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Abstract. Let R be a ring and P be a prime ideal of R. An additive mapping d : R → R is
called a derivation if for any p, q ∈ R, d(pq) = d(p)q + pd(q). In this paper, we investigate the
commutativity of the factor ring R/P satisfying certain differential identities. More precisely,
there is no primeness or semi-primeness assumption on the considered ring R.

1 Introduction

Throughout this paper, R will represent an associative ring with center Z(R). Cite that an ideal
P of R is said to be prime if P ̸= R and for a, b ∈ R, aRb ⊆ P implies that a ∈ P or b ∈ P . The
ring R is called a prime ring if a, b ∈ R, aRb = (0) implies a = 0 or b = 0. The Lie product of
two elements x and y of R is [x, y] = xy − yx, while the symbol x ◦ y denotes a Jordan product
which is defined as xy + yx. An additive mapping d : R → R is a derivation on R if it satisfies
d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive map F : R → R is said to be a generalized
derivation associated with a derivation d on R such that F (xy) = F (x)y+xd(y) for all x, y ∈ R.
Generally, we do not mention the derivation d associated with a generalized derivation F , rather
we call F , a generalized derivation. It is noteworthy that the concept of generalized derivation
includes the concept of derivation and generalized inner derivation and that of the left multipliers
when d = 0.

Several authors subsequently proved commutativity theorems for prime rings admitting deriva-
tions which are centralizing on R. This work was initiated by Posner [4] who proved that a prime
ring R admitting a non zero centralizing derivation is commutative. Since then a number of au-
thors have extended the Posner’s result in several directions. In [5], Vukman proved that if R
admits a non zero derivation d such that the mapping x → [d(x), x] is centralizing on R, then R
is commutative provided the characteristic of R is different from 2 and 3.

In this paper, we continue this line of investigation by considering more general situations.
More precisely, we are interested in the study of rings given as a quotient R/P where R is
an arbitrary ring and P is a prime ideal of R. In this work we are using a derivation and a
generalized derivation on R (and not on R/P ) which satisfies certain differential identities on R,
without assuming R to be a prime ring.

Many authors have recently examined the rings given as the quotient R/P . In [7], M.S. Khan
et. al. studied about the action of generalized derivations on prime ideals of an arbitrary ring
with involution. A generalization of Posner’s theorem for the quotient ring R/P is given by
Almahdi et. al. in [1].
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2 Commutativity of rings admitting generalized derivation

In the year 1992, Daif and Bell [3] obtained commutativity of semi-prime ring R satisfying
differential identity d([x, y]) = ±[x, y] for all x, y ∈ R. Later on, many authors explored com-
mutativity of prime and semi-prime rings satisfying various conditions on rings (for reference
see [2], [6], [7] and [8] where further references can be found).

In the present paper, we study these differential identities in the setting of generalized deriva-
tion on an arbitrary ring R. Infact we obtained the following results

Theorem 2.1. Let R be a ring and P be a prime ideal of R. If R admits a generalized derivation
F associated with a derivation d such that F ([p, q])− [p, q] ∈ P , then either d(R) ⊆ P or R/P
is commutative.

Proof. For any p, q in R, we have F ([p, q])− [p, q] ∈ P , which gives

F (p)q + pd(q)− F (q)p− qd(p)− [p, q] ∈ P for all p, q ∈ R. (2.1)

Replacing q by qr gives

F (p)qr+pd(q)r+pqd(r)−F (q)rp−qd(r)p−qrd(p)−q[p, r]− [p, q]r ∈ P for all p, q, r ∈ R.
(2.2)

Using (2.1), we have

F (q)pr+ qd(p)r+ pqd(r)−F (q)rp− qd(r)p− qrd(p)− q[p, r] ∈ P for all p, q, r ∈ R. (2.3)

Above equation results in

F (q)[p, r] + q[d(p), r] + q[p, d(r)] + [p, q]d(r)

− q[p, r] ∈ P for all p, q, r ∈ R.
(2.4)

Now, replacing r by rp, we get

F (q)[p, r]p+ qr[d(p), p] + q[d(p), r]p+ [p, q]d(r)p+ [p, q]rd(p) + q[p, d(r)]p

+ qr[p, d(p)] + q[p, r]d(p)− q[p, r]p ∈ P for all p, q, r ∈ R.
(2.5)

Using (2.4), we find that

qr[d(p), p] + [p, q]rd(p) + qr[p, d(p)] + q[p, r]d(p) ∈ P for all p, q, r ∈ R.

That is
[p, q]rd(p) + q[p, r]d(p) ∈ P for all p, q, r ∈ R. (2.6)

Now, replacing q by q1q, we obtain

q1[p, q]rd(p) + [p, q1]qrd(p) + q1q[p, r]d(p) ∈ P for all p, q, q1, r ∈ R. (2.7)

By (2.6), we have
[p, q1]qrd(p) ∈ P for all p, q1 ∈ R. (2.8)

That is
[p, q1]Rd(p)Rd(p) ⊆ P for all p, q1 ∈ R. (2.9)

By using the fact that P is prime, we get

[p, q1] ∈ P or d(p) ∈ P for all p, q1 ∈ R. (2.10)

Consequently, R is a union of two additive subgroups G1 and G2, where

G1 = {p ∈ R|d(p) ∈ P} and G2 = {p ∈ R|[R, p] ⊂ P}.

Since a group cannot be a union of two of its proper subgroups, As a result, we must determine
that either R = G1 or R = G2. Hence, either d(R) ⊆ P or R/P is commutative.
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Theorem 2.2. Let R be a ring and P be a prime ideal of R. If R admits a generalized derivation
F associated with a derivation d such that F ([p, q]) + [p, q] ∈ P , then either d(R) ⊆ P or R/P
is commutative.

Proof. For any p, q in R, we have F ([p, q]) + [p, q] ∈ P , which gives

F (p)q + pd(q)− F (q)p− qd(p) + [p, q] ∈ P for all p, q ∈ R. (2.11)

Replacing q by qr we obtain

F (p)qr + pd(q)r + pqd(r)− F (q)rp− qd(r)p− qrd(p)

+ q[p, r] + [p, q]r ∈ P for all p, q, r ∈ R.
(2.12)

Using (2.11), we have

F (q)[p, r] + q[d(p), r] + q[p, d(r)] + [p, q]d(r)

+ q[p, r] ∈ P for all p, q, r ∈ R.
(2.13)

Replacing r by rp, the equation (2.13) gives

F (q)[p, r]p+ qr[d(p), p] + q[d(p), r]p+ q[p, d(r)p+ rd(p)]

+ [p, q](d(r)p+ rd(p)) + q[p, r]p ∈ P for all p, q, r ∈ R.
(2.14)

Using (2.13), we find that

q[p, r]d(p) + [p, q]rd(p) ∈ P for all p, q, r ∈ R. (2.15)

Replacing q by q1q, we get

q1q[p, r]d(p) + q1[p, q]rd(p) + [p, q1]qrd(p) ∈ P for all p, q1, q, r ∈ R. (2.16)

Using (2.15), we have
[p, q1]qrd(p) ∈ P for all p, q1, q, r ∈ R. (2.17)

That is
[p, q1]Rd(p)Rd(p) ⊆ P for all p, q1 ∈ R. (2.18)

By using the fact that P is prime, we get

[p, q1] ∈ P or d(p) ∈ P for all p, q1 ∈ R.

Following on the same lines as above after (2.10), we find that either d(R) ⊆ P or R/P is
commutative.

Theorem 2.3. Let R be a ring, P be a prime ideal of R. If R admits a generalized derivation F
associated with a derivation d such that F (pq) − F (qp) ∈ P , then either d(R) ⊆ P or R/P is
commutative.

Proof. For any p, q in R, we have F (pq)− F (qp) ∈ P , which gives

F (p)q + pd(q)− F (q)p− qd(p) ∈ P for all p, q ∈ R. (2.19)

Replacing q by qp, we have

F (p)qp− F (q)pp− qd(p)p+ pd(q)p

+ pqd(p)− qpd(p) ∈ P for all p, q ∈ R.
(2.20)

Using (2.19), we have
pqd(p)− qpd(p) ∈ P for all p, q ∈ R. (2.21)

Which implies
[p, q]d(p) ∈ P for all p, q ∈ R. (2.22)
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Replacing q by qr, we get

q[p, r]d(p) + [p, q]rd(p) ∈ P for all p, q, r ∈ R. (2.23)

Using (2.22), we get
[p, q]rd(p) ∈ P for all p, q, r ∈ R. (2.24)

That is
[p, q]Rd(p) ⊆ P for all p, q ∈ R. (2.25)

Consequently, using similar arguments after (2.10), either d(R) ⊆ P or R/P is commutative.

Theorem 2.4. Let R be a ring and P be a prime ideal of R. If R admits a generalized derivation
F associated with a derivation d such that [F (p), q] − [p, F (q)] ∈ P , then either d(R) ⊆ P or
R/P is commutative.

Proof. For any p, q in R, we have

[F (p), q]− [p, F (q)] ∈ P for all p, q ∈ R. (2.26)

Replacing q by qr, we obtain

q([F (p), r]− [p, F (r)]) + ([F (p), q]− [p, F (q)])r + q[p, F (r)]

− F (q)[p, r]− q[p, d(r)]− [p, q]d(r) ∈ P for all p, q, r ∈ R.
(2.27)

Using (2.26), we have

F (q)[p, r] + q[p, d(r)] + [p, q]d(r)− q[p, F (r)] ∈ P for all p, q, r ∈ R. (2.28)

Replacing r by rp, we get

F (q)[p, r]p+ q[p, d(r)]p+ [p, q]d(r)p

+ [p, q]rd(p)− q[p, F (r)]p ∈ P for all p, q, r ∈ R.
(2.29)

Using (2.28), we get
[p, q]rd(p) ∈ P for all p, q, r ∈ R. (2.30)

That is
[p, q]Rd(p) ⊆ P for all p, q ∈ R. (2.31)

Hence, by similar arguments after (2.10), either d(R) ⊆ P or R/P is commutative.

Theorem 2.5. Let R be a ring and P be a prime ideal of R. If R admits a generalized derivation
F associated with a derivation d such that F (p ◦ q)− p ◦ q ∈ P , then either d(R) ⊆ P or R/P
is commutative.

Proof. For any p, q in R, we have F (p ◦ q)− p ◦ q ∈ P , which is

F (p)q + pd(q) + F (q)p+ qd(p)− p ◦ q ∈ P for all p, q ∈ R. (2.32)

Replacing q by qp, we get

F (p)qp+ pd(q)p+ pqd(p) + F (q)p2 + qd(p)p

+ qpd(p)− (p ◦ q)p ∈ P for all p, q ∈ R.
(2.33)

Using (2.32), we obtain
(p ◦ q)d(p) ∈ P for all p, q ∈ R. (2.34)

Replacing q by rq, we get

r(p ◦ q)d(p) + [p, r]qd(p) ∈ P for all p, q, r ∈ R. (2.35)

Using (2.34), we find that

[p, r]qd(p) ∈ P for all p, q, r ∈ R.

Which is
[p, r]Rd(p) ⊂ P for all p, r ∈ R. (2.36)

Using similar arguments as used in the proof of previous theorem we get the required result.
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Theorem 2.6. Let R be a ring and P be a prime ideal of R. If R admits a generalized derivation
F associated with a derivation d such that F ([p, q])− p ◦ q ∈ P , then either d(R) ⊆ P or R/P
is commutative.

Proof. For any p,q in R, we have F ([p, q])− p ◦ q ∈ P , which is

F (p)q + pd(q)− F (q)p− qd(p)− p ◦ q ∈ P for all p, q ∈ R. (2.37)

Replacing q by qr, we get

F (p)qr + pd(q)r + pqd(r)− F (q)rp− qd(r)p− qrd(p)

− (p ◦ q)r + q[p, r] ∈ P for all p, q, r ∈ R.
(2.38)

Using (2.37), we obtain

F (q)[p, r] + q[d(p), r] + q[p, d(r)] + [p, q]d(r) + q[p, r] ∈ P for all p, q, r ∈ R. (2.39)

Now, replacing r by rp, we find that

F (q)[p, r]p+ qr[d(p), p] + q[d(p), r]p+ q[p, d(r)]p+ q[p, rd(p)]

+ [p, q]d(r)p+ [p, q]rd(p) + q[p, r]p ∈ P for all p, q, r ∈ R.
(2.40)

Using (2.39), we get

[p, q]rd(p) + q[p, r]d(p) ∈ P for all p, q, r ∈ R. (2.41)

Replacing q by q1q, we get

[p, q1]qrd(p) ∈ P for all p, q, q1, r ∈ R. (2.42)

That is
[p, q1]Rd(p)Rd(p) ⊆ P for all p, q1 ∈ R. (2.43)

By using the fact that P is prime, we get

[p, q1] ∈ P or d(p) ∈ P for all p, q1 ∈ R.

Following on the same lines as above, we obtain that either d(R) ⊆ P orR/P is commutative.

Theorem 2.7. Let R be a ring and P be a prime ideal of R. If R admits a generalized derivation
F associated with a derivation d such that F (p ◦ q)− [p, q] ∈ P , then either d(R) ⊆ P or R/P
is commutative.

Proof. For any p,q in R, we have F (p ◦ q)− [p, q] ∈ P , which is

F (p)q + pd(q) + F (q)p+ qd(p)− [p, q] ∈ P for all p, q ∈ R. (2.44)

Replacing q by qr, we get

F (p)qr + pd(q)r + pqd(r) + F (q)rp+ qd(r)p+ qrd(p)

− q[p, r]− [p, q]r ∈ p for all p, q, r ∈ R.
(2.45)

Using (2.44), we get

F (q)[r, p] + q[r, d(p)] + (p ◦ q)d(r)
− q[p, d(r)]− q[p, r] ∈ P for all p, q, r ∈ R.

(2.46)

Now, replacing r by p
(p ◦ q)d(p) ∈ P for all p, q, r ∈ R. (2.47)

Replacing q by rq, we obtain

r(p ◦ q)d(p) + [p, r]qd(p) ∈ P for all p, q ∈ R. (2.48)
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Using (2.47), we get
[p, r]qd(p) ∈ P for all p, q, r ∈ R. (2.49)

That is
[p, r]Rd(p) ⊆ P for all p, r ∈ R. (2.50)

By using the fact that P is prime, we get

[p, r] ∈ P or d(p) ∈ P for all p, r ∈ R.

Following on the same lines as above, we conclude that either d(R) ⊆ P or R/P is commutative.

References
[1] F. A. Almahdi, A. Mamouni and M. Tamekkante, A generalization of Posner’s theorem on derivation in

Rings, Indian J. Pure Appl. Math., 51, 187–194, (2020).

[2] M. Ashraf and N. Rehman, Generalized Derivation in Rings, Comm. Alg., 26 (4), 1147–1166, (1998).

[3] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. and Math. Sci,
15, 205–206, (1992).

[4] E. C. Posner, Derivation in prime rings, Proc. Amer. Math. Soc., 8, 1093–1100, (1957).

[5] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc., 109, 47–52,
(1990).

[6] M. R. Mozumder, N. A. Dar, A. Abbasi, Study of commutativity theorems in rings with involution, Palest.
J. Math., 11(3), 394–401, (2022).

[7] M. S. Khan, A. Abbasi, S. Ali and M. Ayedh, On prime ideals with generalized derivations in rings with
involution, Contemp. Math., 785, 179–195, (2023).

[8] N. Rehman, M. A. Raza and S. A. Pary, A note on generalized derivations of prime and semiprime rings,
Palest. J. Math., 7, 1–5, (2018).

Author information
Uzma Naaz, Department of Mathematics & Statistics, Integral University, Lucknow, India.
E-mail: naazuzma11@gmail.com

Malik Rashid Jamal, Department of Mathematics & Statistics, Integral University, Lucknow, India.
E-mail: rashidmaths@gmail.com

Received: 2023-08-29

Accepted: 2023-11-04


	1 Introduction
	2 Commutativity of rings admitting generalized derivation

