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Abstract In 1988, D. Hickerson gives a proof of the mock theta conjectures using Hecke-type
identities discovered by G.E. Andrews [11]. In 2008, A. Folsom provide a short proof for the
same by realizing each side of the identities as the holomorphic projection of a harmonic weak
Maass form, in respons to a remark made by Bringmann - Ono - Rhoades [10]. Both of these
approaches involve proving the identities individually, relying on work of Andrews–Garvan.
Recently, N. Andersen give a unified proof of the mock theta conjectures by realizing them as an
equality between two nonholomorphic vector-valued modular forms which transform according
to the Weil representation. Here we give a combinatorial proof for the mock theta conjectures in
response of a open problem stated by M.P.Chaudhary [7].

1 Introduction

In his last letter to Hardy, dated three months before his death in early 1920, (see [7, Pages 33-
34], [13, Pages 354-355] and [15, Pages 127-131]), Ramanujan gave a list of 17 functions which
he called "mock theta functions". He separated these functions into three groups, which were
described as four of third order, ten of fifth order, and three of seventh order. Further, the fifth
order mock theta functions he divided into two groups. The mock theta functions are functions
of a complex variable q, defined by q-series convergent for |q| < 1. He stated that they have
certain asymptotic properties as q approaches a root of unity, similar to the properties of theta
functions, but he conjectured that they are not, in fact, theta functions. He also stated some
identities relating some of the functions to each other.

We start by defining some q-products and q-series identities after we giveR(1,0)(0, q),R(2,0)(3, q)
and R(2,1)(3, q) in q-series and q-products forms using two different methods , then we give sim-
pler identities for showing the conjectures of mock theta functions.

Throughout this paper, we denote by N, Z, and C the set of positive integers, the set of
integers and the set of complex numbers respectively. We also let

N0 := N ∪ {0} = {0, 1, 2, · · · }.

The q-shifted factorial (a; q)n is defined (for |q| < 1) by

(a; q)n :=


1 (n = 0),

n−1∏
k=0

(1 − aqk) (n ∈ N),
(1)

where a, q ∈ C and it is assumed tacitly that a ̸= q−m (m ∈ N0). We also write
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(a; q)∞ :=
∞∏
n=0

(1 − aqn) =
∞∏
n=1

(1 − aqn−1), (a, q ∈ C; |q| < 1). (2)

It should be noted that, when a ̸= 0 and |q| ≧ 1, the infinite product in the equation (2) di-
verges. So, whenever (a; q)∞ is involved in a given formula, the constraint |q| < 1 will be tacitly
assumed to be satisfied. The following notations are also frequently used in our investigation:

(a1, a2, a3 . . . ak; q)n = (a1; q)n(a2; q)n(a3; q)n . . . (ak; q)n

and
(a1, a2, a3 . . . ak; q)∞ = (a1; q)∞(a2; q)∞(a3; q)∞ . . . (ak; q)∞.

Ramanujan (see [14, 15, 6, page 13]) defined the general theta function f(a, b) as follows:

f(a, b) = 1 +
∞∑
n=1

(ab)
n(n−1)

2 (an + bn) =
∞∑

n=−∞
a

n(n+1)
2 b

n(n−1)
2 = f(b, a), (|ab| < 1), (3)

where a and b are two complex numbers. The three most important special cases of f(a, b) are
defined as:

ϕ(q) = f(q, q) = 1 + 2
∞∑
n=1

qn
2
= (−q; q2)2

∞(q2; q2)∞ =
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

, (4)

ψ(q) = f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

(5)

and

f(−q) = f(−q,−q2) =
+∞∑

n=−∞
(−1)nq

n(3n−1)
2 = (q; q)∞. (6)

The last equality (6) is known as Euler’s Pentagonal Number Theorem. Remarkably, the follow-
ing q-series identity:

(−q; q)∞ =
1

(q; q2)∞
=

1
χ(−q)

.

provides the analytic equivalent form of Euler’s famous theorem. Ramanujan also defined the
following function

χ(q) = (−q; q2)∞.

We also recall the Rogers-Ramanujan continued fraction R(q) given by

R(q) := q
1
5
H(q)

G(q)
= q

1
5
f(−q,−q4)

f(−q2,−q3)
= q

1
5
(q; q5)∞ (q4; q5)∞
(q2; q5)∞ (q3; q5)∞

=
q

1
5

1+
q

1+
q2

1+
q3

1+
(|q| < 1). (7)

Here G(q) and H(q), which are associated with the widely-investigated Roger-Ramanujan iden-
tities, are defined as follows:

G(q) :=
∞∑
n=0

qn
2

(q; q)n
=

f(−q5)

f(−q,−q4)

=
1

(q; q5)∞ (q4; q5)∞
=

(q2; q5)∞ (q3; q5)∞ (q5; q5)∞
(q; q)∞

(8)

and

H(q) :=
∞∑
n=0

qn(n+1)

(q; q)n
=

f(−q5)

f(−q2,−q3)
=

1
(q2; q5)∞ (q3; q5)∞

=
(q; q5)∞ (q4; q5)∞ (q5; q5)∞

(q; q)∞
, (9)
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where the functions f(a, b) and f(−q) are given by the equations (3) and (6), respectively.

Remark. In (8), the left side can be interpreted as the generating series of partitions of n such
that two adjacent parts differ by at least 2 and the right side is the the generating function of
partitions of n into parts congruent to 1 or 4 modulo 5. In (9), the left-hand side is the generating
series of partitions of n such that two adjacent parts differ by at least 2 and the smallest part is at
minus 2 and the right side is the generating function of partitions such that each part is congruent
to 2 or 3 modulo 5. Then, the number of partitions of n such that two adjacent parts differ by at
least 2 is equal to the number of partitions of n such that each part is congruent to 1 or 4 modulo 5
and the number of partitions of n such that two adjacent parts differ by at least 2 and the smallest
part is at least 2 is equal to the number of partitions of n such that each part is congruent to 2 or
3 modulo 5.

2 Fifth Order Mock Theta Functions

Watson [17] (see also [7]) define the following two identies

χ0(q) =
∞∑
n≥0

qn

(qn+1; q)n
(10)

and

χ1(q) =
∞∑
n≥0

qn

(qn+1; q)n+1
, (11)

where all symbols and notations are having their usual meaning.
Combinatorial interpretations: qχ1(q) is the generating function for partitions in which no
part is as large as twice the smallest part and χ0(q) is the generating function for partitions with
unique smallest part and the largest part at most twice the smallest part.

Zwegers [16] (see also [7]) has found the following two identities for fifth-order mock theta
functions χ0(q) and χ1(q) as follows:

χ0(q) = 2− 1
(q)2

∞

 ∑
k,l,m≥0

+
∑

k,l,m<0

 (−1)k+l+mq
1
2 k

2+ 1
2 l

2+ 1
2 m

2+2km+2kl+2lm+1/2(k+l+m) (12)

and

χ1(q) =
1

(q)2
∞

 ∑
k,l,m≥0

+
∑

k,l,m<0

 (−1)k+l+mq
1
2 k

2+ 1
2 l

2+ 1
2 m

2+2km+2kl+2lm+1/2(k+l+m). (13)

The mock theta conjectures related the functions χ0(q) and χ1(q) to the differences of rank gen-
erating functions [10, page 2] (see also [7])

Rb,c(d; q) =
∑
n⩾0

[N(b, 5, 5n+ d)−N(c, 5, 5n+ d)] qn. (14)

In equation (14), N(b, t, r) denotes the number of partitions of r with rank congruent to b mod t
and in equation (23) N(m,n) denote the number of partitions of n with rank m. The rank of a
given partition is defined by Dyson [12] as the number of parts of the partition subtracted from
the largest part of the partition. For example, the partition 1 + 1 + 1 + 1 + 2 + 4 of 10 has rank
equal to 4 − 6 = −2.

We note the number of partitions of n by p(n). We have

p(n) =
+∞∑

m=−∞
N(m,n).

The ten fifth order mock theta functions founded by Ramanujan in his lost notebook divided
into two groups, and each groups has five mock theta functions. The mock theta conjectures are
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ten identities each involving one of the fifth-order mock theta functions. Andrews and Garvan [3]
show that these identities in Ramanujan’s first group of five 5th order functions are equivalent to
each other; they call these "First Mock Theta Conjecture". Similarly, the five 5th order identities
for the second group are equivalent; they call these "Second Mock Theta Conjecture". They
present combinatorial interpretations of these conjectures in terms of the ranks of partitions.

Folsom [10, Page 4144] (see also [7]) has stated as

χ0(q)− 1 = R1,0(0; q) (15)

and
χ1(q) = R2,1(3; q) +R2,0(3; q). (16)

Let recall Ramanujan’s celebrated congruences for the partition function p(n),

p(5n+ 4) ≡ 0 (mod 5), (17)

p(7n+ 5) ≡ 0 (mod 7) (18)

and
p(11n+ 6) ≡ 0 (mod 11). (19)

In attempting to find combinatorial interpretations for (17)–(19), Dyson conjectured that

N(k, 5, 5n+ 4) =
p(5n+ 4)

5
, 0 ≤ k ≤ 4 (20)

and

N(k, 7, 7n+ 5) =
p(7n+ 5)

7
, 0 ≤ k ≤ 6. (21)

Thus, if (20) and (21) are true the partitions counted by p(5n+4) and p(7n+5) fall into five and
seven equinumerous classes respectively. Hence providing a partial answer to Dyson’s query.
Furthermore, he conjectured that the generating function for N(m,n) is given by

+∞∑
m=−∞

∞∑
n=0

N(m,n)zmqn =
∞∑
n=0

qn
2

(zq; q)n(z−1q; q)n
, |q| < 1, |q| < |z| < 1

|q|
. (22)

We note that

N(m, q, n) =
∞∑

r=−∞
N(m+ rq, n). (23)

We will use the following result (see [12]):

∞∑
m=0

δm

m∑
r=0

αr =

[ ∞∑
r=0

αr

][ ∞∑
m=0

δm

]
−

∞∑
r=0

αr+1

r∑
m=0

δm. (24)

Theorem 2.1. For |q| < 1, we have

R1,0(0, q) =
∞∑
n=0

q5n2
[

1
(q1/5; q)2

n

− 1
(q; q)2

n

]
, (25)

R2,0(3, q) = q
6
5

∞∑
n=0

q5n2+6n
[

1
(q7/5; q)2

n

− 1
(q3/5; q)2

n

]
, (26)

R2,1(3, q) = q
6
5

∞∑
n=0

q5n2+6n
[

1
(q3/5; q)2

n

− 1
(q2/5; q)2

n

]
, (27)

χ0(q) + χ1(q) = 2 (28)

and

χ0(q)χ1(q) =
∞∑
n=0

qn

(qn+1; q)n

(
qn

2
n∑

r=0

qr

(qr+1; q)r+1
+

1
1 − qn+2

n∑
r=0

qr
2+r

(qr+1; q)r+1

)
. (29)
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Further, if gn is a function such that |gn(q)| < 1, then we have

∞∑
n=0

gn(q)

(q; q)n
=

1
(q2; q2)∞

∞∑
n=0

gn(q). (30)

Proof. We have

R1,0(0, q) =
∞∑
n=0

[N(1, 5, 5n)−N(0, 5, 5n)] qn,

where

N(1, 5, 5n) =
∞∑

r=−∞
N(1 + 5r, 5n) (31)

and

N(0, 5, 5n) =
∞∑

r=−∞
N(5r, 5n). (32)

Let us assume that Q = q
1
5 . The identities (22), (23) and (32) with z = 1 yield

∞∑
n=0

N(0, 5, 5n)qn =
∞∑
n=0

∞∑
r=−∞

N(5r, 5n)qn

=
∞∑

n≡0 (mod 5)

∑
k≡0 (mod 5)

N(r, n)q
n
5

=
∞∑

n≡0 (mod 5)

∑
k≡0 (mod 5)

N(r, n)Qn

=
∞∑

n≡0 (mod 5)

Qn2∏n
k≡5 (mod 5)(1 −Qk)2

=
∞∑
n=0

Q25n2∏5n
k≡5 (mod 5)(1 −Qk)2

=
∞∑
n=0

Q25n2∏n−1
k=0 (1 −Q5k+5)2

=
∞∑
n=0

Q25n2

(Q5;Q5)2
n

=
∞∑
n=0

q5n2

(q; q)2
n

.
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Identities (22), (23) and (31) with z = 1 give

∞∑
n=0

N(1, 5, 5n)q
n
5 =

∞∑
n≡0 (mod 5)

∑
k≡1 (mod 5)

N(r, n)q
n
5

=
∞∑

n≡0 (mod 5)

∑
k≡1 (mod 5)

N(r, n)Qn

=
∞∑

n≡0 (mod 5)

Qn2∏n−1
k≡0 (mod 5)(1 −Qk+1)2

=
∞∑
n=0

Q25n2∏5n−1
k≡0 (mod 5)(1 −Qk+1)2

=
∞∑
n=0

Q25n2∏n−1
k=0 (1 −Q5k+1)2

=
∞∑
n=0

Q25n2

(Q;Q5)2
n

=
∞∑
n=0

q5n2

(q
1
5 ; q)2

n

.

Now, estimations of the sums
∑∞

n=0 N(1, 5, 5n)qn and
∑∞

n=0 N(0, 5, 5n)qn give

R1,0(0, q) =
∞∑
n=0

q5n2

[
1

(q
1
5 ; q)2

n

− 1
(q; q)2

n

]
.

Hence, we get identity (25).
Similarly, we prove identities (26) and (27).
Identity (28) follows from identities (12) and (13).

Identity (29) can be proved by substituting αr =
qr

2+r

(qr+1;q)r
and δn = qn

(qn+1;q)n+1
in (24).

Now, it remain to prove the identity (30). We have (see [1, equation (3.1)])

∞∑
n=0

(−1)nqn(n−1)/2xn

(q; q)n
= (x; q)∞. (33)

Then, replace x by −q in (33), we obtain

∞∑
n=0

qn(n+1)/2

(q; q)n
= (−q; q)∞ (34)

or
∞∑
n=0

qn(n+1)/2 = (−q; q)∞(q2; q2)∞. (35)

Moreover, for all functions |gn| < 1 one has

∞∑
n=0

gn(q)

(q; q)n
=

1
(q2; q2)∞

∞∑
n=0

gn(q).

This prove identity (30). We thus have completed the proof of Theorem 2.1.

Proposition 2.2. We have

R1,0(0, q5) =
1

(q2; q2)2
∞

∞∑
n=1

q25n2 [
(q2, q3, q4, q5; q5)2

n − (q, q2, q3, q4; q5)2
n

]
(36)
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and

R2,0(3, q5) +R2,1(3, q5) = q6
∞∑
n=0

q25n2+30n
[

1
(q7; q)2

n

− 1
(q2; q)2

n

]
. (37)

Proof. Replacing q by q5 in identity (25), we get

R1,0(0, q5) =
∞∑
n=0

q25n2
[

1
(q; q5)2

n

− 1
(q5; q5)2

n

]
=

∞∑
n=0

q25n2

[
(q5; q5)2

n − (q; q5)2
n

]
(q, q5; q5)2

n

=
∞∑
n=0

q25n2

[
(q2, q3, q4, q5; q5)2

n − (q, q2, q3, q4; q5)2
n

]
(q; q)2

n

=
1

(q2; q2)2
∞

∞∑
n=0

q25n2 [
(q2, q3, q4, q5; q5)2

n − (q, q2, q3, q4; q5)2
n

]
.

Noting that for n = 0, R1,0(0, q5) = 0, then

R1,0(0, q5) =
1

(q2; q2)2
∞

∞∑
n=1

q25n2 [
(q2, q3, q4, q5; q5)2

n − (q, q2, q3, q4; q5)2
n

]
. (38)

This prove identity (36). Replacing q by q5 in identities (26) and (27), we get (37). We thus have
completed the proof of Proposition 2.2.

Let us recall the following lemma.

Lemma 2.3. [1] We have
∞∑
n=0

(A; q)nzn

(q; q)n
=

(Az; q)∞
(z; q)∞

, (39).

(A; q)n =
(A; q)∞
(Aqn; q)∞

(40).

and

(qn+1; q)n =
(q; q)2n−1

(q; q)n
. (41).

Proposition 2.4. We have

χ0(q
5)− 1 =

∞∑
n=1

q5n
n−1∑
k=0

(q5−5n; q5)kq10nk

(q5; q5)k
(42)

and

χ1(q
5) =

∞∑
n=0

q5n

1 − q10n+5

n−1∑
k=0

(q5−5n; q5)kq10nk

(q5; q5)k
. (43)

Proof. Combining identities (10), (40) and (41) and applying little algebra, we obtain

χ0(q) =
∞∑
n≥0

qn

(qn+1; q)n
=

∞∑
n=0

(q; q)nqn

(q; q)2n−1
=

∞∑
n=0

(qn+1; q)∞qn

(q2n; q)∞
. (44)

Further, using (39) and (44) we get

χ0(q) =
∞∑
n=0

qn
∞∑
k=0

(q1−n; q)kq2nk

(q; q)k
. (45)

We have

(q1−n; q)k =
k−1∏
j=0

(1 − qj+1−n). (46)
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If k ≥ n, then (q1−n; q)k = 0. Hence

χ0(q) =
∞∑
n=0

qn
n−1∑
k=0

(q1−n; q)kq2nk

(q; q)k
. (47)

Moreover

χ0(q
5)− 1 =

∞∑
n=1

q5n
n−1∑
k=0

(q5−5n; q5)kq10nk

(q5; q5)k
. (48)

Therefore, we get identity (42).

To show (43), consider

χ1(q) =
∞∑
n≥0

qn

(qn+1; q)n+1
(49)

and

(qn+1; q)n+1 =
n∏

k=0

(1− qn+k+1) =
n−1∏
k=0

(1− qn+k+1)(1− q2n+1) = (qn+1; q)n(1− q2n+1). (50)

Equations (49) and (50) give

χ1(q) =
∞∑
n≥0

qn

(1 − q2n+1)(qn+1; q)n
. (51)

Moreover (51) and the proof of (42) give (43). We thus have completed our proof of Proposition
2.4.

As a consequence, in order to prove the above conjectures it is sufficient to show the following
tow identities :

∞∑
n=1

q5n
n−1∑
k=0

(q5−5n; q5)kq10nk

(q5; q5)k
=

∞∑
n=1

q25n2

(q; q)2
n

[
(q2, q3, q4, q5; q5)2

n − (q, q2, q3, q4; q5)2
n

]
(52)

or
∞∑
n=1

q5n
n−1∑
k=0

(q5−5n; q5)kq
10nk =

(q10; q10)∞
(q2; q2)2

∞

∞∑
n=0

q25n2
[
(q2, q3, q4, q5; q5)2

n − (q, q2, q3, q4; q5)2
n

]
and

∞∑
n=1

q5n

1 − q10n+5

n−1∑
k=0

(q5−5n; q5)kq10nk

(q5; q5)k
= q6

∞∑
n=0

q25n2+30n
[

1
(q7; q)2

n

− 1
(q2; q)2

n

]
. (53)

Lemma 2.5. For k ∈ N \ {0} and for all function |gn(q)| < 1, we have
∞∑
n=0

gn(q)

(qk; q)n
=

1
(q2; q2)∞

1
1 − qk

∞∑
n=0

gn(q). (54)

Proof. In [3, equation (2.5)], we have

∞∑
n=0

qn

(qn+1; q)n
= 1 +

∞∑
n=1

qn

(qn+1; q)n
= 1 +

∞∑
n=0

qn+1

(qn+2; q)n+1

= 1 +
∞∑
n=0

q2n+1

(qn+1; q)n+1
= 1 +

∞∑
n=0

qn+1

1
qn (q

n+1; q)n+1
. (55)

This can also be expressed as
∞∑
n=0

qn+1

(qn+2; q)n+1
=

∞∑
n=0

qn+1

1
qn (q

n+1; q)n+1
. (56)

Further, by applying properties of the recurrence relations, we obtain the desired result.
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Proposition 2.6. We have

∞∑
n=0

q25n2

(q5; q5)2
n

=
(−q25; q50)2

∞(q50; q50)∞
2(q10; q10)2

∞
+

1
2(q10; q10)2

∞
(57)

and
∞∑
n=0

q25n2

(q; q5)2
n

=
(−q25; q50)2

∞(q50; q50)∞
2(q10; q10)2

∞
+

1
2(q10; q10)2

∞(1 − q)2 . (58)

Proof. Combining identities (10) and (30) and applying little algebra, we get

∞∑
n=0

q25n2

(q5; q5)2
n

=
1

(q10; q10)2
∞

∞∑
n=0

q25n2

=
1

(q10; q10)2
∞

1
2

(
1 + 2

∞∑
n=1

q25n2

)
+

1
2(q10; q10)2

∞

=
(−q25; q50)2

∞(q50; q50)∞
2(q10; q10)2

∞
+

1
2(q10; q10)2

∞
.

We thus have completed the proof of the Proposition 2.6.

In order to show identity (58), we require a result, which is stated in the previous lemma.

Proposition 2.7. We have

R1,0(0, q5) =
2q − q2

2(q10; q10)2
∞(1 − q)2 . (59)

Proof. Combining identities (57) and (58) together, after simplification we obtain the desired
result.

Proposition 2.8. We have

χ0(q) =
(−q2; q4)2

∞
2(q2; q4)∞

+
1

2(q2; q2)∞
. (60)

Proof. To show identity (60), apply R1,0(0, q5) into (56), after little algebra, we have

χ0(q) =
∞∑
n=0

qn
2+n

(qn+1; q)n
=

∞∑
n=0

qn
2+n+n2−n

(q; q)n
=

1
(q2; q2)∞

1
2

(
1 + 2

∞∑
n=1

q2n2
+ 1

)

=
(−q2; q4)2

∞(q4; q4)∞
2(q2; q2)∞

+
1

2(q2; q2)∞
=

(−q2; q4)2
∞

2(q2; q4)∞
+

1
2(q2; q2)∞

.

We thus have completed the proof of the Proposition 2.8.

Theorem 2.9. We have

R1,0(0) = 3
∞∑
n=0

q5n2

(q; q5)n+1(q4; q5)n
− (q; q)∞

(q, q4; q5)3
∞

− 2 (61)

and

R2,1(3) +R2,0(3) =
−3
q

+
3
q

∞∑
n=0

q5n2

(q2; q5)n+1(q3; q5)n
+

(q; q)∞
(q2, q3; q5)3

∞
. (62)

Proof. To show identity (61), we use [3, equations (3.11) and (4.6)]. Then, we have

R(a,b) = R(a,c) +R(c,b).
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Hence

R0,2(0) + 2R1,2(0) = R0,1 +R1,2(0) + 2R1,2(0)

= 3R1,2(0) +R0,1(0)

= A(q)− 1.

Moreover, one has

R1,0(0) = −A(q) + 1 + 3R1,2(0)

= −G(q)
2(q5; q5)

H(q)
+ 1 + 3φ(q)

= − (q; q)∞
(q, q4; q5)∞

+ 1 − 3 + 3
∞∑
0

q5n2

(q; q5)n+1(q4; q5)n

= 3
∞∑
n=0

q5n2

(q; q5)n+1(q4; q5)n
− (q; q)∞

(q, q4; q5)3
∞

− 2.

To show identity (62), we use [3, equations (3.12), (4.5) and (4.7)]. Then

R2,1(3) +R2,0(3) = R2,0(3) +R0,1(3) +R2,0(3)−R0,2(3) +R0,2(3)

= D(q) + 3R2,0(3)− 1

=
H(q)2(q5; q5)∞

G(q)
+ 3R2,0(3)− 1

=
H(q)2(q5; q5)∞

G(q)
+ 3ψ(q)− 1

=
−3
q

+
3
q

∞∑
n=0

q5n2

(q2; q5)n+1(q3; q5)n
+

(q; q)∞
(q2, q3; q5)3

∞
.

We thus have completed the proof of the Theorem 2.9.

3 Final comments

In this section, we present a few problems which need to be further addressed. There is a need
for better understanding the conjecture. To do so it suffices to prove the following identities:

3
∞∑
n=0

q5n2

(q; q5)n+1(q4; q5)n
=

1
(q2, q3; q5)∞

.+
(q; q)∞

(q, q4; q5)3
∞

+ 1 (63)

and

3
∞∑
n=0

q5n2

(q2; q5)n+1(q3; q5)n
=

1
(q, q4; q5)∞

− q(q; q)∞
(q2, q3; q5)3

∞
+ 3. (64)

4 Concluding remarks

This paper aims to give a combinatorial proof for the mock theta conjectures in response to
an open problem stated by M.P.Chaudhary [7]. Therefore, the results of this work are useful,
significant and so it is interesting and capable of developing its study in the future.



Combinatorial Proof of Mock Theta Conjectures 101

References
[1] G. E. Andrews, Partition with short sequences and mock theta function, Proc. Nat. Acad. Sci. 102(13)

(2005), 4666-4671.

[2] G. E. Andrews and B. C. Berndt, Ramanujan’s lost notebook, Part V., Cham: Springer, (2018). Zbl
1416.11001

[3] G. E. Andrews and F. G. Garvan, Ramanujan’s lost notebook VI : The mock theta conjuctures, Adv. Math.
73(1989), 242-255.

[4] G. E. Andrews, Ramanujan’s “Lost” Notebook VI:The Mock Theta Conjectures, Adv. Math. 73(1989),
242-255.

[5] G. E. Andrews, The theory of partition, Addison-wesly, New York,300pp. reissued,p. 1998. Combridege
University Press, New York (1976).

[6] M. P. Chaudhary, Vinesh Kumar and Kaleem Ahmed Quarishi, A family of theta- function identities involv-
ing Rα and Rm -functions related to Jacobi’s triple-product identity, Palestine Journal of Mathematics,
11(2)(2022), 177-186.

[7] M. P. Chaudhary, Mock theta functions to mock thetaq conjectures, SCIENTIA Series A: Math Sci,
12(2012), 33-46.

[8] F. J. Dayson, Rank of partition, Wikipedia, the free encyclopedia (2005).

[9] F. J. Dayson, Some guesses in the theory of partitions, Eureka(Cambridge), 8 (1944), 10-15.

[10] A. Folsom, A short proof of the mock theta conjectures using maass forms, Proc. Amer Math. Soc., 136
(12) (2008), 4143-4149.

[11] D. Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639-660.

[12] Y. Sanada, Some identities relating mock theta functions which are derived from denominator identity,
Math. J. Okayama Univ., 51 (2009), 121–131.

[13] S. Ramanujan, Collected papers, Cambridge Univ. Press, London/NY, 1927 (reprinted by Chelsea, NY).

[14] S. Ramanujan, Notebooks, Vols. 1 and 2, Tata Institute of Fundamental Research, Bombay (1957).

[15] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi
(1988).

[16] S. P. Zwegers, Mock theta functions, Ph.D. Thesis (2002).

[17] G. N. Watson, The mock theta functions (2), Proc. J. London Math. Soc., (2) (42) (1937), 274-304.

Author information
M. P. Chaudhary, International Scientific Research and Welfare Organization, (Albert Einstein Chair Professor
of Mathematical Sciences), New Delhi 110018, India.
E-mail: dr.m.p.chaudhary@gmail.com

S. Guiben, Faculty of Science of Monastir, Department of Mathematics, 5000 Monastir, Tunisia.
E-mail: guibensalem75@gmail.com

K. Mazhouda, University of Sousse, Higher Institute of Applied Sciences and Technology, 4003 Sousse,
Tunisia.
E-mail: kamel.mazhouda@fsm.rnu.tn

Received: 2023-02-01

Accepted: 2024-06-27


	1 Introduction
	2 Fifth Order Mock Theta Functions
	3 Final comments
	4 Concluding remarks
	Références

