the class of all functions Θ which satisfy (Θ1)− (Θ4).

Definition 1.16. [8] Let (X, d) be a rectangular metric space. A mapping T : X → X is said to
be an L-contraction with respect to ζ ∈ L if there exists Θ ∈ Ω1,2,4 such that (for all x, y ∈ X )

d(Tx, Ty) > 0 ⇒ ζ[Θ(d(Tx, Ty)),Θ(d(x, y))] ≥ 1,

where L is the class of all functions ζ : [1,∞) × [1,∞) → R which satisfies the following
conditions (ζ∗):

(i) (ζ∗1 ) ζ(1, 1) = 1;

(ii) (ζ∗2 ) ζ(t, s) < (s/t), for all t, s > 1;

(iii) (ζ∗3 ) If {tn} and {sn} are two sequences in (1,∞) with tn < sn, such that lim
n→∞

tn =

lim
n→∞

sn > 1, then lim sup
n→∞

ζ(tn, sn) < 1.

Example 1.17. [8] Let ζk, ζψ : [1,∞)× [1,∞) → R be two functions defined as under:

(i) ζk(t, s) = (sk/t) for all t, s ≥ 1, where k ∈ (0, 1).

(ii) ζψ(t, s) = (s/tψ(s)) for all t, s ≥ 1, where ψ : [1,∞) → [1,∞) is a lower semi-continuous
and nondecreasing function with ψ−1(1) = 1.

Then, ζk, ζψ ∈ L.

Definition 1.18. [23] Let (X, d) be a rectangular metric space and T : X → X . Then T is said to
be an L∗-contraction with respect to ζ ∈ L if there exists Θ ∈ Ω1,2,4 such that (for all x, y ∈ X)

d(Tx, Ty) > 0 ⇒ ζ[Θ(d(Tx, Ty)),Θ(M(x, y))] ≥ 1,

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Theorem 1.19. [23] Let (X, d) be a complete rectangular metric space and T : X → X an
L∗-contraction with respect to ζ ∈ L. Then T has a unique fixed point.
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2 Main Results

In this section, we define generalized L∗-contraction mappings in the setting of b-rectangular
metric spaces and establish a common fixed point theorem for the mappings defined.
Before presenting our main result of this section, we give the following definition.

Definition 2.1. Let (X, d) be a b-rectangular metric space with coefficient s ≥ 1 and f, g : X →
X be self-mappings. Then f and g are said to be generalized L∗-contraction mappings with
respect to ζ ∈ L if there exists Θ ∈ Ω1,2,4 such that for all x, y ∈ X

d(fx, fy) > 0 ⇒ ζ[Θ(s2d(fx, fy)),Θ(M(gx, gy))] ≥ 1, (2.1)

where

M(gx, gy) = max{d(gx, gy), d(gx, fx), d(gy, fy)}.

Now, we state and prove the following fixed point theorem.

Theorem 2.2. Let (X, d) be a b-rectangular metric space with coefficient s ≥ 1, f, g:X → X
be self-maps of X , with f(X) ⊆ g(X). Let f and g be a generalized L∗-contraction mappings
with respect to ζ ∈ L. If (2.1) holds and either g(X) or f(X) is complete, then f and g have a
unique point of coincidence.
Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. We first prove that the point of coincidence of f and g is unique if it exists. Let v1 and v2
be points of coincidence of f and g. Thus, there exists some x, y ∈ X such that v1 = fx = gx
and v2 = fy = gy. By (2.1), we derive that

d(v1, v2) = d(fx, fy) > 0 ⇒ ζ[Θ(s2d(fx, fy)),Θ(M(gx, gy))] ≥ 1.

where

M(gx, gy) = max{d(gx, gy), d(gx, fx), d(gy, fy)}
= max{d(v1, v2), d(v1, v1), d(v2, v2)}
= max{d(v1, v2), 0, 0}
= d(v1, v2),

which implies that

ζ[Θ(s2d(v1, v2)),Θ(d(v1, v2))] ≥ 1. (2.2)

By (ζ∗2 ), we have

1 <
Θ(d(v1, v2))

Θ(s2d(v1, v2))
⇒ Θ(s2d(v1, v2)) < Θ(d(v1, v2)),

in view of (Θ1), we get
s2d(v1, v2) < d(v1, v2),

which is a contradiction. So, we conclude that d(v1, v2) = 0. That is, v1 = v2. Hence, v1 is the
unique point of coincidence of f and g.
Now, we prove the existence of a point of coincidence of f and g. Let x0 be an arbitrary point of
X . Since f(X) ⊆ g(X), we define two iterative sequences {xn} and {yn} in X as follows:

yn = fxn = gxn+1, for all n ∈ N ∪ {0}.

If yn = yn+1, that is, d(yn, yn+1) = 0, then gxn+1 = yn = yn+1 = fxn+1 and f and g have a
point of coincidence. And this complete the proof. Now, assume that d(yn, yn+1) > 0, for all
n ∈ N ∪ {0}.
Using (2.1)) and (ζ∗2 ), we have

1 ≤ ζ[Θ(s2d(fxn, fxn+1)),Θ(M(gxn, gxn+1))]

= ζ[Θ(s2d(yn, yn+1)),Θ(M(gxn, gxn+1))]

<
Θ(M(d(gxn, gxn+1)))

Θ(s2d(yn, yn+1))
,
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which give

Θ(s2d(yn, yn+1)) < Θ(M(d(gxn, gxn+1))), (2.3)

where

M(gxn, gxn+1) = max{d(gxn, gxn+1), d(gxn, fxn), d(gxn+1, fxn+1)}
= max{d(gxn, gxn+1), d(gxn, gxn+1), d(gxn+1, gxn+2)}
= max{d(yn−1, yn), d(yn−1, yn), d(yn, yn+1)}
= max{d(yn−1, yn), d(yn, yn+1)}.

If M(gxn, gxn+1) = d(yn, yn+1), then (2.3) becomes

Θ(s2d(yn, yn+1)) < Θ(d(yn, yn+1)), for all n ∈ N,

which is a contradiction. Hence, we must have

M(gxn, gxn+1) = d(yn−1, yn), for all n ∈ N.

Therefore, (2.3) becomes

Θ(s2d(yn, yn+1)) < Θ(d(yn−1, yn)).

Since, s ≥ 1 for all n ∈ N, we have

Θ(d(yn, yn+1))) ≤ Θ(s2d(yn, yn+1)) < Θ(d(yn−1, yn)), (2.4)

which implies (in view of (Θ1)), that

d(yn, yn+1) < d(yn−1, yn), for all n ∈ N.

Thus, the sequence {d(yn, yn+1)} is a decreasing sequence of nonnegative real numbers. Hence,
there exists r ≥ 0 such that limn→∞ d(yn, yn+1) = r. Suppose that r ̸= 0, then it follows from
(Θ2), that

lim
n→∞

Θ(d(yn, yn+1)) > 1. (2.5)

Taking tn = Θ(d(yn, yn+1)) and sn = Θ(d(yn, yn+1)), for all n ∈ N.
It is clear that from (2.4), (2.5) and (Θ4) that tn < sn, for all n ∈ N and lim

n→∞
tn = lim

n→∞
sn > 1.

Using (ζ∗3 ), we get
1 ≤ lim sup

n→∞
ζ(tn, sn) < 1,

which is a contradiction. Therefore, r = 0, i.e., we have

lim
n→∞

d(yn, yn+1) = 0 for all n ∈ N. (2.6)

Now, let us assume that ym = yn, for some m > n. Then we have ym+1 = yn+1. Using (2.4),
we get

Θ(d(xm, xm+1)) < Θ(d(xm−1, xm))

< Θ(d(xm−2, xm−1))

...

...

...

< Θ(d(xn, xn+1))

= Θ(d(xm, xm+1)),
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which is a contradiction. This concludes that ym ̸= yn, for all n ̸= m.
Next, we prove that the sequence {yn} is a b-rectangular Cauchy sequence in (X, d). On the
contrary, assume that it is not a b-rectangular Cauchy, then there exists an ε > 0 for which we
can find two subsequences {ymk

} and {ynk
} of {yn} such that nk > mk > k, for all k ∈ N and

d(ymk
, ynk

) ≥ ε. (2.7)

Suppose that nk is the least integer exceeding mk satisfying (2.7). Then, we have

d(ymk
, ynk−1) < ε. (2.8)

Using (2.7), (2.8) and by applying b-rectangular inequality, we get

ε ≤ d(ymk
, ynk

) ≤ sd(ymk
, ynk−2) + sd(ynk−2 , ynk−1) + sd(ynk−1 , ynk

).

< sε+ d(ynk−2 , ynk−1) + sd(ynk−1 , ynk
).

Letting k → ∞ in the above inequality and using (2.6), we get

ε ≤ lim inf
n→∞

d(ymk
, ynk

) ≤ lim sup
n→∞

d(ymk
, ynk

) ≤ sε. (2.9)

Also,

ε ≤ d(ymk
, ynk

) ≤ s[d(ymk
, ymk+1) + d(ymk+1 , ynk+1) + d(ynk+1 , ynk

)].

Taking k → ∞, in the above inequality, using (2.6) and Lemma 1.6, we obtain
ε

s
≤ lim inf

n→∞
d(ymk+1 , ynk+1) ≤ lim sup

n→∞
d(ymk+1 , ynk+1) ≤ s2ε. (2.10)

Now, we substitute x = xmk+1 and y = xnk+1 in (2.1), we obtain

ζ[Θ(s2d(fxmk+1 , fxnk+1)),Θ(M(gxmk+1 , gxnk+1))] ≥ 1.

It gives

ζ[Θ(s2d(ymk+1 , ynk+1)),Θ(M(gxmk+1 , gxnk+1))] ≥ 1, (2.11)

where

M(gxmk+1 , gxnk+1) = max{d(gxmk+1 , gxnk+1), d(gxmk+1 , fxmk+1), d(gxnk+1 , fxnk+1)}
= max{d(ymk

, ynk
), d(ymk

, ymk+1), d(ynk
, ynk+1)}.

Letting k → ∞ in the above inequality, using (2.6) and (2.9), we get

lim sup
n→∞

M(gxmk+1 , gxnk+1) = lim sup
n→∞

d(ymk
, ynk

) ≤ sε. (2.12)

Using (ζ∗2 ), (2.11) becomes

1 ≤ ζ[Θ(s2d(ymk+1 , ynk+1)),Θ(M(ymk+1 , ynk+1))]

<
Θ(M(ymk+1 , ynk+1))

Θ(s2d(ymk+1 , ynk+1))
,

which ie equivalent to

Θ(s2d(ymk+1 , ynk+1)) < Θ(M(ymk+1 , ynk+1)).

By taking the upper limits k → ∞ in the above inequality and using (2.9), (2.10), (2.12) and the
continuity Θ, we obtain that

Θ(
ε

s
s2) = Θ(εs) ≤ lim sup

n→∞
Θ(s2d(ymk+1 , ynk+1))

< lim sup
n→∞

Θ(d(ymk
, ynk

))

≤ Θ(sε). (2.13)
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So, Θ(εs) < Θ(sε), which is a contradiction. Therefore, {yn} is b-rectangular Cauchy se-
quence in X.
Suppose that g(X) is complete. Then there exists some r ∈ X such that gxn → gr = v ∈ g(X)
and yn → v as n → ∞. Now to prove that fr = gr. Arguing by contradiction, we assume that
fr ̸= gr. Then, we have

d(gr, fr) > 0.

Hence, we can apply b-rectangular inequality to obtain,

1
s
d(gr, fr) ≤ d(gr, gxn) + d(gxn, fxn) + d(fxn, fr)

= d(gr, yn−1) + d(yn−1, yn) + d(fxn, fr).

If d(fxn, fr) = 0 for some n, then

1
s
d(gr, fr) ≤ lim

n→∞
{d(gr, yn−1) + d(yn−1, yn) + d(fxn, fr)} = 0.

Which gives gr = fr.
Now, we assume d(fxn, fr) > 0.

d(fxn, fr) > 0 ⇒ ζ[Θ(s2d(fxn, fr)),Θ(M(gxn, gr))] ≥ 1. (2.14)

By (ζ∗2 ), we have

1 <
Θ(M(gxn, gr))

Θ(s2d(fxn, fr))
⇒ Θ(s2d(fxn, fr)) < Θ(M(gxn, gr)). (2.15)

In view of (Θ1), we get

s2d(fxn, fr) < M(gxn, gr) ⇒ d(fxn, fr) <
1
s2M(gxn, gr). (2.16)

From (2.14) and (2.16), we get

1
s
d(gr, fr) ≤ d(gr, gxn) + d(gxn, fxn) +

1
s2M(gxn, gr)

≤ d(gr, gxn) + d(gxn, fxn) +
1
s2max{d(gxn, gr), d(gxn, fxn), d(gr, fr)}.

Taking limit as n→ ∞ in (2.16), we obtain

1
s
d(gr, fr) <

1
s2 d(gr, fr), (2.17)

which is a contradiction, it follows that d(gr, fr) = 0. That is, gr = fr. Therefore, gr = fr = v,
v is a point of coincidence of f and g. Since f and g are weakly compatible, fgr = gfr = fv =
gv = w. Thus, by Lemma 1.12, w is a unique common fixed point of f and g. Also, the proof is
similar when f(X) is complete.

In the following we give an example in support of Theorem 2.2.

Example 2.3. Let X = A∪B, where A =
{

0, 1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6

}
and B = [1,2]. Define d : X ×X →

R+ by:
d(x, y) = d(y, x) for all x, y ∈ X and

(i) d(0, 1
2) = d( 1

3 ,
1
4) = d( 1

5 ,
1
6) = 0.06

(ii) d(0, 1
3) = d( 1

2 ,
1
5) = d( 1

4 ,
1
5) = 0.04

(iii) d(0, 1
4) = d( 1

2 ,
1
3) = d( 1

4 ,
1
6) = 0.08

(iv) d(0, 1
5) = d( 1

2 ,
1
6) = d( 1

3 ,
1
6) = 0.18
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(v) d(0, 1
6) = d( 1

2 ,
1
4) = d( 1

3 ,
1
5) = 0.36

(vi) d(x, y) = |x− y|2, otherwise.

Clearly, (X, d) is a complete b-rectangular metric space with s = 3.1. But (X, d) is neither a
metric nor a rectangular metric space. Because,

0.36 = d(
1
2
,

1
4
) > d(

1
2
,

1
5
) + d(

1
5
,

1
4
) = 0.04 + 0.04 = 0.08 and

0.36 = d(
1
3
,

1
5
) > d(

1
3
, 0) + d(0,

1
2
) + d(

1
2
,

1
5
) = 0.04 + 0.06 + 0.04 = 0.14.

Let f, g : X → X be defined by:

f(x) =

{
1
2 , if x ∈ A
1
5 , if x ∈ B.

and

g(x) =


1
2 , if x ∈

{
0, 1

2 ,
1
4 ,

1
5

}
1
5 , if x = 1

3
2, if x ∈ B.

Obviously, f(X) ⊆ g(X) and f and g are an L∗-contraction mappings with respect to
ζ : [1,∞)× [1,∞) → R, where

ζk(t, s) =
sk

t , for all t, s ∈ [1,∞), for any k ∈ [0.12, 1) and Θ : (0,∞) → (1,∞) such that
Θ(t) = et, for all t ∈ (0,∞).

Indeed, for x ∈ A and y ∈ B, we have

d(fx, fy) = d(
1
2
,

1
5
) = 0.04 > 0.

And

ζ[Θ(s2d(fx, fy)),Θ(M(gx, gy))] =
[Θ(M(gx, gy))]k

Θ(s2d(fx, fy))
, (2.18)

where
M(gx, gy) = max {d(gx, gy), d(gx, fx), d(gy, fy)} .

But,

d(gx, gy) =


d( 1

2 ,
1
5) = 0.04 if x ∈

{
0, 1

2 ,
1
4 ,

1
5

}
and y = 1

3
d( 1

2 , 2) = 2.25 if x ∈
{

0, 1
2 ,

1
4 ,

1
5

}
and y ∈ B

d( 1
5 , 2) = 3.24 if x = 1

3 and y ∈ B,

d(gx, fx) =


d( 1

2 ,
1
2) = 0 if x ∈ A

d( 1
5 ,

1
2) = 0.04 if x ∈ A

d(2, 1
5) = 3.24 if x ∈ B.

d(gx, fy) =


d( 1

2 ,
1
2) = 0 if y ∈ A

d( 1
5 ,

1
2) = 0.04 if y ∈ A

d(2, 1
5) = 3.24 if y ∈ B.

Hence, M(gx, gy) = 3.24.
Now (2.18), becomes

[Θ(M(gx, gy))]k

Θ(s2d(fx, fy))
≥ ek(3.24)

e(3.1)2×0.04
=

e3.24k

e0.3844 = e3.24k−0.3844 ≥ 1, for any k ∈ [0.12, 1).

Therefore, all conditions of Theorem 2.2 are satisfied, f and g have a common fixed point v =
1
2

which is unique.
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In the following we deduce corollaries to Theorem 2.2.

Corollary 2.4. Let (X, d) be a b-rectangular metric space with coefficient s ≥ 1 and f, g:X → X
be self-maps with f(X) ⊆ g(X). Suppose that there exists Θ ∈ Ω1,2,4 and k ∈ (0, 1) such that
(for all x, y ∈ X)

d(fx, fy) > 0 ⇒ Θ(s2d(fx, fy)) ≤ [Θ(M(gx, gy))]k,

where M(gx, gy) = max{d(gx, gy), d(gx, fx), d(gy, fy)}.

If either g(X) or f(X) is complete, then f and g have a unique point of coincidence in X .
Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in
X .

Proof. Observe that f and g are generalized L∗-contraction with respect to ζk(t, s) = (sk/t).
Then the result follows immediately from Theorem 2.2.

Corollary 2.5. Let (X, d) be a b-rectangular metric space with coefficient s ≥ 1 and f, g:X → X
be two mappings with f(X) ⊆ g(X). Suppose that there exists Θ ∈ Ω1,2,4 and k ∈ (0, 1) such
that (for all x, y ∈ X)

d(fx, fy) > 0 ⇒ s2d(fx, fy) ≤M(gx, gy)− φ(M(gx, gy)), (2.19)

where M(gx, gy) = max{d(gx, gy), d(gx, fx), d(gy, fy)} and φ : R+ → R+

is non-decreasing and lower semi-continuous such that φ−1 {(0)} = 0.
If either g(X) or f(X) is complete, then f and g have a unique point of coincidence in X .
Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let Θ(t) = et, for all t > 0. From (2.19), we have

Θ(s2d(fx, fy)) = es
2d(fx,fy) ≤ eM(gx,gy)−φ(M(gx,gy)) =

Θ(M(gx, gy))

eφ(M(gx,gy))
, (2.20)

for all x, y ∈ X with d(fx, fy) > 0.
Now, define φ(t) = ln(ψ(Θ(t))), for all t > 0, where ψ : [1,∞) → [1,∞) is non-decreasing and
lower semi-continuous such that ψ−1({1}) = 1.
From (2.20), we have

Θ(s2d(fx, fy)) ≤ Θ(M(gx, gy))

ψ(Θ(M(gx, gy)))
. (2.21)

Taking ζ(t, s) = (s/tψ(s)) and using (2.21), we have

1 ≤ Θ(M(gx, gy))

Θ(s2d(fx, fy))ψ(Θ(M(gx, gy)))

= ζ[Θ(s2d(fx, fy)),Θ(M(gx, gy))].

Therefore, all the requirements of Theorem 2.2 are satisfied and hence f and g have a unique
common fixed point in X .
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