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Abstract This article explores the properties of (ξ0 + pγ)-constacyclic codes over GR(pm, ℓ)
of any length, where γ is a unit of GR(pm, ℓ) and ξ0 is a nonzero element in the Teichmüller
set T . We provide an analysis of the structure of (ξ0 + pγ)-constacyclic codes of length ps over
GR(pm, ℓ), and determine their b-symbol distance. Using these codes, we classify all (ξ + pγ)-
constacyclic codes of length n = psη (η prime to p) over GR(pm, ℓ). We also investigate the
dual of these codes and present necessary and sufficient conditions for the existence of nontrivial
self-dual constacyclic codes. In addition, we calculate the b-symbol distance of these codes for
length 2ps, where p is a prime number, and demonstrate that some of these codes are MDS
(minimum distance separable).

1 Introduction

The objective of coding theory is to create codes capable of transmitting data with a high degree
of precision and effectiveness. This is achieved by choosing codes with the maximum feasible
minimum distance, while taking into account limitations on code length, code size, and the
size of the code alphabet. This strategy guarantees that the code can rectify as many errors
as feasible when transmitting data through a noisy channel. Different distances, including the
Hamming distance, Lee distance, and Rosenbloom-Tsfasman distance, etc, have been developed
and analyzed for their ability to detect and correct errors in various communication channels.
Among these, the Hamming distance is the most widely studied and is considered to be a key
distance in the field of coding theory.

The investigation of codes over finite rings has been an active field of research since the early
1970s. The introduction of nonlinear binary codes obtained from cyclic codes over Z4 through
the utilization of the Gray map. For instance, Wolfmann conducted an analysis of negacyclic
codes over Z4 with odd lengths, yielding significant outcomes [1, 2]. These findings were subse-
quently extended by Tapia-Recillas and Vega to encompass codes over Z2k [3]. Following this,
Dinh and López-Permouth elucidated the structure of negacyclic codes of length n over a finite
chain ring R, where the length n is not divisible by the characteristic p of the residue field R [4].

In case where the code length n is divisible by the characteristic p of the residue field R̄ is
known as the repeated-root codes. Over the past few years, substantial research efforts have been
directed towards the examination of repeated-root constacyclic codes within the context of finite
rings.

Blackford classified all negacyclic codes over Z4 of even length in [5] . This work extended
Wolfmann’s findings to encompass negacyclic codes of even length. Additionally, Dinh exam-
ined the structural characteristics of λ-constacyclic codes with a length of 2s over Z2a in [6].
Here, λ represents any unit within Z2a following the form 4k − 1. Dinh’s study also established
the Hamming, homogeneous, Lee, and Euclidean distances for all such constacyclic codes.

These studies provide further insight into the properties and structure of repeated-root consta-
cyclic codes over finite rings and demonstrate the ongoing efforts to advance our understanding
in this area.

This paper explores (ξ0+pγ)-constacyclic codes over GR(pm, ℓ) with arbitrary length, where
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ξ0 is a nonzero element in the Teichmüller set T and γ is a unit of GR(pm, ℓ). This class general-
izes the following two cases: (i) When p equals 2, the set of constacyclic codes is identical to the
set of λ-constacyclic codes over Z2a , where λ represents any unit of Z2a in the form of 4k − 1,
as stated in reference [6]; (ii) When ξ0 = 1 and ℓ = 1, i.e., GR(pm, ℓ) = Zpm , in this case Shixin
Zhu et al. used the discrete Fourier transform to classify all (1 + λp)-constacyclic codes [7].

The following is the structure of the remaining sections in this paper. Section 2 introduces
the necessary notations and findings concerning constacyclic codes and Galois rings. In Section
3, we analyze the structure of (ξ0 + pγ)-constacyclic codes with length ps over GR(pm, ℓ),
and determine the b-symbol distances of all such codes. Section 4 applies the discrete Fourier
transform to classify all (ξ0 + pγ)-constacyclic codes with length psη (where η is prime to p)
over GR(pm, ℓ). In Section 5, we deal with the self-dual (ξ0+pγ)-constacyclic codes with length
psη over GR(pm, ℓ). Finally, section 6 investigates the MDS b-symbol distances of (ξ0 + pγ)-
constacyclic codes with length psη over GR(pm, ℓ), and we compute the b-symbol distances for
the cases b = 1, 2 and η = 2.

2 Preliminaries

A commutative ring with identity R is classified as a principal ideal ring if its ideals can be
generated by a single element. When R has a unique maximal ideal, it is referred to as a local
ring. If the ideals of R are ordered by inclusion, it is denoted as a chain ring. The subsequent
proposition provides a characterization for finite chain rings.

Proposition 2.1. [4] Consider a finite commutative chain ring R with a maximal ideal M and a
residue field R̄ = R

M . In this context, all ideals of R exhibit the following structure:

⟨0⟩ = ⟨ϱe⟩ ⊊
〈
ϱe−1〉 ⊊ . . . ⊊ ⟨ϱ⟩ ⊊ R,

where ϱ ∈ R, and e represents the nilpotency of ϱ. Additionally,

for all i = 0, . . . , e, | ϱi |=| R̄ |e−i .

When we have a prime number p along with positive integers m and ℓ, the Galois extension

of Zpm with characteristic pm and cardinality pmℓ is defined as
Zpm [x]

⟨f(x)⟩
, where f(x) is a basic

irreducible polynomial of degree ℓ over Zpm and is denoted as GR(pm, ℓ) [8].
Within GR(pm, ℓ), an element ξ with an order of pℓ − 1 exists. Furthermore, for any element

z in GR(pm, ℓ), it can be uniquely expressed in the p-adic form as:

z = ξ0 + pξ1 + · · ·+ pm−1ξm−1, (2.1)

where ξi ∈ T =
{

0, 1, ξ, ξ2, . . . , ξp
ℓ−2

}
. The set T is known as the Teichmüller set. Addi-

tionally, we have the following proposition.

Proposition 2.2. [8] With the previous notations, we have

(i) ξ0 + pξ1 + · · ·+ pm−1ξm−1 (with ξi ∈ T ) is a unit of GR (pm, a) if and only if ξ0 ̸= 0.

(ii) For any 0 ≤ i ̸= j ≤ pℓ − 2, ξi − ξj is unit of GR(pm, ℓ).

For any positive integer ℓ′, the inclusion GR(pm, ℓ) ⊆ GR(pm, ℓ′) holds if and only if ℓ
divides ℓ′. Moreover for any positive integer a, GR(pm, aℓ) = GR(pm,ℓ)[x]

⟨f(x)⟩ , where f(x) is a basic
irreducible polynomial of degree a over GR(pm, ℓ).

In GR(pm, ℓ′), elements can also be represented using the ξ-adic expansion as z0 + z1ξ +

· · ·+ zℓ′−1ξ
ℓ′−1, where zi ∈ Zpm . The Frobenius automorphism Fr of GR(pm, ℓ′) given by

Fr

ℓ′−1∑
i=0

ziξ
i

 =
ℓ′−1∑
i=0

ziξ
ip, (zi ∈ Zpm), (2.2)
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when ξ of order pℓ
′ − 1 in GR(pm, ℓ′). Then Fr is an automorphism of GR(pm, ℓ′) and

GR(pm, ℓ) =
{
θ ∈ GR(pm, ℓ′); Frℓ(θ) = θ

}
, (2.3)

when ℓ | ℓ′. For additional details, see [9].
A code of length n over GR(pm, ℓ) is a non empty subset of GR(pm, ℓ)n, and it is called a

linear code over GR(pm, ℓ) if it is an GR(pm, ℓ)-submodule of GR(pm, ℓ)n. A linear code is
called a λ-constacyclic code if it remains unchanged under the following shift operation:

τλ(t0, t1, ..., tn−1) = (λtn−1, t0, ..., tn−2),

where λ is a fixed unit of GR(pm, ℓ). If λ is equal to 1 (respectively −1), then the code is a cyclic
(respectively negacyclic) code.

A codeword, represented by the tuple (t0, t1, ..., tn−1), can also be represented as a polyno-
mial, t(x) = t0 + t1x + ... + tn−1x

n−1 ∈ GR(pm,ℓ)[x]
⟨xn−λ⟩ . Then τλ(t(x)) = xt(x). As a result,

λ-constacyclic codes of length n over GR(pm, ℓ) can be viewed as ideals of GR(pm,ℓ)[x]
⟨xn−λ⟩ .

The Euclidean inner product between two n-tuples t = (t0, t1, ..., tn−1) and t′ = (t′0, t
′
1, ..., t

′
n−1)

in GR(pm, ℓ)n is defined as

t.t′ = t0t
′
0 + t1t

′
1 + ...+ tn−1t

′
n−1.

Two n-tuples t, t′ are considered orthogonal when t.t′ = 0. The dual code C⊥ of a linear code
C of length n over GR(pm, ℓ) is the set of n-tuples over GR(pm, ℓ) that are orthogonal to all
codewords of C, i.e.,

C⊥ = {t ∈ GR(pm, ℓ); t.t′ = 0, for all t′ ∈ C}.

A code C is self-orthogonal if C ⊆ C⊥. A code C is self-dual if it is equal to its dual. When m
is an even number, the code

〈
p

m
2
〉

is a self-dual code, which is called the trivial self-dual code.
The following outcome is widely recognized.

Proposition 2.3. [10] For any linear code C length of n over GR(pm, ℓ), |C||C⊥| =| GR(pm, ℓ) |n
.

It’s important to note that the dual of a cyclic code is also a cyclic code and the dual of a
negacyclic code is also a negacyclic code. In general, the dual of a λ-constacyclic code has the
following properties.

Proposition 2.4. [11] If C is a λ-constacyclic code of lenght n over GR(pm, ℓ), then C⊥ is a
λ−1-constacyclic code of lenght n over GR(pm, ℓ) .

For a polynomial t(x) ∈ GR(pm, ℓ)[x] of degree d, its reciprocal polynomial is denoted t∗(x)
and defined as xdt

(
x−1

)
. In other words, if

t(x) = t0 + t1x+ · · ·+ td−1x
d−1 + tdx

d,

then
t∗(x) = td + td−1x+ · · ·+ t1x

d−1 + t0x
d.

A polynomial t(x) over GR(pm, ℓ) is said to be self-reciprocal if t∗(x) = δt(x) for some unit
δ ∈ GR(pm, ℓ). We have the following result:

Proposition 2.5. [11] Let C be a λ-constacyclic code of lenght n over GR(pm, ℓ), then

C⊥ = {z∗(x); z(x)t(x) = 0 in
GR(pm, ℓ)[x]
⟨xn − λ⟩

for all t(x) ∈ C} . (2.4)

The torsion codes are defined by:
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Definition 2.6. Let C be a λ-constacyclic code of length n over GR(pm, ℓ). For i = 0, ...,m− 1,
the definition of the ith torsion code of C is as follows:

Tori(C) =
{
t(x); pit(x) ∈ C

}
,

where − : GR(pm, ℓ) −→ Fpℓ is the canonical homomorphism. In case i = 0, it is called the
residue code of C and is denoted by Res(C).

It is clear, for any i = 0, ...,m− 1, that Tori(C) is a λ̄-constacyclic code of length n over Fpℓ .
In this paper, we consider n = psη where η and s are positive integers such that gcd(η, p) = 1.

Let λ be a unit of GR(pm, ℓ) of the form

λ = ξ0 + pξ1 + · · ·+ pm−1ξm−1 = ξ0 + pγ,

where ξi ∈ T for i = 0, . . . ,m− 1 and ξ0 ̸= 0. We further assume that ξ1 ̸= 0, which means that
γ is a unit in GR(pm, ℓ). Define α = ξp

(q+1)ℓ−s

0 = ξp
ℓ−r

0 ∈ T , where s = qℓ+r and 0 ≤ r ≤ ℓ−1.

Then, we have αps

= ξp
(q+1)ℓ

0 = ξ0.

3 (ξ0 + pγ)-constacyclic codes of length ps over GR(pm, ℓ)

As previously discussed in Section 2, (ξ0 + pγ)-constacyclic codes of length ps over GR(pm, ℓ)
are ideals of the ring GR(pm,ℓ)[x]

⟨xps−(ξ0+pγ)⟩ .

Theorem 3.1. [12] Suppose γ is a unit in GR(pm, ℓ), and ξ0, α are nonzero elements in the
Teichmüller set T with αps

= ξ0. Then, the following statements hold:

(i) The quotient ring GR(pm,ℓ)[x]
⟨xps−(ξ0+pγ)⟩ is a chain ring with maximal ideal ⟨x − α⟩ and nilpotency

index psm.

(ii) The (ξ0+pγ)-constacyclic codes of length ps over GR(pm, ℓ) are of the form Ck =
〈
(x− α)k

〉
,

where k is an integer in {0, ..., psm}.

(iii) For each k in {0, ..., psm}, we have | Ck |= pℓ(p
sm−k).

(iv) In GR(pm,ℓ)[x]
⟨xps−(ξ0+pγ)⟩ , ⟨(x− α)p

s⟩ = ⟨p⟩.

(v) The dual code of Ck =
〈
(x− α)k

〉
is C⊥

k =
〈(
x− α−1

)psm−k
〉

, and then in particular,

| C⊥
k |= pℓk.

In [13] Ding et al. introduced the notion of the b-symbol, denoted πb(z), of a vector z in ∆n,
where b ≥ 1 is an integer and ∆ is an alphabet. πb(z) is defined by

πb(z) = [(z0, . . . , zb−1) , (z1, . . . , zb) , . . . , (zn−1, z0, . . . , zb−2)] ∈
(
∆
b
)n
.

The b-distance between two vectors z and y is defined as

db(z,y) = |{0 ≤ i ≤ n− 1; (zi, . . . , zi+b−1) ̸= (yi, . . . , yi+b−1)}| .

The b-weight of a vector z is determined by the b-distance between z and the zero vector 0,
as formally defined as

wtb(z) = |{0 ≤ i ≤ n− 1; (zi, . . . , zi+b−1) ̸= 0}| ,

where the subscripts are taken modulo n for reduction.
The b-distance of a code C is established as the smallest b-distance between any pair of distinct

codewords z1 and z2 within C. In other words:

db(C) = min{db(z1, z2); z1, z2 ∈ C, z1 ̸= z2}.

According to this definition of b-distance, when b = 1, then the b-distance is equivalent to the
Hamming distance. If b = 2, then the b-distance is known as the symbol-pair distance.



938 Youssef Ahendouz and Ismail Akharraz

In [7] Shixin Zhu et al. determined the Hamming distances of all (1+pγ)-constacyclic codes
of length ps over GR(pm, ℓ), where γ is a unit in GR(pm, ℓ). In the following, we use the same
technics to calculate the b-symbol distance of (ξ0 + pγ)-constacyclic codes of length of ps over
GR(pm, ℓ), where γ is a unit in GR(pm, ℓ), ξ0, α are nonzero elements in the Teichmüller set T
with αps

= ξ0, and 1 ≤ b ≤ ⌊p
2 ⌋.

Let Ck =
〈
(x− α)k

〉
, be a nonzero (ξ0 +pγ)-constacyclic code of length ps over GR(pm, ℓ),

where k is an element of the set {0, ..., psm− 1}. We distinguish two cases

• Case 0 ≤ k ≤ ps(m− 1) : As ⟨0⟩ ≠ Cps(m−1) ⊂ · · · ⊂ C1 ⊂ C0 = ⟨1⟩. Therefore

db(Cps(m−1)) ≥ · · · ≥ db(C1) ≥ db(C0) = db(⟨1⟩) = b.

According to Theorem 3.1, Cps(m−1) = ⟨(x− α)p
s(m−1)⟩ = ⟨pm−1⟩. So db(Cps(m−1)) = b,

and therefore, db(Ck) = b.

• Case ps(m−1)+1 ⩽ k ⩽ psm−1 : we can write k = ps(m−1)+ i where 1 ⩽ i ⩽ ps−1.
Hence, Ck =

〈
(x− α)p

s(m−1)+i
〉
=

〈
pm−1(x− α)i

〉
. Thus, each code Ck is the code〈

(x− α)i
〉

of length ps over Fpℓ multiplied by pm−1. And so, db(Ck) = db(⟨(x− α)i⟩).

Then the b-symbol distance of (ξ0 + pγ)-constacyclic codes of length ps over GR (pm, ℓ) can
be determined through the combination of the results in two previous cases and the Theorem 9
in[14] as follows:

Theorem 3.2. Suppose γ is a unit in GR(pm, ℓ), ξ0, α are nonzero elements in the Teichmüller
set T with αps

= ξ0, and 1 ≤ b ≤ ⌊p
2 ⌋. Then the b-distance of the nonzero (ξ0 +pγ)-constacyclic

code Ck = ⟨(x−α)k⟩ of length ps over GR(pm, ℓ), where k ∈ {0, 1, ..., psm− 1}, is specified as
follows:

db (Ck) =



b, if 0 ≤ k ≤ ps(m− 1),
(τ + b)(π + 1)pω, if k = psm− ps−ω + πps−ω−1 + τ,

where 0 ≤ ω ≤ s− 2, 0 ≤ π ≤ p− 2 and b > τ(π + 1),
b(π + 2)pω, if psm− ps−ω + πps−ω−1 + τ ≤ k ≤ psm− ps−ω + (π + 1)ps−ω−1,

where 0 ≤ ω ≤ s− 2, 0 ≤ π ≤ p− 2 and b ≤ τ(π + 1),
(π + b)ps−1, if k = psm− p+ π, where 0 ≤ π ≤ p− b,

ps, if k ≥ psm− b+ 1.

4 (ξ0 + pγ)-constacyclic codes of length psη over GR(pm, ℓ)

Lemma 4.1 (Hensel’s lemma). [8] Let f(x) be a monic polynomial in GR(pm, ℓ)[x]. If f(x) can
be factored as f(x) = g1(x)g2(x)...gt(x) in Fpℓ [x], where g1(x), g2(x), ..., gt(x) are pairwise
coprime polynomials over Fpℓ , then there exist f1(x), f2(x), ..., ft(x) in GR(pm, ℓ)[x] such that
f(x) = f1(x)f2(x)...ft(x), with fk(x) = gk(x) for all k = 1, ..., t.

Hensel’s lemma is a crucial tool in the analysis of finite Galois rings, which ensures the lifting
of factorizations of coprime polynomials in GR(pm, ℓ)[x]. Since η and p are coprime, xη−α can
be uniquely factored into monic basic irreducible (then irreducible) polynomials in GR(pm, ℓ)[x]
as

xη − α = f1(x)f2(x)...ft(x).

Now, let a′ be the order of pℓ mudulo η, in particular pa′ℓ−1
η is positive integer , and let ξ

be an element of order pa
′ℓ − 1 in GR(pm, a′ℓ). If we note ζ = ξ

pa
′ℓ−1
η , then ζ is of order η in

GR(pm, a′ℓ).
Next, let GR(pm, aℓ) be an extension of GR(pm, a′ℓ) containing a root ε of xη − α. It’s

clear that ε, εζ, ..., εζη−1 are in GR(pm, aℓ), and are the distinct roots of xη − α, then for all
k = 0, ..., η − 1, then there exists a unique j

k
in {1, ..., t} such that fj

k
(εζk) = 0, i.e., fj

k
(x) is

the minimal polynomial of εζk over GR(pm, ℓ).
We define the following equivalence relation ∼ on the set {0, 1, 2, ..., η − 1} as follows:
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k ∼ k′ if and only if εζk and εζk
′

have the same minimal polynomial.

Let Γ be the set of complete representatives of all equivalence classes. For each k ∈ Γ, we
define Γk as the class containing k, ak = |Γk|, and gk(x) = fjk(x). It is important to note that
ak = deg gk(x).

Proposition 4.2. For each k ∈ Γ, εζk ∈ GR(pm, akℓ), and

{εζj ; j ∈ Γk} = {ϕi(εζk); i = 0, ..., ak − 1}, (4.1)

where ϕ = Frℓ, and Fr is the Frobenius automorphism of GR(pm, ℓ.a!).

Proof. The homorphism Υ : GR(pm,ℓ)[x]
⟨gk(x)⟩ −→ GR(pm, ℓ)[εζk], such that for every c(x) ∈ GR(pm,ℓ)[x]

⟨gk(x)⟩ ,

Υ (c(x)) = c(εζk) is an isomorphism, whence GR(pm, ℓ)[εζk] is a Galois ring of characteris-
tic pm and cardinality pmakℓ , then εζk ∈ GR(pm, akℓ). On the other hand, it is clear from
(2.3) that for any θ in GR(pm, akℓ), gk(ϕ(θ)) = ϕ(gk(θ)), then εζk, ϕ(εζk), ..., ϕak−1(εζk) are
also roots of gk(x), so it suffices to show that these roots are pairwise distinct. Assume that
ϕr(εζk) = εζk, for r = 1, ..., ak − 1, i.e., Frrℓ(εζk) = εζk, by (2.3) again εζk ∈ GR(pm, rℓ),
also GR(pm, akℓ) ⊆ GR(pm, rℓ), which is impossible.

Remark 4.3. Let a be any positive integer. We denote R(a) = GR(pm,aℓ)[y]
⟨yps−λ⟩ . As yp

s

= λ in R(a),

it follows that (α−1y)p
s+m−1

= 1. Thus, we have:

(α−1y)ηη
′
= α−1y, where ηη′ = 1 mod (ps+m−1). (4.2)

4.1 Discrete Fourier transform

The discrete Fourier transform (DFT) is utilized for codes of arbitrary length n, which may not
necessarily be a power of prime numbers, i.e., in the case of n = psη where gcd(p, η) = 1.
It’s a widely used tool in analyzing linear codes over finite rings [7]. We use DFT as a crucial
component in describing the structure of constacyclic codes over GR(pm, ℓ).

Definition 4.4. Let z = (z0,0, . . . , zη−1,0, z0,1, . . . , zη−1,1, . . . , z0,ps−1, . . . , zη−1,ps−1) ∈ GR(pm, ℓ)n,

and z(x) =
η−1∑
i=0

ps−1∑
j=0

zi,jx
i+jη ∈ GR(pm,ℓ)[x]

⟨xn−λ⟩ the corresponding polynomial of z. We define the

discrete Fourier transform of z by

(ẑ0, ẑ1, . . . , ẑη−1) ∈ R(a)η,

where ẑk = z
(
(α−1y)η

′
εζk

)
=

η−1∑
i=0

ps−1∑
j=0

zi,jy
η′i+j(α−η′

εζk)i. We thus define the Mattson-

Solomon polynomial of z by

ẑ(x) =
η−1∑
k=0

ẑkx
η−k.

The following lemma show that z can be recovered if its Mattson–Solomon polynomial is
known.

Lemma 4.5. Let z ∈ GR(pm, ℓ)n with ẑ(x) its Mattson-Solomon polynomial. Then for all 0 ⩽
d ⩽ η − 1 :

ps−1∑
j=0

zd,jy
j = ((α−1y)η

′
ε)−d 1

η
ẑ
(
ζd
)
.
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Proof. Let 0 ⩽ d ⩽ η − 1,

ẑ
(
ζd
)
=

η−1∑
k=0

ẑkζ
−dk =

η−1∑
k=0

η−1∑
i=0

ps−1∑
j=0

zi,jy
η′i+j(α−η′

εζk)i

 ζ−kd

=
η−1∑
i=0

ps−1∑
j=0

zi,jy
η′i+j(α−η′

ε)i
η−1∑
k=0

ζk(i−d)

= η((α−1y)η
′
ε)d

ps−1∑
j=0

zd,jy
j .

Note that if i ̸= d,
η−1∑
k=0

ζk(i−d) = 0, and if i = d,
η−1∑
k=0

ζk(i−d) = η.

In the following we define the following two operations on R(a)η :

(z0, ..., zη−1) + (z′0, ..., z
′
η−1) = (z′0 + z0, ..., zη−1 + z′η−1),

(z0, ..., zη−1) ∗ (z′0, ..., z′η−1) = (z0z
′
0, ..., zη−1z

′
η−1).

Proposition 4.6. With the previous notations the map

ψ : GR(pm,ℓ)[x]
⟨xn−λ⟩ −→ R(a)η

z(x) 7−→ (ẑ0, ẑ1, . . . , ẑη−1)
,

is a ring homomorphism.

Proof. Let z1(x), z2(x) be two polynomails in GR(pm,ℓ)[x]
⟨xn−λ⟩ . It is clear that ψ(z1(x) + z2(x)) =

ψ(z1(x)) + ψ(z2(x)). By Euclid’s division theorem z1(x)z2(x) = q(x)(xn − λ) + r(x), where
deg(r(x)) ≤ n− 1.

As for all k = 0, ..., η−1,
(
(α−1y)η

′
εζk

)n

−λ = 0, then z1

(
(α−1y)η

′
εζk

)
z2

(
(α−1y)η

′
εζk

)
=

r
(
(α−1y)η

′
εζk

)
i.e.,

ψ(z1(x)z2(x)) = ψ(z1(x)) ∗ ψ(z2(x)).

Let ϕ be as defined in Proposition 4.2. We extend ϕ to R(a) by defining ϕ̂(y) = y. According to
Proposition 4.2, (ẑ0, ẑ1, . . . , ẑη−1) is determined by (ẑk)k∈Γ

, and ẑk ∈ R(ak). Then by Lemma
4.5,

ψ : GR(pm,ℓ)[x]
⟨xn−λ⟩ −→ ⊕k∈ΓR(ak)

z(x) 7−→ (ẑk)k∈Γ

,

is an injection homomorphism. Moreover we have

| ⊕k∈ΓR(ak) |=
∏
k∈Γ

| R(ak) |=
∏
k∈Γ

pmℓakp
s

= pmℓn =

∣∣∣∣GR(pm, ℓ)[x]
⟨xn − λ⟩

∣∣∣∣ .
This shows that ψ is an isomorphism. We summarize our results as follows:

Theorem 4.7. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller
set T with αps

= ξ0. Let C be a (ξ0 + pγ)-constacyclic code of length psη (η prime to p) over
GR(pm, ℓ). Then

C ∼= ⊕k∈ΓCk, (4.3)

where Ck =
{
z
((
α−1y

)η′

εζk
)

; z(x) ∈ C
}

is an ideal of R(ak).

The combination of Theorem 3.1 and Theorem 4.7 leads to the following corollary.

Corollary 4.8. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller set
T with αps

= ξ0. Then the number of distinct (ξ0 + pγ)-constacyclic codes of length psη over
GR(pm, ℓ), with gcd(p, η) = 1, is (psm+ 1)|Γ|.
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4.2 Generator polynomials

The following lemma will prove valuable in determining generator polynomials.

Lemma 4.9. For each k, k′ ∈ Γ,

(i) if k′ ̸= k, then gk
((
α−1y

)η′

εζk
′
)

is a unit in R (bk′) ;

(ii) gk
((
α−1y

)η′

εζk
)
∈ ⟨y − α⟩ and gk

((
α−1y

)η′

εζk
)
/∈
〈
(y − α)2

〉
,

where gk(x) is the minimal polynomial of εζk over GR(pm, ℓ).

Proof. (i) We know that gk(x) =
∏

j∈Γk

(x− εζj) . Then,

gk

((
α−1y

)η′

εζk
′
)
=

∏
j∈Γk

((
α−1y

)η′

εζk
′
− εζj

)
=

∏
j∈Γk

[((
α−1y

)η′

− 1
)
εζk

′
+

(
εζk

′
− εζj

)]
.

It’s clear that
((
α−1y

)η′

− 1
)
= α−1 (y − α)

((
α−1y

)η′−1
+ ...+ 1

)
, since (y − α) is a

nilpotent element in R(bk′), then
((
α−1y

)η′

− 1
)
εζk

′
is also a nilpotent element in R(bk′).

As for each j ∈ Γk, j ̸= k′, then εζk
′ − εζj is a unit (cf Proposition 2.2). So, the conclusion

is obtained.

(ii) Since xη − α =
∏
j∈Γ

gj(x), then
∏
j∈Γ

gj

((
α−1y

)η′

εξk
)
=

((
α−1y

)η′

εξk
)η

− α = y − α.

from (i) we have κ =
∏

j∈Γ\{k}
gj

((
α−1y

)η′

εξk
)

is a unit. Hence, gk
((
α−1y

)η′

εζk
)
=

κ−1 (y − α).

Theorem 4.10. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller
set T with αps

= ξ0. Let C be a (ξ0 + pγ)-constacyclic code of length psη (η is prime to p) over
GR(pm, ℓ). Then

C =

〈∏
k∈Γ

[gk(x)]
ik

〉
, (0 ≤ ik ≤ psm),

where xη−α =
∏
k∈Γ

gk(x) is the unique factorization of xη−α into a product of monic basic irre-

ducible pairwise coprime polynomials in GR (pm, ℓ) [x].Moreover | C |=
t∏

i=1
pℓ deg(gk(x))(psm−ik).

Proof. By Theorem 4.7, we have that C is isomorphic to
⊕

k∈Γ
Ck, where Ck is an ideal of R(ak)

given by Ck =
{
c
((
α−1y

)η′

εζk
)

; c(x) ∈ C
}

. From Theorem 3.1, we know that Ck is generated

by (y − α)ik , where ik ∈ {0, 1, . . . , psm}. Using Lemma 4.9, we can show that C is generated
by the product

∏
k∈Γ

[gk(x)]ik , where ik ∈ {0, 1, . . . , psm}, and | C |=
∏
k∈Γ

|
〈
(y − α)ik

〉
|=∏

k∈Γ

pℓak(p
sm−ik).

5 Dual codes of constacyclic codes

In this section, our objective is to determine the dual of a (ξ0 + pγ)-constacyclic code of length
psη over GR(pm, ℓ), where gcd(p, η) = 1, γ is a unit in GR(pm, ℓ), and ξ0, α are nonzero el-
ements in the Teichmüller set T with αps

= ξ0. We express the code C as a direct sum of its
component codes, i.e., C ∼= ⊕k∈ΓCk.
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We begin by recalling that C⊥ is a (ξ0+pγ)−1-constacyclic code of length psη over GR(pm, ℓ),
and that

xη − α =
∏
k∈Γ

gk(x),

where gk(x) is the minimal polynomial of εζk, as defined earlier. Note that (ξ0 + pγ)−1 =
ξ−1

0 + pγ′, for some unit γ′ of GR(pm, ℓ) [15,Theorem 3.20]. We then define, for all k ∈ Γ, the
polynomial g̃k(x) by

g̃k(x) = gk(0)−1g∗k(x),

where g̃k(x) is a monic irreducible polynomial. Moreover, we have

xη − α−1 =
∏
k∈Γ

g̃k(x).

The distinct roots of xη − α−1 are given by ε−1, ε−1ζ−1, ..., ε−1ζ−(η−1), and for all k ∈ Γ,
g̃k(ε−1ζ−k) = 0. Hence, g̃k(x) is the minimal polynomial of ε−1ζ−k. We denote for all k ∈ Γ, C∗

k

as follows:

C∗
k =

{
z
(
(αy)

η′
ε−1ζ−k

)
; z(x) ∈ C⊥

}
⊆ GR(pm, ℓak)[y]

⟨yps − (ξ0 + pγ)−1⟩
. (5.1)

Lemma 5.1. With the previous notations, for all k in Γ, C⊥
k = C∗

k .

Proof. Let k be an element of Γ, and let u
(
(αy)

η′
ε−1ζ−k

)
∈ C∗

k , where u(x) ∈ C⊥. By

Proposition 2.5, for any c(x) in C, we have that u∗(x)c(x) = 0 in GR(pm,ℓ)[x]
⟨xn−(ξ0+pγ)⟩ . Furthermore,

Proposition 4.6 gives us:

û∗k ĉk = 0, i.e.
(
(α−1y)η

′
εζk

)deg(u(x))
u
((
α−1y

)−η′

ε−1ζ−k
)
ĉk = 0 in R(ak).

Since
(
(α−1y)η

′
εζk

)deg(u(x))
is a unit in R(ak), we obtain u

((
α−1y

)−η′

ε−1ζ−k
)
ĉk = 0. By

Euclid’s division theorem, there exists q(y) and r(y) such that:

u
((
α−1y

)−η′

ε−1ζ−k
)
= q(y) + r(y)(yp

s

− (ξ0 + pγ)),

where q(y) = 0 or deg q(y) < ps. Thus, in R(ak), we have q(y)ĉk = 0 for all ĉk in Ck. Using
Proposition 2.5, we obtain q∗(y) ∈ C⊥

k . Moreover, we have

q∗(y) = ydeg(q(y))q

(
1
y

)
= ydeg(q(y))

[
u
(
(αy)

η′
ε−1ζ−k

)
− r

(
1
y

)(
1
yps − (ξ0 + pγ)

)]
.

Thus, in GR(pm,ℓak)[y]
⟨yps−(ξ0+pγ)−1⟩ , there exists a unit ρ such that u

(
(αy)

η′
ε−1ζ−k

)
= ρq∗(y) ∈ C⊥

k .

Therefore, we conclude that C∗
k ⊆ C⊥

k . On the other hand, according to Proposition 2.3, we have

| C⊥ |=
∏
k∈Γ

| C∗
k |≤

∏
k∈Γ

| C⊥
k |=

∏
k∈Γ

pmakℓp
s

| Ck |
=
pmnℓ

| C |
=| C⊥ | .

Therefore, it is necessary that for every k in Γ, C⊥
k = C∗

k .

Now, let C =

〈∏
k∈Γ

[gk(x)]
ik

〉
be a (ξ0 +pγ)-constacyclic code of length psη (gcd(p, η) = 1)

over GR(pm, ℓ), where 0 ≤ ik ≤ psm. Then for any k ∈ Γ, Ck =
〈
(y − α)ik

〉
, i.e. by Lemma

5.1, C∗
k = C⊥

k =
〈
(y − α−1)p

sm−ik
〉
. As g̃k(x) is the minimal polynomial of εζ−k. So, by

Theorem 4.10,

C⊥ =

〈∏
k∈Γ

[g̃i(x)]
psm−ik

〉
=

〈∏
k∈Γ

[g∗i (x)]
psm−ik

〉
.

Therefore, it can be inferred that the following theorem holds.



On repeated-root constacyclic codes of arbitrary lengths 943

Theorem 5.2. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller

set T with αps

= ξ0. Let C =

〈∏
k∈Γ

[gk(x)]
ik

〉
be a (ξ0 + pγ)-constacyclic code of length psη

(gcd(p, η) = 1) over GR(pm, ℓ), where 0 ≤ ik ≤ psm. Then

C⊥ =

〈∏
k∈Γ

[g∗k(x)]
psm−ik

〉
.

Let us proceed to determine self-dual (ξ0 + pγ)-constacyclic codes of length n = psη over
GR(pm, ℓ), where gcd(p, η) = 1. We begin by considering the following lemma.

Lemma 5.3. [15] Suppose R is a chain ring with a maximal ideal ⟨ϱ⟩, and its nilpotency is
denoted by e. Let λ be a unit of R such that λ − λ−1 is also a unit. In such cases, a self-dual
λ-constacyclic code C of length n over R can only exist when e is an even number. Furthermore,
if e is indeed an even number, then the only self-dual λ-constacyclic code of length n over R is
C = ⟨ϱ e

2 ⟩.

Remark 5.4. Assume that γ is a unit in GR(pm, ℓ), and let ξ0 be a nonzero element in the
Teichmüller set T such that αps

= ξ0. By applying Proposition 2.2, λ − λ−1 is a unit if and
only if ξ2

0 ̸= 1.

We can therefore deduce the following theorem.

Theorem 5.5. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller
set T with αps

= ξ0 and ξ2
0 ̸= 1. Then a self-dual (ξ0 + pγ)-constacyclic code C of length psη

(gcd(p, η) = 1) over GR(pm, ℓ) can only exist if m is an even number. Moreover if m is an
even number, then the only self-dual (ξ0 + pγ)-constacyclic code of length psη over GR(pm, ℓ)
is C = ⟨pm

2 ⟩.

We now consider the case where ξ2
0 = 1, and begin by introducing the following lemma.

Lemma 5.6. Let γ be a unit in GR(pm, ℓ), and suppose ξ0 and α are nonzero elements in the
Teichmüller set T satisfying αps

= ξ0 and ξ2
0 = 1. Let Ck = ⟨(x−α)k⟩ be an ideal of GR(pm,ℓ)

⟨xps−ξ0+pγ⟩

for some k = 0, . . . , psm. Then, it follows that in GR(pm,ℓ)
⟨xps−(ξ0+pγ)−1⟩ , we have Ck = ⟨(x− α)k⟩.

Proof. The lemma is straightforward for k = 0, . . . , ps − 1. However, for k ≥ ps, i.e., k =
tps + i, where i = 0, . . . , ps − 1 and t = 0, . . . ,m − 1, we can observe from Theorem 3.1 that
Ck = ⟨pt(x− α)k⟩.

Consider a (ξ0 + pγ)-constacyclic code C over GR(pm, ℓ) of length n = psη (η prime to p),

given by C =

〈∏
k∈Γ

gk(x)ik
〉

, where ξ0 and α are nonzero elements in the Teichmüller set T

satisfying αps

= ξ0 and ξ2
0 = 1, and γ is a unit of GR(pm, ℓ). Since x̃η − α = xη − α, it follows

that for any factor monic basic irreducible polynomial g(x) of xη−α, g̃(x) is also a factor monic
basic irreducible polynomial of xη − α. Therefore, without loss of generality, we can assume
Γ = {1, . . . , t}, and we can express the generator polynomial of C as

g1(x)
i1 · · · gσ(x)iσgσ+1(x)

iσ+1 · · · gσ+ρ(x)
iσ+ρ g̃σ+1(x)

iσ+ρ+1 · · · g̃σ+ρ(x)
iσ+2ρ , (5.2)

where σ and ρ are integers such that t = σ+2ρ, and for all k = 1, . . . , σ, gk(x) is self-reciprocal
polynomial.

Now let’s write C = ⊕k∈ΓCk and C⊥ = ⊕k∈ΓDk, where Ck and Dk are ideals of R(ak).
According to Theorem 4.10, for any k ∈ Γ, Ck = ⟨(y−α)ik⟩. On the other hand, by Lemma 5.1,
Dk = C⊥

jk
= ⟨(y − α)p

sm−ijk ⟩ in GR(pm,ℓak)[y]
⟨yps−(ξ0+pγ)−1⟩ , where jk ∈ Γ such that −k ∈ Γjk . Thus, by

Lemma 5.6 , Dk = ⟨(y − α)p
sm−ijk ⟩ in R(ak). Thus, C is self-dual if and only if for all k ∈ Γ,

ik = psm− ijk . Since g̃k(x) is the minimal polynomial of εζjk , then gjk(x) = g̃k(x). Then C is
self-dual if and only if for all k = 1, .., σ, ik = psm − ik and for all k = σ + 1, .., σ + ρ, ik =
psm− ik+ρ. We have therefore established the following theorem.
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Theorem 5.7. Suppose we are given a unit γ in GR(pm, ℓ), and two nonzero elements ξ0 and α
in the Teichmüller set T such that αps

= ξ0 and ξ2
0 = 1. Let C be a (ξ0 + pγ)-constacyclic code

of length psη (with gcd(p, η) = 1) over GR(pm, ℓ) with a generator polynomial as defined in
(5.2).

(i) If xη − α has a factor monic basic irreducible self-reciprocal polynomial, then C is a self-
dual if and only if psm is an even number and the generator polynomial of C is in the
form

g1(x)
psm

2 · · · gσ(x)
psm

2 gσ+1(x)
iσ+1 · · · gσ+ρ(x)

iσ+ρ g̃σ+1(x)
psm−iσ+1 · · · g̃σ+ρ(x)

psm−iσ+ρ .

(ii) If xη − α has not a factor monic basic irreducible self-reciprocal polynomial, then C is a
self-dual if and only if the generator polynomial of C has the form

g1(x)
i1 · · · gρ(x)iρ g̃1(x)

psm−i1 · · · g̃ρ(x)p
sm−iρ .

Corollary 5.8. Let γ be a unit in GR(pm, ℓ), and suppose ξ0 and α are nonzero elements in
the Teichmüller set T satisfying αps

= ξ0 and ξ2
0 = 1. Then, the number of distinct self-dual

(ξ0 +pγ)-constacyclic codes of length psη (gcd(p, η) = 1) over GR(pm, ℓ) is (psm+1)ρ, where
ρ is defined as in (5.2).

Lemma 5.9. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller set
T with αps

= ξ0. Then in GR(pm,ℓ)[x]
⟨xn−(ξ0+pγ)⟩ , ⟨(x

η − α)p
s⟩ = ⟨p⟩, where n = psη and gcd(p, η) = 1.

Proof. Using the unique factorization of xη−α into a product of monic basic irreducible pairwise
coprime polynomials in GR(pm, ℓ)[x], we can express (xη − α)p

s

as
∏
k∈Γ

gk(x)p
s

. By applying

Lemma 4.9, we can conclude that for all k ∈ Γ, ⟨(xη−α)ps⟩ = ⟨(y−α)ps⟩ in R(ak). Then, from
Theorem 3.1, it follows that ⟨(xη − α)p

s⟩ = ⟨p⟩. Hence, we have ⟨(xη − α)p
s⟩ ∼= ⊕k∈Γ⟨p⟩ =

⟨p⟩.

Corollary 5.10. Let γ be a unit in GR(pm, ℓ), and suppose ξ0 and α are nonzero elements in
the Teichmüller set T satisfying αps

= ξ0 and ξ2
0 = 1. Then the nontrivial self-dual (ξ0 + pγ)-

constacyclic code of length psη (gcd(p, η) = 1) over GR(pm, ℓ) exists if and only if there exists
a basic irreducible polynomial factor g(x) of xη − α such that g(x) is not a self-reciprocal
polynomial.

Proof. If there exists a basic irreducible polynomial factor g(x) of xη − α such that g(x) is
not a self-reciprocal polynomial, then the code ⟨g(x)g∗(x)psm−1⟩ is a nontrivial self-dual (ξ0 +
pγ)-constacyclic code of length psη over GR(pm, ℓ). If any factor g(x), a basic irreducible
polynomial factor of xη − α, is a self-reciprocal polynomial, then any (ξ0 + pγ)-constacyclic
code of length psη over GR(pm, ℓ) is given by C = ⟨

∏
k∈Γ

gk(x)ik⟩, where for any k ∈ Γ, gk(x)

is a self-reciprocal polynomial. In this case, C is self-dual if and only if for any k ∈ Γ, ik =
psm − ik, which is possible only when psm is even. Furthermore, according to the previous
lemma, C = ⟨p⟩, and thus, C is trivial.

Example 5.11. Consider the polynomial factorization x7 − 1 = g1(x)g2(x)g3(x) in Z4[x],

g1(x) = x− 1, g2(x) = x3 + 2x2 + x− 1, g3(x) = x3 − x2 + 2x− 1.

Then the self-dual 3-constacyclic code of length 28 over Z4 is of the form〈
g1(x)

8g2(x)
ig3(x)

16−i
〉
,

where i ∈ {0, . . . , 16}.

Example 5.12. Consider the polynomial factorization x4 −1 = g1(x)g2(x)g3(x) in Z9[x], where

g1(x) = x− 1, g2(x) = x+ 1, g3(x) = x2 + 1.

Since each gi(x) for i = 1, 2, 3 is a self-reciprocal polynomial, the trivial code ⟨3⟩ is the
unique self-dual 4-constacyclic code of length 4 · 9 over Z9.
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6 MDS b-symbol distance

Recently, the construction of Maximum Distance Separable (MDS) b-symbol codes has become
a key area in error-correcting code research. MDS b-symbol codes are considered optimal as they
possess the highest possible error-correction capability among b-symbol codes. It is a commonly
known that the parameters of an [n; k; db] code over R must comply with the Singleton bound
[13], which states that | C |≤ R(n−db(C)+1). A code C is considered an MDS b-symbol if
| C |= R(n−db(C)+1). This section aims to identify all MDS b-symbol (ξ0 + pγ)-constacyclic
codes of length 2ps over GR(pm, ℓ), when b = 1 and b = 2. We’ll begin with a key lemma.

Lemma 6.1. [16] Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller
set T with αps

= ξ0. Let C be a (ξ0 + pγ)-constacyclic code of length psη (with gcd(p, η) = 1)
over GR(pm, ℓ). Then, the following are true:

(i) db(C) = db(Torm−1(C)).

(ii) The code C is an MDS b-symbol code if and only if Res(C) = Torm−1(C) and Torm−1(C) is
an MDS b-symbol code of length psη over Fpℓ .

This prompts us to compute Res(C) and Torm−1(C), but before that, we present the following
lemma.

Lemma 6.2. Let f(x) be a divisor of xη−α in Fpℓ [x]. Then, for any positive integer j,
〈
f(x)p

s+j
〉
=〈

f(x)p
s〉

in
F
pℓ

[x]

⟨xpsη−ξ0⟩
.

Proof. Let f̂(x) = xη−α
f(x) . As f(x)j and f̂(x)p

s

are coprime in Fpℓ [x], the there exist ϕ(x), φ(x) ∈
Fpℓ [x] such that ϕ(x)f(x)j + φ(x)f̂(x)p

s

= 1 in Fpℓ [x]. We have also

ϕ(x)f(x)p
s+j =

(
1 − φ(x)f̂(x)p

s
)
f(x)p

s

= f(x)p
s

− φ(x) (xη − α)
ps

.

Then in
F
pℓ

[x]

⟨xpsη−ξ0⟩
, ϕ(x)f(x)p

s+j = f(x)p
s

. Concretely
〈
f(x)p

s〉 ⊆
〈
f(x)p

s+j
〉
. The other

inclusion is obvious.

Theorem 6.3. Let C be a (ξ0+pγ)-constacyclic code of lenght n over GR(pm, ℓ), with generator
polynomial

∏
k∈Γ

[gk(x)]
ik , where 0 ≤ ik ≤ psm and xη − α =

∏
k∈Γ

[gk(x)]
ik be the unique

factorization of xη − α into a product of monic basic irreducible pairwise coprime polynomials
in GR(pm, ℓ)[x]. Then

(i) Res(C) =
〈∏

k∈Γ

[
gk(x)

]Ri
〉
,

(ii) Torm−1(C) =
〈∏

k∈Γ

[
gk(x)

]Ti
〉
,

where for any k ∈ Γ, Tk =

{
0, if ik ≤ (m− 1)ps,
ik − (m− 1)ps, if ik ≥ (m− 1)ps,

andRk =

{
ik, if ik ≤ ps,

ps, if ik ≥ ps.

Proof. (i) It is evident that Res(C) =
〈∏

k∈Γ

[
gk(x)

]ik〉
. By utilizing Lemma 6.2, we see that

Res(C) =
〈∏

k∈Γ

[
gk(x)

]Rk
〉

.

(ii) Note that c ∈ Torm−1(C), if and only if pm−1c ∈ C ∩
〈
pm−1

〉
. On the other hand from

Lemma 5.9,

〈
pm−1〉 = 〈

(xm − α)(m−1)ps
〉
=

〈∏
k∈Γ

[gk(x)]
(m−1)ps

〉
.
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Then

C ∩
〈
pm−1〉 = 〈∏

k∈Γ

[gk(x)]
max((m−1)ps,ik)

〉
=

〈
pm−1

∏
k∈Γ

[gk(x)]
Tk

〉
.

We therefore obtain c̄ ∈ Torm−1(C), if and only if pm−1c ∈
〈
pm−1 ∏

k∈Γ

[gk(x)]
Tk

〉
, i.e.,

c̄ ∈
〈∏

k∈Γ

[
gk(x)

]Tk
〉
.

Corollary 6.4. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller
set T with αps

= ξ0. Let C be a (ξ0 + pγ)-constacyclic code of length psη (η is prime to p) over
GR(pm, ℓ). Then Res(C) = Torm−1(C) if and only if C = ⟨1⟩. In particular ⟨1⟩ is the only MDS
b-symbol.

Proof. It is a direct consequence of Theorem 6.3 and Lemma 6.1.

The following result is a direct consequence of Theorem 4.10.

Theorem 6.5. Let γ be a unit in GR(pm, ℓ), ξ0 and α be nonzero elements in the Teichmüller set
T with αps

= ξ0. Let C be a (ξ0 + pγ)-constacyclic code of length 2ps (is an odd prime number)
over GR(pm, ℓ). Then

(i) If α is not a square, then C =
〈
(x2 − α)i

〉
, for i = 0, ..., psm.

(ii) If α is a square, i.e, α = δ2, then C =
〈
(x− δ)i(x+ δ)j

〉
, for i, j = 0, ..., psm.

The Hamming and symbol-pair distances of any (ξ0 + pγ)-constacyclic code of lenght 2ps
over GR(pm, ℓ), (with gcd(p, 2) = 1) are fully established and determined by the Theorem 2
[17] and Theorem 3.17 [18].

7 Conclusion

In this work, we have established the structure of (ξ0 + pγ)-constacyclic codes with a length
of ηps over the ring GR(pm, ℓ). Here, ξ0 is nonzero elements in the Teichmüller set T , and
γ is a unit in GR(pm, ℓ). This structural insight has enabled us to characterize self-dual (ξ0 +
pγ)-constacyclic codes. We provide a necessary and sufficient condition for the existence of
nontrivial self-dual (ξ0 + pγ)-constacyclic codes. Additionally, a method has been devised to
determine the b-symbol distance of (ξ0 + pγ)-constacyclic codes with a length of 2ps for both
b = 1 and b = 2. It has also been shown that ⟨1⟩ is the unique Maximum Distance Separable
(MDS) (ξ0 + pγ)-constacyclic codes with a length of ηps over GR(pm, ℓ).
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