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Communicated by Harikrishnan Panackal

MSC 2020 Classifications: Primary 35B44; Secondary 35L57.

Keywords and phrases:Blow up, Petrovsky equation, Variable exponents.

Abstract: In this article we consider the following a logarithmic Petrovsky equations with variable expo-
nents:

utt + ∆
2u+ |ut|p(x)−2

ut = |u|q(x)−2
u lnu.

We proved that under suitable conditions on the initial data, a finite-time blow up result for solutions with
negative initial energy.

1 Introduction
Let be Ω a bounded domain in Rn with a smooth boundary ∂Ω. We study the following boundary value
problem: 

utt + ∆
2u+ |ut|p(x)−2 ut = |u|q(x)−2 u lnu, Ω × (0, T ) ,

u (x, t) = ∂
∂v

u (x, t) = 0, ∂Ω × (0, T ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

(1.1)

here p (·) and q (·) are measurable functions on Ω satisfying{
2 ≤ p1 ≤ p (x) ≤ p2 ≤ p∗

2 ≤ q1 ≤ q (x) ≤ q2 ≤ q∗
(1.2)

here {
p1 = ess infx∈Ω p (x) , p2 = ess supx∈Ω

p (x)

q1 = ess infx∈Ω q (x) , q2 = ess supx∈Ω
q (x)

(1.3)

and {
2 < p∗ < ∞ if n ≤ 4,

2 < p∗ < 2n
n−4 if n > 4,

(1.4)

also satisfying the log-Hölder continuity condition:

|p (x)− p (y)| ≤ A

ln
∣∣∣ 1
x−y

∣∣∣ , (1.5)

for all x, y ∈ Ω with |x− y| < δ, 0 < δ < 1, A > 0.
In recent years, a great deal of mathematical effort has been paid to the study of mathematical models of

parabolic, elliptic and hyperbolic equaions with variable exponents of nonlinearity. Technological advance-
ments brought many new real-world problems such as flows of electro-rheological fluids, fluids with tempera-
ture dependent viscocity, filtration processes through a porous media, image processing and thermorheological
fluids and others, which required modeling with non-standard [6, 20].

Messaoudi et al. [11] studied the following wave equation

utt − ∆u+ a |ut|m(·)−2 ut = b |u|p(·)−2 ,

they proved the local existence and the global nonexistence.
Tebba et al. [21] investigated a nonlinear damped wave equation given by:

utt − ∆u− ∆utt + a |ut|m(x)−2 ut = b |u|p(x)−2 u,

under appropriate assumptions on the variable exponents, they demonstrated the existence of a unique weak
solution using the Faedo-Galerkin method. They also proved the finite time blow-up of solutions.
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Antontsev et al. [1] worked the nonlinear Petrovsky equation as follows:

utt + ∆
2u− ∆ut + |ut|p(x)−2 ut = |u|q(x)−2 u,

under suitable assumptions on the variable exponents and inital data, they obtain local weak solutions and
obtained global nonexistence.

In the study of Ouaoua and Boughamsa [12] they looked into the following equation

utt + ∆
2u− ∆u+ |ut|m(x)−2 ut = |u|r(x)−2 u,

they showed the local existence and also proved that the local solution is global.
Hamadouche [9] worked the following nonlinear Petrovsky equation with variable exponents

utt + ∆
2u+ a |ut|m(·)−2 ut = b |u|p(·)−2 ,

by utilizing the Faedo-Galerkin method, the author established the existence of a unique weak solution for
variable exponents m and p under suitable assumptions, and also obtained the blow-up result with negative
initial energy.

Rahmoune [18] studied the following wave equation

utt − ∆u+ |ut|m(x)−2 ut = |u|p(x)−2 u lnu,

they proved the local existence and the global nonexistence.
The existence, blow up and decay of solutions was studied by many authors for the equation, see for instance

[2, 3, 4, 5, 8, 10, 13, 14, 15, 16, 17, 19, 22, 23, 24]
This work is divided into three sections, apart from the introduction. In Part 2, we present preliminary

details about variable exponents, Lebesgue spaces, and Sobolev spaces. Moreover, we introduce important
lemmas and assumptions. In Part 3, we demonstrate the occurrence of solution blow-up with negative initial
energy.

2 Preliminaries
In this section, we present some Lemmas and corollary for the proof of our result.

Lemma 2.1. [6, 7]. If p : Ω → [1,∞] is a measurable function u on Ω and

2 < p1 ≤ p (x) ≤ p2 <
2n

n− 4
, n ≥ 5. (2.1)

Then, the embedding H2
0 (Ω) ↪→ Lp(·) (Ω) is continuous and compact.

So, we give the sufficient conditions for p (x) and q (x)

2 < p1 ≤ p (x) ≤ p2 < q1 ≤ q (x) < q2 <
2n

n− 4
(2.2)

holds, where

E (t) =
1
2
∥ut∥2 +

1
2
∥∆u∥2 −

∫
Ω

1
q (x)

|u|q(x) ln |u| dx+

∫
Ω

1
q2 (x)

|u|q(x) dx. (2.3)

Lemma 2.2. The energy associated with the problem (1.1) given by (1.2) satisfies the

E′ (t) = −
∫

Ω

|ut|p(x) dx ≤ 0 (2.4)

and the inequality E (t) ≤ E (0) holds, where

E (0) =
1
2
∥u1∥2 +

1
2
∥∆u0∥2 −

∫
Ω

1
q (x)

|u0|q(x) ln |u0| dx

+

∫
Ω

1
q2 (x)

|u0|q(x) dx. (2.5)

Proof. We multiply the equation of (1.1) by ut, and integrating over Ω using integrating by parts, we get

E′ (t) = −
∫

Ω

|ut|p(x) dx ≤ 0.
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Let
H (t) = −E (t) for t ≥ 0, (2.6)

since E (t) is absolutely continuous, hence H′ (t) ≥ 0 and

0 < H (0) ≤ H (t) ≤
∫

Ω

1
q (x)

|u|q(x) ln |u| dx.

Lemma 2.3. [18]. Let the conditions of (2.1) be fulfilled and let u be the solution of (1.1). Then,∫
Ω

|u|q(x) dx ≥
∫

Ω2

|u|q1 dx = ∥u∥q1
q1,Ω2

(2.7)

where Ω2 = {x ∈ Ω : |u (x, t)| ≥ 1} .

Lemma 2.4. [18]. Under the assumptions stated in (2.2), the function H (t) provided above gives the following
estimated:

0 < H (0) ≤ H (t) ≤ |Ω|
q1e

+
Bs

(s− q2) q1e
∥∇u∥s2 , t ≥ 0,

where s is chosen sufficiently small such that{
q1 ≤ q2 < s < ∞, for n = 1, 2,
q1 ≤ q2 < s ≤ 2n

n−2 , for n ≥ 3

and Bs is a positive constant of embedding H2
0 (Ω) in Ls (Ω) such that

∥u∥s ≤ Bs ∥∆u∥2 , ∀u ∈ H2
0 (Ω) . (2.8)

From above lemma and by using Sobolev Embedding theorem, we have the following corollary:

Corollary 2.5. Under the assumptions of (2.2), the function H (t) presented above yields the following esti-
mates:

0 < H (0) ≤ H (t) ≤ |Ω|
q1e

+
Bs

(s− q2) q1e
∥∆u∥s2 , t ≥ 0, (2.9)

where s is chosen sufficiently small such that{
q1 ≤ q2 < s < ∞, for n = 1, 2, 3, 4,
q1 ≤ q2 < s ≤ 2n

n−4 , for n ≥ 5.
(2.10)

3 Blow up
In this part, we state and prove our main result.

Theorem 3.1. Assume that (2.2) hold, and E (0) < 0. Then any solution of problem (1.1) blows up infinite
time.

Proof. Let

Φ (t) = H1−σ (t) + ε

∫
Ω

uutdx, (3.1)

with σ > 0 is small enough to be chosen later and such that

0 < σ ≤ min
{
q1 − 2

2q1
,

q1 − p2

q1 (p2 − 1)
,

2 (q1 − p1)

s (p1 − 1) q1
,

2 (q1 − p1)

s (p2 − 1) q1

}
. (3.2)

Utilizing Equation (1.1) a direct derivation of (3.1) yields

Φ
′ (t) = (1 − σ)H−σ (t)H′ (t) + ε ∥ut∥2 − ε ∥∆u∥2

−ε

∫
Ω

u |ut|p(x)−1 utdx+ ε

∫
Ω

|ut|q(x) lnudx. (3.3)

By applying the addition and subtraction of ε (1 − η) q1H (t) with 0 < η < q1−2
q1

on the right hand side of
(3.3), we get

Φ
′ (t) ≥ (1 − σ)H−σ (t)H′ (t) + ε (1 − η) q1H (t) + ε

(
1 +

(1 − η) q1

2

)
∥ut∥2

+ε

(
(1 − η) q1

2
− 1
)
∥∆u∥2 + εη

∫
Ω

|ut|q(x) lnudx

+ε (1 − η)
q1

q2
2

∫
Ω

|u|q(x) dx− ε

∫
Ω

u |ut|p(x)−1 dx. (3.4)
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Due to the fact that (2.7), taking into account

1
q2

2

∫
Ω

|u|q(x) dx <
1
q1

∫
Ω

|ut|q(x) lnudx,

(3.4) result in

Φ
′ (t) ≥ (1 − σ)H−σ (t)H′ (t) + εβ

[
H (t) + ∥ut∥2 + ∥∆u∥2 +

∫
Ω

|u|q(x) dx
]

−ε

∫
Ω

uut |ut|p(x)−2 dx

≥ (1 − σ)H−σ (t)H′ (t) + εβ
[
H (t) + ∥ut∥2 + ∥∆u∥2 + ∥u∥q1

q1,Ω2

]
−ε

∫
Ω

uut |ut|p(x)−2 dx, (3.5)

here

β = min
{
(1 − η) q1,

(
1 +

(1 − η) q1

2

)
,

(
(1 − η) q1

2
− 1
)
,
q1

q2
2

}
.

Now, by applying Young’s inequality, we can make an estimate for the final expression in equation (3.3) as
demonstrated below∫

Ω

uut |ut|p(x)−2 dx ≤ 1
p1

∫
Ω

γp(x) |u|p(x) dx

+
p2 − 1
p2

∫
Ω

γ
− p(x)

p(x)−1 |ut|p(x) dx, (∀γ > 0) . (3.6)

As a result, by taking γ such that

γ
− p(x)

p(x)−1 = kH−σ (t) , k > 0,

substituting the statement into equation (3.6) with a sufficiently large k to be specified later, we derive the
following inequality: ∫

Ω

u |ut|p(x)−1 dx ≤ 1
p1

∫
Ω

k1−p(x)Hσ(p(x)−1) (t) |u|p(x) dx

+
p2 − 1
p2

kH′ (t)−σ (t) , ∀γ > 0. (3.7)

The result of joining (3.5) with (3.7)

Φ
′ (t) ≥

[
(1 − σ)− ε

p2 − 1
p2

k

]
H−σ (t)H′ (t)

+εβ
[
H (t) + ∥ut∥2 + ∥∆u∥2 + ∥u∥q1

q1,Ω2

]
−ε

k1−p1

p1
Hσ(p2−1) (t)

∫
Ω

|u|p(x) dx. (3.8)

Using Corollary 5, we obtain

Hσ(p2−1) (t)

∫
Ω

|u|p(x) dx

≤ 2σ(p2−1)−1C

(
|Ω|
q1e

)σ(p2−1)((
∥u∥q1

q1,Ω2

) p1
q1 +

(
∥u∥q1

q1,Ω2

) p1
q1

)
+2σ(p2−1)−1C

(Bs)
sσ(p2−1)

(s− q2) eq1
∥∆u∥sσ(p2−1)

2

(
∥u∥p1

q1,Ω2
+ ∥u∥p1

q1,Ω2

)
. (3.9)

We will estimate the terms to the right of (3.9) using Young’s inequality, we get

∥∆u∥sσ(p2−1)
2 ∥u∥p1

q1,Ω2
≤ p1

q1
∥u∥q1

q1,Ω2
+ C

q1 − p1

q1
∥∆u∥

sσ(p2−1)q1
q1−p1

2

=
p1

q1
∥u∥q1

q1,Ω2
+ C

q1 − p1

q1

(
∥∆u∥2

) sσ(p2−1)q1
2(q1−p1) ,
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similarly

∥∆u∥sσ(p2−1)
2 ∥u∥p2

q1,Ω2
≤ p2

q1
∥u∥q1

q1,Ω2
+ C

q1 − p2

q1
∥∆u∥

sσ(p2−1)q1
q1−p1

2 .

Using the following inequality

aθ ≤ a+ 1 ≤
(

1 +
1
b

)
(a+ b) ∀a ≥ 0, 0 < θ < 1, b ≥ 0, (3.10)

and condition (2.2) with a = ∥u∥q1
q1,Ω2

, c1 = 1 + 1
H(0) , b = H (0) and θ = p1

q1
(θ = p2

q1
), we get

(
∥u∥q1

q1,Ω2

) p1
q1 +

(
∥u∥q1

q1,Ω2

) p2
q1 ≤ 2c1

(
∥u∥q1

q1,Ω2
+H (0)

)
≤ 2c1

(
∥u∥q1

q1,Ω2
+H (t)

)
and condition (3.2) with a = ∥∆u∥2

2 , c2 = 1 + 1
H(0) , b = H (0) and θ = sσ(p2−1)q1

2(q1−p1)
, we get

(
∥∆u∥2

2

) sσ(p2−1)q1
2(q1−p1) ≤ c2

(
∥∆u∥2 +H (0)

)
≤ c2

(
∥∆u∥2 +H (t)

)
also, a = ∥∆u∥2

2 , c3 = 1 + 1
H(0) , b = H (0) and θ = sσ(p2−1)q1

2(q1−p2)
, we get

(
∥∆u∥2

2

) sσ(p2−1)q1
2(q1−p2) ≤ c3

(
∥∆u∥2 +H (t)

)
and so, (3.9)

Hσ(p2−1) (t)

∫
Ω

|u|p(x) dx ≤ C
(
∥u∥q1

q1,Ω2
+H (t) + ∥∆u∥2

)
, ∀t ∈ [0, T ] , (3.11)

where C is the positive constant that depends only on Ω, e, a p1,2, q1,2. Combining (3.8) and (3.11), we get

Φ
′ (t) ≥

[
(1 − σ)− ε

p2 − 1
p2

k

]
H−σ (t)H′ (t)

+ε

[
β − kp2−1

p2
C

] [
H (t) + ∥ut∥2 + ∥∆u∥2 + ∥u∥q1

q1,Ω2

]
. (3.12)

At this point we pick γ = β − kp2−1

p2
C ≥ 0, (it is the case when k >

(
βp1
C

) 1
1−p1 . Once k is fixed we pick

ε > 0 sufficient small so that
(1 − σ)− ε

p2 − 1
p2

k ≥ 0

and
Φ (0) = H1−σ (0) + ε

∫
Ω

u0 (x)u1 (x) dx > 0.

Hence (3.12) takes the form

Φ
′ (t) ≥ γ

[
H (t) + ∥ut∥2 + ∥∆u∥2 + ∥u∥q1

q1,Ω2

]
. (3.13)

Therefore, we have
Φ (t) ≥ Φ (0) > 0, for all t ≥ 0

On the other hand from (3.1),

Φ
1

1−σ (t) ≤ 2
1

(1−σ)

(
H (t) +

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
(1−σ)

)
(3.14)

by utilizing Holder’s inequality, it becomes∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
(1−σ)

≤ C ∥u∥q1
∥ut∥2

≤ C ∥u∥q1,Ω
∥ut∥2 .
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Again, algebraic inequality (3.10), with a = ∥u∥q1
q1,Ω2

, c = 1 + 1
H(0) , b = H (0) and 0 < θ = 2p1

(1−2θ)q1
≤ 1

(see 3.2), gives (
∥u∥q1

q1,Ω2

) 2
(1−2σ)q1 ≤ C

(
∥u∥q1

q1,Ω2
+H (t)

)
.

Thus, Young’s inequality gives

∣∣∣∣∫
Ω

uutdx

∣∣∣∣
1

(1−σ)

≤ C

[
∥u∥

2(1−σ)
1−2σ

q1,Ω2
+ ∥ut∥2(1−σ)

2

] 1
(1−σ)

,

≤ C

[(
∥u∥q1

q1,Ω2

) 2
(1−2σ)q1 + ∥ut∥2

2

]
,

≤ C
[
∥u∥q1

q1,Ω2
+H (t) + ∥ut∥2

2

]
, for all t ≥ 0,

joining it with (3.13) and (3.14) yields
Φ

′ (t) ≥ ζΦ
1

1−σ (t) (3.15)

where ζ is a positive constant according as (ε, γ, C). With a simple integration of (3.15) over (0, t) we infer
that

Φ
σ

1−σ (t) ≥ 1

Φ
σ

1−σ (0)− σ
1−σ

ζt
. (3.16)

Consequently, Φ (t) blows up in a finite time T ∗

T ∗ ≤ 1 − σ

ζσΦ
σ

1−σ (0)
.
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[13] E. Pişkin, G. Butakın, Existence and Decay of Solutions for a Parabolic-Type Kirchhoff Equa-
tion with Variable Exponents. Journal of Mathematical Sciences and Modelling, 6(1)(2023) 32-41.
doi:10.33187/jmsm.1238633



954 N. Yılmaz and E. Pişkin
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E. Pişkin, Department of Mathematics, Dicle University, Türkiye.
E-mail: episkin@dicle.edu.tr

Received: 2023-09-06

Accepted: 2024-07-18


	1 Introduction
	2 Preliminaries
	3 Blow up

