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Abstract The main objective of this study is to introduce and analyze the Narayana-Lucas hybrinomial sequence. We
thoroughly analyze different elements of this sequence, including the recurrence relation, matrix representation, generating
function, Binet’s formula, exponential generating function, and Poisson generating function. In addition, we investigate
numerous well-known identities, including the Catalan identity, the Cassini identity, the d’Ocagne identity, the Gelin-Cesaro
identity, and the Melham identity, related to this newly formed sequence. Finally, we provide the source Maple 13 code.

1 Introduction
In the 14th century, Indian mathematician Narayana studied the problem of a herd of cows and calves, which resulted in
the development of the Narayana numbers[1, 2]. The problem posed was as follows: At the beginning of each year, a cow
produces one calf. Starting from the fourth year, each calf then produces one calf at the beginning of each subsequent year.
How many calves are there in total after 20 years?[1]. This problem bears resemblance to the Fibonacci rabbit problem,
and just as Fibonacci solved the rabbit problem[3], the Narayana cow problem can be similarly addressed. In Narayana se-
quence, denoted by Nm, the recurrence relation is defined as Nm+3 = Nm+2 +Nm for all m ≥ 0, with initial conditions
N0 = 2, N1 = 3, and N2 = 4 [4]. Recently, there has been significant interest in the Narayana sequence and Narayana-like
sequences along with their generalization, as evidenced by various studies [4, 5, 6, 7, 8, 9, 10, 11]. Lucas numbers are the
numbers in the integer sequence defined by the recurrence relation Lm = Lm−1 + Lm−2 for all m > 1 with initial condi-
tions L0 = 2 and L1 = 1. The Lucas numbers are also closely related to the Fibonacci sequence. In [12] the author defined a
new recurrence relation which is called k-Lucas numbers. In [7] author described the generalization of Narayana’s numbers
as well as two further special cases, the Narayana-Lucas Sequence and Narayana-Perrin sequence, and also defined some of
their identities. The recurrence relation for Narayana-Lucas sequence is defined as Um+3 = Um+2 + Um for all m ≥ 0
with initial conditions U0 = 3, U1 = 1, U2 = 1.
In the work by Özedmir [13], the pioneering exploration into hybrid numbers was presented. Hybrid numbers constitute a
novel amalgamation of real, complex, hyperbolic, and dual numbers.

The collection of hybrid numbers, denoted as H , is formally characterized as follows:

H = {z = a + bι + cϵ + dh; a, b, c, d ∈ R}

Here, the operators ι, ϵ, and h are introduced with specific properties: ι2 = −1, ϵ2 = 0, h2 = 1, and ιh = −hι = ϵ + ι.
The relationship of a hybrid number z with its conjugate is expressed as:

z = a + bι + cϵ + dh = a− bι− cϵ− dh.

The character of hybrid numbers z is defined as the real numbers C(z) = zz = zz = a2 + b2 − 2bc− d2 and the norm of
hybrid numbers z is defined as

√
|C(z)| and denoted by ∥z∥ [13]. Hybrid numbers with various sequences such as Jacob-

sthal and Jacobsthal hybrid numbers, have earned a lot of interest recently [14]. In [15, 16, 17, 18, 19] the authors expanded
the Padvon, Perrin, Fibonacci, Lucas and k- Pell hybrid sequence and studied their several identities.
In the development of science and technology, integer sequences have played a significant role and are extensively used, par-
ticularly in mathematics and various other fields of science. Hybrid numbers represent a fresh extension encompassing real,
complex, hyperbolic and dual numbers. They find extensive utility across diverse mathematical domains and hold pragmatic
significance in scientific investigations, design endeavors, and speculative areas of physical science. These sequences find
applications in various fields such as algebra, number theory and geometry [20, 21].

In the context of classical studies, the behavior of the Narayana sequence is almost similar to the Fibonacci sequence
but distinct in terms of their order of occurrence, as well as their treatment of limiting ratios. The study of the Narayana
sequence and the Narayana-Lucas hybrinomial sequence can lead to various practical and theoretical applications in distinct
fields. Examples of direct and indirect applications of these sequences in different fields may include graph theory, number
theory, group theory, cryptography, architecture, stereographic techniques, and more. The novelty in our results is that, due
to the additional complexity introduced by the Narayana-Lucas hybrinomial sequence, its study becomes a matter of interest
in this direction.

In the present paper, our focus revolves around the Narayana-Lucas hybrinomial sequence. We delve an insight into its
properties, including the determination of generating functions, Binet’s formula, and the exploration of renowned identities
such as Catalan’s identity, Cassini’s identity, d’Ocagne identity, Gelin-Cesaro identity, and Melham’s identity. By investigat-
ing these aspects, our aim is to enhance the understanding and applicability of the Narayana-Lucas hybrinomial sequence in
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different fields of science.

2 Naryana-Lucas Hybrinomial Sequence
The present section aims to define the Narayana-Lucas hybrinomial sequence and then some simple findings related to
Narayana-Lucas hybrinomial sequence.

Definition 2.1. Narayana polynomial sequence in [4] is defined by

Nm(r) =


2, m = 0,
3, m = 1,
4, m = 2,
rNm−1(r) +Nm−3(r), m ≥ 3.

The first few terms of Nm(r) are :
2, 3, 4, 4r + 2, 4r2 + 2r + 3, 4r3 + 2r2 + 3r + 4, · · ·

Definition 2.2. Narayana-Lucas polynomial sequence in [7] is defined by

Um(r) =


3, m=0,
1, m=1,
1, m=2,
rUm−1(r) + Um−3(r), m ≥ 3.

The first few terms of Um(r) are
3, 1, 1, r + 3, r2 + 3r + 1, r3 + 3r2 + r + 1, · · ·

Definition 2.3. Narayana-Lucas hybrinomial sequence denoted by {HUm(r)} is defined by

HUm(r) = Um(r) + Um+1(r)ι + Um+2(r)ϵ + Um+3(r)h, (2.1)

where Um(r) is the Narayana-Lucas polynomial sequence. Consequently, certain initial values for the Narayana-Lucas
hybrinomial sequence are:

HU0(r) =3 + ι + ϵ + (r + 3)h,

HU1(r) =1 + ι + (r + 3)ϵ + (r2 + 3r + 1)h,

HU2(r) =1 + (r + 3)ι + (r2 + 3r + 1)ϵ + (r3 + 3r2 + r + 1)h,

HU3(r) =(r + 3) + (r2 + 3r + 1)ι + (r3 + 3r2 + r + 1)ϵ

+ (r4 + 3r3 + r2 + 2r + 3)h.

Considering the definition of the Narayana-Lucas hybrinomial sequence for the case r = 1, it becomes apparent that

HU0(1) =3 + ι + ϵ + 4h,

HU1(1) =1 + ι + 4ϵ + 5h,

HU2(1) =1 + 4ι + 5ϵ + 6h,

HU3(1) =4 + 5ι + 6ϵ + 10h.

Therefore, we can say that the Narayana-Lucas hybrinomial sequence {HUm(r)} is a generalization of the Narayana-Lucas
hybrid numbers.
The norm of the Narayana-Lucas hybrinomial sequence can be easily deduced from the definition of a hybrinomial sequence
(by following the similar steps mentioned in [4]), which is given by:

∥HUm(r)∥ =
√

C(HUm(r))

=
√

|U2
m(r) + U2

m+1(r)− 2Um+1(r)Um+2(r)− U2
m+3(r)|

∥HUm(r)∥2 =|U2
m(r) + U2

m+1(r)− 2Um+1(r)Um+2(r)− U2
m+3(r)|

=|(Um+3(r)− rUm+2(r))
2 + U2

m+1(r)− 2Um+1(r)Um+2(r)

−U2
m+3(r)|

=|U2
m+3(r) + r2U2

m+2(r)− 2rUm+3(r)Um+2(r) + U2
m+1(r)

−2Um+1(r)Um+2(r)− U2
m+3(r)|

=|U2
m+1(r) + Um+2(r)(r

2Um+2(r)− 2rUm+3(r)− 2Um+1(r))|

=|U2
m+1(r)− Um+2(r)(r

2Um+2(r) + 2rUm+1(r) + 2Um(r))|

∥HUm(r)∥2 =|U2
m+1(r)− Um+2(r)(r

2Um+2(r) + 2rUm+1(r) + 2Um(r))|.
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Lemma 2.4. Let {HUm(r)} represents the Narayana-Lucas hybrinomial sequence, where m is a non-negative integer. Then
the recurrence relation is given by:

HUm(r) = rHUm−1(r) +HUm−3(r).

Proof. From (2.1), we have

HUm(r)− rHUm−1(r)−HUm−3(r) = (Um(r)− rUm−1(r) + Um−3(r))+

(Um+1(r)− rUm(r) + Um−2(r))ι + (Um+2(r)− rUm+1(r)− Um−1(r))ϵ

+(Um+3(r)− rUm+2(r)− Um(r))h,

as Um(r) forms a Narayana polynomial sequence, the result is that the right-hand side of the aforementioned equation equals
zero. This leads us to the conclusion that

HUm(r)− rHUm−1(r)−HUm−3(r) = 0.

Thus the proof is completed.

2.1 Matrix representation of Narayana-Lucas Hybrinomial Sequence
Özedmir [13] provide the following relation to describe the matrix representation of the hybrinomial sequence :

M(a + bι + cϵ + dh) =

[
a + c b− c + d

c− b + d a− c

]
,

Now, we represent the Narayana-Lucas hybrinomial sequence of order m in the 2×2 matrix as:

MHUm (r) =

[
Um(r) + Um+2(r) Um+1(r) + (r − 1)Um+2(r) + Um(r)

(r − 1)Um+1(r) + Um−1(r) + Um+3(r) Um(r)− Um+2(r)

]
.

The hybrid matrix corresponding to the Narayana-Lucas hybrinomial sequence {HUm(r)} shall be referred to as {MHUm(r)}.

Proposition 2.5. Consider MHUm (r) as the matrix representation of the Narayana-Lucas hybrinomial sequence {HUm(r)}.
In this context, the following relationship is valid:

∥HUm(r)∥2 = det(MHUm (r)).

3 Generating Function, Binet’s formula and exponential generating function
for Narayana-Lucas Hybrinomial Sequence

The aim of this section is to represent the generating function and Binet’s formula for the Narayana-Lucas hybrinomial
sequence, which is further followed by an important corollary representing the exponential generating function corresponding
to the newly formed Narayana Lucas hybrinomial sequence.

Theorem 3.1. Let {HUm(r)} be the Narayana-Lucas hybrinomial sequence. Then the generating function for {HUm(r)}
can be written as:

g(t) =
∞∑

m=0

HUm(r)tm

=
HU0(r) + (HU1(r)−HU0(r))t + (HU2(r)−HU1(r))t

2

1 − rt− t3
.

Proof. Let us consider the following formal power series to be the generating function for the Narayana-Lucas hybrinomial
sequence as:

g(t) =

∞∑
m=0

HUm(r)tm = HU0(r) +HU1(r)t +HU2(r)t
2 + ...

Then we have,

rtg(t) = rHU0(r)t + rHU1(r)t
2 + rHU2(r)t

3 + ...

t3g(t) = HU0(r)t
3 +HU1(r)t

4 +HU2(r)t
5 + ...

Therefore we get

g(t)− rtg(t)− t3g(t) =(HU0(r) +HU1(r)t +HU2(r)t
2 + ...)− (rHU0(r)t + rHU1(r)t

2 + rU2(r)t
3 + ...)

− (HU0(r)t
3 +HU1(r)t

4 +HU2(r)t
5 + ...)

g(t)(1 − rt− t3) =HU0(r) + (HU1(r)− rHU0(r))t + (HU2(r)− rHU1(r))t
2
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g(t) =
HU0(r) + (HU1(r)− rHU0(r))t + (HU2(r)− rHU1(r))t

2

(1 − rt− t3)

g(t) =

∞∑
m=0

HUn(r)t
m

=
HU0(r) + (HU1(r)− rHU0(r))t + (HU2(r)− rHU1(r))t

2

(1 − rt− t3)
.

Thus the proof is completed.

Now, Binet’s formula is provided in the following theorem for this sequence:

Theorem 3.2. Let {HUm(r)} be the Narayana-Lucas hybrinomial sequence. Then the Binet’s formula for {HUm(r)} can
be written as:

HUm = (1 + µι + µ2ϵ + µ3h)µm + (1 + νι + ν2ϵ + ν3h)νm + (1 + λι + λ2ϵ + λ3h)λm,

where,

µ =
1
3
+

(
29
54

+

√
31

108

) 1
3

+

(
29
54

−
√

31
108

) 1
3

,

ν =
1
3
+ w

(
29
54

+

√
31

108

) 1
3

+ w2

(
29
54

−
√

31
108

) 1
3

,

λ =
1
3
+ w2

(
29
54

+

√
31

108

) 1
3

+ w

(
29
54

−
√

31
108

) 1
3

,

where

w =
−1 + ι

√
3

2
= exp

(
2πι

3

)
,

and µ, ν, λ are the characteristics roots of equation 1 − rt− t3.

Proof. By the definition of the Narayana-Lucas hybrinomial sequence from (2.1) and Narayana-Lucas sequences. From[?],
we have

Um = µm + νm + λm,

where

µ =
1
3
+

(
29
54

+

√
31

108

) 1
3

+

(
29
54

−
√

31
108

) 1
3

,

ν =
1
3
+ w

(
29
54

+

√
31

108

) 1
3

+ w2

(
29
54

−
√

31
108

) 1
3

,

λ =
1
3
+ w2

(
29
54

+

√
31

108

) 1
3

+ w

(
29
54

−
√

31
108

) 1
3

.

Thus, we get

HUm(r) =(µm + νm + λm) + (µm+1 + νm+1 + λm+1)ι + (µm+2 + νm+2 + λm+2)ϵ

+ (µm+3 + νm+3 + λm+3)h

=µm + ιµm+1 + ϵµm+2 + hµm+3 + νm + ινm+1 + ϵνm+2 + hνm+3

+ λm + ιλm+1 + ϵλm+2 + hλm+3

HUm(r) =(1 + ιµ + ϵµ2 + hµ3)µm + (1 + ιν + ϵν2 + hν3)νm

+ (1 + ιλ + ϵλ2 + hλ3)λm.

Thus the proof is completed.

Corollary 3.3. Consider the Narayana-Lucas hybrinomial sequence denoted as {HUm(r)}. Then the exponential generat-
ing function corresponding to {HUm(r)} can be expressed as follows:

∞∑
m=0

HUm(r)
tm

m!
= (1 + µι + µ2ϵ + µ3h)eµt + (1 + νι + ν2ϵ + ν3h)eνt

+(1 + λι + λ2ϵ + λ3h)eλt.
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Proof. Through the utilization of Binet’s formula for the Narayana-Lucas hybrinomial sequence, we obtain:

∞∑
m=0

HUm(r)
tm

m!
=

∞∑
m=0

[(1 + µι + µ2ϵ + µ3h)µm + (1 + νι + ν2ϵ + ν3h)νm

+(1 + λι + λ2ϵ + λ3h)λm]
tm

m!
,

=
[
(1 + µι + µ2ϵ + µ3h)

] ∞∑
m=0

(µt)m

m!
+
[
(1 + νι + ν2ϵ + ν3h)

] ∞∑
m=0

(νt)m

m!

+
[
(1 + λι + λ2ϵ + λ3h)

] ∞∑
m=0

(λt)m

m!
,

= (1 + µι + µ2ϵ + µ3h)eµt + (1 + νι + ν2ϵ + ν3h)eνt + (1 + λι + λ2ϵ + λ3h)eλt.

Thus we get the result.

Corollary 3.4. Consider the Narayana-Lucas hybrinomial sequence denoted as {HUm(r)}. Then the Poisson generating
function corresponding to {HUm(r)} can be expressed as follows:

∞∑
m=0

HUm(r)
tm

m!
e−t =

1
et

(
(1 + µι + µ2ϵ + µ3h)eµt + (1 + νι + ν2ϵ + ν3h)eνt + (1 + λι + λ2ϵ + λ3h)eλt

)
.

Proof. Through the utilization of Binet’s formula for the Narayana-Lucas hybrinomial sequence, we obtain:

∞∑
m=0

HUm(r)
tm

m!
e−t =

∞∑
m=0

[(1 + µι + µ2ϵ + µ3h)µm + (1 + νι + ν2ϵ + ν3h)νm

+(1 + λι + λ2ϵ + λ3h)λm]
tm

m!
e−t,

=
1
et

[
(1 + µι + µ2ϵ + µ3h)

] ∞∑
m=0

(µt)m

m!
+

1
et

[
(1 + νι + ν2ϵ + ν3h)

] ∞∑
m=0

(νt)m

m!

+
1
et

[
(1 + λι + λ2ϵ + λ3h)

] ∞∑
m=0

(λt)m

m!
,

=
1
et

(
(1 + µι + µ2ϵ + µ3h)eµt + (1 + νι + ν2ϵ + ν3h)eνt + (1 + λι + λ2ϵ + λ3h)eλt

)
.

Thus we get the result.

4 Some identities involving Narayana-Lucas Hybrinomial Sequence
Theorem 4.1. (Catalan’s Identity) Let {HUm(r)} is the Narayana-Lucas hybrinomial sequence. For any integers m and s
where m ≥ s, the subsequent identity is valid:

HUm−s(r)HUm+s(r)− (HUm(r))2 =δ1δ2µ
mνm(µsν−s − 2)µm+1νm−1 + δ2δ1ν

m+1µm−1 + δ1δ3µ
mλm

(µsλ−s − 2) + δ3δ1λ
m+1µm−1 + δ2δ3ν

mλm(νsλ−s − 2) + δ3δ2λ
m+1

νm−1,

where

δ1 =(1 + µι + µ2ϵ + µ3h),

δ2 =(1 + νι + ν2ϵ + ν3h),

δ3 =(1 + λι + λ2ϵ + λ3h).

Proof. Using theorem (3.2), we have

HUm−s(r)HUm+s(r)− (HUm(r))2 =(δ1µ
m−s + δ2ν

m−s + δ3λ
m−s)(δ1µ

m+s + δ2ν
m+s + δ3λ

m+s)

− (δ1µ
m + δ2ν

m + δ3λ
m)2,

where

δ1 =(1 + µι + µ2ϵ + µ3h),

δ2 =(1 + νι + ν2ϵ + ν3h),

δ3 =(1 + λι + λ2ϵ + λ3h).
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Now we get

HUm−s(r)HUm+s(r)− (HUm(r))2 =(δ2
1µ

2m + δ1δ2µ
m+sνm−s + δ1δ3µ

m+sλm−s + δ2δ1ν
m+sµm−s

+ δ2
2ν

2m + δ2δ3ν
m+sλm−s + δ3δ1λ

m+sµm−s + δ3δ2λ
m+sνm−s

+ δ2
3λ

2m)− (δ2
1µ

2m + δ2
2ν

2m + δ2
3λ

2m + 2δ1δ2µ
mνm + 2δ1δ3

µmλm + 2δ2δ3ν
mλm)

=(δ1δ2µ
m+sνm−s + δ2δ1ν

m+sµm−s − 2δ1δ2µ
mνm) + (δ1δ3µ

m+s

λm−s + δ3δ1λ
m+sµm−s − 2δ1δ3µ

mλm) + (δ2δ3ν
m+sλm−s

+ δ3δ2λ
m+sνm−s − 2δ2δ3ν

mλm)

=δ1δ2µ
mνm(µsν−s − 2)µm+1νm−1 + δ2δ1ν

m+1µm−1 + δ1δ3µ
mλm

(µsλ−s − 2) + δ3δ1λ
m+1µm−1 + δ2δ3ν

mλm(νsλ−s − 2) + δ3δ2λ
m+1

νm−1.

Thus the proof is completed.

Theorem 4.2 (Cassini’s Identity). Let {HUm(r)} is the mth Narayana-Lucas hybrinomial sequence. For m to be any
positive integer, the following identity holds:

HUm−1(r)HUm+1(r)− (HUm(r))2 =(δ1δ2µ
mνm(µν−1 − 2)µm+1νm−1 + δ2δ1ν

m+1µm−1) + (δ1δ3µ
mλm

(µλ−1 − 2) + δ3δ1λ
m+1µm−1) + (δ2δ3ν

mλm(νλ−1 − 2) + δ3δ2λ
m+1

νm−1 − 2δ2δ3ν
mλm),

where

δ1 =(1 + µι + µ2ϵ + µ3h),

δ2 =(1 + νι + ν2ϵ + ν3h),

δ3 =(1 + λι + λ2ϵ + λ3h).

Proof. It can be demonstrated by substituting s = 1 for the Narayana-Lucas hybrinomial sequence in the theorem (4.1).

Theorem 4.3 (d’Ocagne Identity). Let {HUm(r)} is the mth Narayana-Lucas hybrinomial sequence. For all integers p and
m with p ≥ m + 1, the following identity holds:

HUp(r)HUm+1(r)−HUp+1(r)HUm(r) =δ1δ2µ
pνm(ν − µ) + δ2δ1ν

pµm(µ− ν) + δ2δ3ν
pλm(λ− ν)

+ δ3δ2λ
pνm(ν − λ) + δ1δ3µ

pλm(λ− µ) + δ3δ1λ
pµm(µ− ν),

where

δ1 = (1 + µι + µ2ϵ + µ3h),

δ2 = (1 + νι + ν2ϵ + ν3h),

δ3 = (1 + λι + λ2ϵ + λ3h).

Proof. Using theorem (3.2), we have

HUp(r)HUm+1(r)−HUp+1(r)HUm(r) =(δ1µ
p + δ2ν

p + δ3λ
p) + (δ1µ

m+1 + δ2ν
m+1 + δ3λ

m+1)

− (δ1µ
p+1 + δ2ν

p+1 + δ3λ
m),

where

δ1 = (1 + µι + µ2ϵ + µ3h),

δ2 = (1 + νι + ν2ϵ + ν3h),

δ3 = (1 + λι + λ2ϵ + λ3h).

Now we get

HUp(r)HUm+1(r)−HUp+1(r)HUm(r) =(δ2
1µ

p+m+1 + δ1δ2µ
pνm+1 + δ1δ3µ

pλm+1 + δ2δ1ν
pµm+1

+ δ2
2ν

p+m+1 + δ2δ3ν
pλm+1 + δ3δ1λ

pµm+1 + δ3δ2λ
pνm+1

+ δ2
3λ

p+m+1)− (δ2
1µ

p+m+1 + δ1δ2µ
p+1νm

+ δ1δ3µ
p+1λm + δ2δ1ν

p+1µm + δ2
2ν

p+m+1 + δ2δ3ν
p+1λm

+ δ3δ1λ
p+1µm + δ2

3λ
p+m+1)

=δ1δ2µ
pνm(ν − µ) + δ2δ1ν

pµm(µ− ν) + δ2δ3ν
pλm(λ− ν)

+ δ3δ2λ
pνm(ν − λ) + δ1δ3µ

pλm(λ− µ) + δ3δ1λ
pµm(µ− ν).

Thus the proof is completed.
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Theorem 4.4 (Gelin-Cesaro’s Identity). Let {HUm(r)} is the mth Narayana-Lucas hybrinomial sequence. For m to be any
positive integer, the following identity holds:

HUm+2(r)HUm+1(r)HUm−1(r)HUm−2(r)− (HUm)4(r) = (δ1µ
m+2(r) + δ2ν

m+2(r) + δ3λ
m+2(r))

(δ1µ
m+1(r) + δ2ν

m+1(x) + δ3λ
m+1(r))(δ1µ

m−1(r) + δ2ν
m−1(r)

+ δ3λ
m−1(r))(δ1µ

m−2(r) + δ2ν
m−2(r) + δ3λ

m−2(r))− (δ1µ
m(r) + δ2ν

m(r) + δ3λ
m(r)),

where

δ1 =(1 + µι + µ2ϵ + µ3h),

δ2 =(1 + νι + ν2ϵ + ν3h),

δ3 =(1 + λι + λ2ϵ + λ3h).

Proof. Considering Binet’s formula from theorem (3.2) and making some necessary calculations, the above expression is
obtained.

Theorem 4.5 (Melham’s Identity). Let {HUm(r)} is the mth Narayana-Lucas hybrinomial sequence. For m to be any
positive integer, the following identity holds:

HUm+1(r)HUm+2(r)HUm+6(r)− (HUm+3)
2(r) = (δ1µ

m+1(r) + δ2ν
m+1(r) + δ3λ

m+1(r))(δ1µ
m+2(r)

+ δ2ν
m+2(r) + δ3λ

m+2(r))(δ1µ
m+6(r) + δ2ν

m+6(r) + δ3λ
m+6(r))− (δ1µ

m+3(r) + δ2ν
m+3(r) + δ3λ

m+3(r))2,

where

δ1 =(1 + µι + µ2ϵ + µ3h),

δ2 =(1 + νι + ν2ϵ + ν3h),

δ3 =(1 + λι + λ2ϵ + λ3h).

Proof. Considering Binet’s formula from theorem (3.2) and making some necessary calculations, the above expression is
obtained.

Algorithm 1 Maple 13 source code for the Narayana-Lucas hybrinomial sequence
ApplyFunction:=proc(m :: nonnegint)
optionremember;
if m ≥ 3 then

returnApplyFunction(m− 1) +ApplyFunction(m− 3);
else

return[3, 1, 1, 4][m+ 1]; # Use index m + 1 to match 0 − based indexing
end if
end proc;
epsilon_squared := 0;
h_squared : = 1;
iota_squared : = −1;
iota_ast h_equals : = −h ∗ ι = (epsilon + ι);
m : = 0; # Intial value of m
while true do

HU :=ApplyFunction(U) + ι ·ApplyFunction(U + 1) + epsilon ·ApplyFunction(U + 2)

+ h ·ApplyFunction(U + 3);

# Update the values of m
m : = m+ 1;
end do

5 Conclusion remarks
In this paper, we have introduced the Narayana-Lucas hybrinomial sequence and its recurrence relation. We also discussed
the matrix representation, generating functions, Binet’s formula, exponential generating functions, and Poisson generating
functions for the Narayana-Lucas hybrinomial sequence. We also introduced several well-known identities, including Cata-
lan’s identity, Cassini’s identity, d’Ocagne’s identity, Gelin-Cesaro’s identity, and Melham’s identity, for this newly formed
Narayana-Lucas hybrinomial sequence. In the last, we have also provided the Maple 13 source code (in Algorithm 1) for the
Narayana-Lucas hybrinomial sequence.
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